
9

Kang-Woo Kim* and Hyoungjoong Kim

Crystal structure of semiconducting potassium poly[$(\mu_2$ -tetraselenido- $\kappa^2 Se^1$: Se^4)(μ_2 -pentaselenido- $\kappa^1 Se^1$: Se^1)argentate(I)], K_3 AgSe₉

https://doi.org/10.1515/ncrs-2018-0046 Received January 25, 2018; accepted April 12, 2018; available online May 7, 2018

Abstract

K₃AgSe₉, monoclinic, $P2_1/c$ (no. 14), a = 11.094(2) Å, b = 9.7164(15) Å, c = 14.223(3) Å, $\beta = 90.738(9)^{\circ}$, V = 1533.0(5) Å³, Z = 4, $R_{\rm gt}(F) = 0.0377$, $wR_{\rm ref}(F^2) = 0.0832$, T = 223(2) K.

CCDC no.: 1836642

The title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

 $AgCH_3CO_2$ (0.020 g, 0.12 mmol), K_2Se_4 (0.139 g, 0.36 mmol) and Et_3MeNI (0.057 g, 0.24 mmol) were charged to a Pyrex tube with diameter of 9 mm under an argon atmosphere and

Table 1: Data collection and handling.

Crystal:	Dark purple, plate		
Size:	$0.15\times0.13\times0.03~\text{mm}$		
Wavelength:	Mo Kα radiation (0.71073 Å)		
μ:	23.46 mm ⁻¹		
Diffractometer, scan mode:	Bruker Photon 100, $oldsymbol{arphi}$ and $oldsymbol{\omega}$		
θ_{max} , completeness:	28.5°, >99%		
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	41091, 3831, 0.106		
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), 2980$		
N(param) _{refined} :	119		
Programs:	Bruker [10], SHELX [11],		
	WinGX[12], Diamond[13]		

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
Ag1	0.54031(5)	0.11327(5)	0.43267(4)	0.02399(14)
Se1	0.67540(6)	0.34352(7)	0.46068(5)	0.02037(16)
Se2	0.75540(6)	0.26942(7)	0.60569(5)	0.02058(16)
Se3	0.59317(7)	0.17762(7)	0.68781(5)	0.02424(18)
Se4	0.48996(7)	0.36846(7)	0.74938(5)	0.02283(17)
Se5	0.34453(6)	0.13219(7)	0.54408(5)	0.01779(15)
Se6	0.17487(6)	0.07314(7)	0.44892(5)	0.02057(16)
Se7	0.03363(7)	0.24222(8)	0.48766(5)	0.02407(17)
Se8	0.07222(7)	0.42699(7)	0.38518(5)	0.02502(18)
Se9	0.00050(7)	0.35731(8)	0.23753(5)	0.02699(18)
K1	0.82136(15)	0.38859(16)	0.83566(11)	0.0267(3)
K2	0.19708(16)	0.40214(17)	0.68115(12)	0.0304(4)
К3	0.62075(16)	0.59985(16)	0.60773(12)	0.0287(4)

about 0.5 mL MeOH was added as solvent. While the solvent was being frozen, the Pyrex tube was evacuated and sealed with the use of a flame. The sealed tube was placed in an oven and heated at 80 °C for a day, then cooled to room temperature. Dark purple plate crystals were isolated by filtration and washed with MeOH and diethyl ether several times. Crystals of K_3AgSe_9 were obtained in 48% yield, based on Ag.

Comment

Compared to other polychalcogenidometallates, polyselenidoargentates have been relatively less explored. A few known polyselenidoargentates are $[Ag(Se_4)]_n^{n-}$,

^{*}Corresponding author: Kang-Woo Kim, Department of Chemistry and Research Institute for Natural Sciences, Incheon National University, Incheon 22012, Korea, e-mail: kimkw@inu.ac.kr Hyoungjoong Kim: Department of Chemistry and Research Institute for Natural Sciences, Incheon National University, Incheon 22012, Korea

 $[Ag(Se_4)]_4^{4-}$, $[Ag(Se_5)]_n^{n-}$, and $[Ag_4(Se_4)_3]^{2-}$ as stabilized with symmetric organic cations such as R_4N^+ (R = Me, Et, n-Pr) and Ph₄P⁺ [1, 2]. Most of the previously known polyselenidoargentates were synthesized by the solution method. To explore new polyselenidoargentates we adopted a solventothermal synthetic method and asymmetric organic cations such as Et₃MeN⁺. A ternary silver selenide, K₃AgSe₉ has been obtained and found to contain a new polyselenidoargentate, $[Ag(Se_4)(Se_5)]^{3-}$ as stabilized with K^+ cations. So far, structurally characterized ternary silver selenides are as follows: KAgSe [3], KAg₃Se₂ [4], K₂Ag₄Se₃ [5], RbAg₅Se₃ [6], M₂Ag₁₂Se₇ (M = K, Tl) [7, 8], MAgSe₄ (M = Rb, Cs) [9]. These ternary silver selenides consist of Se²⁻monoselenides, except MAgSe₄ with $(Se_4)^{2-}$ tetraselenide ligands.

The $[Ag(Se_4)(Se_5)]^{3-}$ anion in the title compound K₃AgSe₉ was revealed to be of a 2D layered structure. All the other known polyselenidoargentates are either molecular or 1D chain. The 2D layered [Ag(Se₄)(Se₅)]³⁻ complex features to be of a novel structure and possesses a dangling pentaselenide, (Se₅)²⁻ ligand. Both bridging (Se₄)²⁻ and dangling (Se₅)²⁻ ligands connect Ag metal centers to form a 24-membered rings, which are finally linked into the polymeric $[Ag(Se_4)(Se_5)]_n^{3n-}$ layer. In the 24-membered ring, there are six Ag atoms, sixteen Se atoms from four bridging $(Se_4)^{2-}$ ligands, and two Se atoms from two dangling $(Se_5)^{2-}$ ligands. Rhombuses made of two Ag metal centers and two Se atoms from two different (Se₅)²⁻ ligands, are also present in the $[Ag(Se_4)(Se_5)]_n^{3n-}$ layer. The $[Ag(Se_4)(Se_5)]_n^{3n-}$ layer is quite corrugated and three different K⁺ cations fill the empty space inside and between the layers. Around each of the three potassium cations, seven Se atoms are present inside the range of 3.7 Å, and the closest Se atoms are Se1 (3.306(2) Å) for K1, Se4 (3.397(2) Å) for K2, and Se1 (3.312(2) Å) for K3, respectively.

The Ag1 atom in K₃AgSe₉ has distorted tetrahedral geometry, with one shorter bond to Se4 at 2.668(1) Å, and three marginally longer bonds to Se5, Se5' and Se1 with the average bond distance of 2.71(3) Å. Bond angles ranging from 101.39(3) to 116.43(3)° also exemplify the distorted coordination around Ag1. There exists a weak interaction between d¹⁰ metal centers as indicated by the Ag1-Ag1 distance of 3.057(1) Å. Bonds between Se atoms show distances from 2.334(1) to 2.377(1) Å and an average distance of 2.35(1) Å. K₃AgSe₉ is a semiconducting material with the bandgap of about 1.55 eV, measured by the UV/Vis reflectance spectroscopy. TGA results show that K₃AgSe₉ is stable up to 180 °C but decomposes thereafter to lose K and Se and to become simple binary AgSe_x compounds upon being heated to 900 °C under an argon atmosphere.

Acknowledgements: This work was supported by the Incheon National University Research Grant in 2015.

References

- 1. Huang, S.-P.; Kanatzidis, M. G.: Synthesis, X-ray structure determination, and spectroscopy of the silver(I) polyselenides $[(Ph_4P)Ag(Se_4)]_n$, $[(Me_4N)Ag(Se_5)]_n$, $[(Et_4N)Ag(Se_4)]_4$. and $(Pr_4N)_2[Ag_4(Se_4)_3]$. Extreme structure dependence on counterion size. Inorg. Chem. 30 (1991) 1455-1466.
- Kanatzidis, M. G.; Huang, S.-P.: Synthesis of [(Ph₄P)Ag(Se₄)]_n. A novel one-dimensional inorganic polymer. J. Am. Chem. Soc. 111 (1989) 760-761.
- 3. Savelsberg, G.; Schäfer, H.: Beiträge zu den Stabilitätskriterien des PbFCl-typs: Darstellung und Struktur von KAgSe. J. Less-Common Met. 80 (1981) P59-P69.
- 4. Bensch, W.; Duerichen, P.: Crystal structure of potassium diselenotriargentate, KAg₃Se₂. Z. Kristallogr. NCS 212 (1997)
- 5. Bronger, W.; Schils, H.: K₂Ag₄Se₃, Darstellung und kristallstruktur. J. Less-Common Met. 83 (1982) 287-291.
- 6. Emirdag, M.; Schimek, G.; Pennington, W. T.; Kolis, J. W.: Synthesis of two new metallic alkali metal silver selenides, K₂Ag₁₂Se_{7.11} and RbAg₅Se₃, from supercritical ethylenediamine. J. Solid State Chem. 144 (1999) 287-296.
- 7. Wood, P. T.; Pennington, W. T.; Kolis, J. W.: Synthesis of novel solid-state compounds in supercritical solvents: preparation and structure of K₂Ag₁₂Se₇ in supercritical ethylenediamine. J. Am. Chem. Soc. 114 (1992) 9233-9235.
- 8. Shi, Y.; Assoud, A.; Sankar, C. R.; Kleinke, H.: Tl₂Ag₁₂Se₇: A new pnp conduction switching material with extraordinarily low thermal conductivity. Chem. Mater. 29 (2017) 9565-9571.
- Emirdag, M.; Schimek, G. L.; Kolis, J. W.: Synthesis and characterization of MAgSe₄ (M = Rb, Cs). J. Chem. Crystallogr. 28 (1998) 705-711.
- 10. Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, (2007).
- 11. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A. 64 (2008) 112-122.
- 12. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849-854.
- 13. Putz, H.; Brandenburg, K.: DIAMOND Crystal and molecular structure visualization. Crystal Impact, Bonn, Germany, (2015).