9

Miao Bao-Xi, Tang Xin-Xue and Zhang Li-Fang*

Crystal structure of pyrene-2-carbaldehyde, $C_{17}H_{10}O$

https://doi.org/10.1515/ncrs-2017-0423 Received January 15, 2017; accepted April 4, 2018; available online April 18, 2018

Abstract

 $C_{17}H_{10}O$, monoclinic, $P2_1/c$ (no. 14), a = 8.1312(16) Å, b = 7.8252(16) Å, c = 17.231(3) Å, $\beta = 92.47(3)^{\circ}$, V = 1095.3(4) Å³, Z = 4, $R_{gt}(F) = 0.0517$, $wR_{ref}(F^2) = 0.1281$, T = 293(2) K.

CCDC no.: 1834752

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

All chemicals were purchased from commercial sources and used as received without further purification. The title complex was prepared by two steps. The intermediate 2-formyl-4,5,9,10-tetrahydropyrene was prepared by the following procedure: To a stirred solution of 4,5,9,10-tetrahydropyrene (2.060 g, 10 mmol) and dichloromethyl methyl ether (1.495 g, 13 mmol) in CH_2Cl_2 (80 mL) was added at 0 °C a solution of titanium tetrachloride (10.95 mL, 100 mmol) in CH_2Cl_2

Miao Bao-Xi and Tang Xin-Xue: School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, People's Republic of China

Table 1: Data collection and handling.

Crystal:	Yellow block
Size:	$0.15\times0.14\times0.12~\text{mm}$
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ:	$0.09 \; \text{mm}^{-1}$
Diffractometer, scan mode:	Bruker APEX-II, ω -scans
$ heta_{max}$, completeness:	26°, >98%
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	7793, 2121, 0.056
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma \ (I_{\rm obs}), \ 1133$
$N(param)_{refined}$:	162
Programs:	Bruker programs [1], SHELX [2]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	х	у	z	U _{iso} */U _{eq}
01	0.9439(2)	0.2050(2)	-0.10678(9)	0.0507(5)
C1	0.5362(3)	0.2907(2)	-0.04617(12)	0.0326(6)
H1	0.5026	0.3529	-0.0900	0.039*
C2	0.6942(3)	0.2235(2)	-0.04090(12)	0.0292(5)
C3	0.7474(3)	0.1309(2)	0.02406(12)	0.0315(6)
Н3	0.8537	0.0869	0.0269	0.038*
C4	0.6443(3)	0.1027(2)	0.08490(11)	0.0268(5)
C5	0.6931(3)	0.0038(2)	0.15243(12)	0.0288(5)
H5	0.7988	-0.0418	0.1566	0.035*
C6	0.5892(3)	-0.0239(3)	0.20932(12)	0.0326(6)
Н6	0.6252	-0.0880	0.2522	0.039*
C7	0.4241(3)	0.0420(2)	0.20639(11)	0.0300(5)
C8	0.3144(3)	0.0129(3)	0.26496(13)	0.0384(6)
Н8	0.3470	-0.0537	0.3076	0.046*
C9	0.1562(3)	0.0824(3)	0.26035(14)	0.0438(6)
H9	0.0848	0.0638	0.3002	0.053*
C10	0.1054(3)	0.1797(3)	0.19605(13)	0.0406(6)
H10	-0.0002	0.2257	0.1936	0.049*
C11	0.2095(3)	0.2094(2)	0.13542(13)	0.0325(6)
C12	0.1593(3)	0.3056(3)	0.06735(14)	0.0388(6)
H12	0.0533	0.3503	0.0631	0.047*
C13	0.2631(3)	0.3320(3)	0.00954(13)	0.0345(6)
H13	0.2268	0.3947	-0.0338	0.041*
C14	0.4269(3)	0.2667(2)	0.01291(12)	0.0286(5)
C15	0.4810(3)	0.1715(2)	0.07997(12)	0.0257(5)
C16	0.3715(3)	0.1419(2)	0.14055(11)	0.0263(5)
C17	0.8042(3)	0.2533(3)	-0.10544(14)	0.0403(6)
H17	0.7620	0.3140	-0.1482	0.048*

(20 mL). The mixture was stirred for 3 h at room temperature. The mixture was poured into ice-water and extracted with CH_2Cl_2 two times. The organic layer was washed with

^{*}Corresponding author: Zhang Li-Fang, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, People's Republic of China, e-mail: zhanglifang@cumt.edu.cn

water, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by silica gel chromatography using hexane/ CH_2Cl_2 as an eluent to afford 2.0358 g 2-formyl-4, 5,9,10-tetrahydropyrene in 87% yield. ¹H NMR (400 MHz, $CDCl_3$) δ 9.98 (s, 1H), 7.62 (s, 2H), 7.23 (d, J=6.8 Hz, 1H), 7.14 (d, J=7.6 Hz, 2H), 2.97 (dd, J=9.4, 3.6 Hz, 8H). **GC/MS MS**: ($C_{17}H_{14}O$) m/z 234(M^+ , 78), 216(18), 205(100), 189(38), 101(20).

The title compound was synthesized by dehydrogenation of the intermediate 2-formyl-4,5,9,10-tetrahydropyrene a solution of 2-formyl-4,5,9,10-tetrahydropyrene (1.170 g, 5 mmol) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (2.951 g, 13 mmol) in 100 mL of freshly-dried benzene was refluxed for two days. After removing the solvent by rotary evaporation, the residue was purified by silica gel chromatography using hexane/CH₂Cl₂ as an eluent to afford 1.081 g 2-pyrenyl aldehyde in 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 8.68 (s, 2H), 8.27 (d, J = 7.6 Hz, 2H), 8.23-8.16 (m, 4H), 8.15–8.11 (m, 1H). **GC–MS MS**: $(C_{17}H_{10}O)$ m/z $230(M^+, 100), 201(95), 100(35)$. The yellow block crystals of the title compound were obtained by slow evaporation of hexane/CH₂Cl₂ solution (v:v = 1/1) and the selected crystal was structurally characterized by X-ray diffraction analysis.

Experimental details

All H atoms bond to C atoms were introduced using the HFIX commond in the SHELXL program [2], with the value of 0.93 Å or 0.96 Å for C—H bonds distances. All H atoms were allowed for as riding atoms with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ for hydrogen atoms. The structure was checked using PLATON [3].

Discussion

In the last several decades, the research on organic fluorescent materials has gained important momentum due to their wide range of applications in organic light-emitting diodes (OLED), organic field effect transistor (OFET), organic lasers, fluorescent sensors and solar cells, etc. [4-8]. As a well known fluorophore, pyrene and its derivatives have been paid much attentions due to their pure blue fluorescence with high quantum yield, exceptionally long fluorescence lifetime, excellent thermal stability, and high charge carrier mobility [9–11]. Generally, the derivatization of pyrene is the key step for interesting pyrene-based functional materials. However, the active position of direct electrophilic mono substitution reaction on pyrene is almost exclusively at the electron-rich 1-position of pyrene [12-15]. Compared to the derivatives with the substitutents at the 1-position of pyrene, the compounds with the substituents at 2-position are relatively limited, and only a few 2-substituted pyrenes

(2-bromopyrene, 2-amionpyrrene, 2-acetylpyrene, and so on) have been obtained up to date [16–19]. Recently, we synthesized one important pyrene-based derivative 2-pyrenyl aldehyde through the formylation and aromatization using 4,5,9,10-tetrahydropyrene as the starting material.

The single X-ray diffraction analysis agrees well with expected structure of the title compound. The functional group of aldehyde locates at the 2-position of pyrene. The C-O bond length is 1.198(3) Å, which is the typical double bond distance of aldehyde group. The C2-C17 bond length is 1.476(3) Å, indicating the π - π conjugation effect between the pyrene π -ring system and the aldehyde functional group. All carbon and oxygen atoms are nearly in a strict plane with the largest deviation to be 0.031(3) Å from the mean plane based on all the atoms. There is relatively strong intermolecular π - π interaction between adjacent molecules with the shortest interatomic distance is 3.366(3) Å, forming dimeric supramolecular structures. In addition, there exist weak intermolecular $C-H\cdots\pi$ and $C-H\cdots O$ interactions, which link the units of the title compounds into three-dimensional structure.

Acknowledgements: This work was supported by the Fundamental Research Funds for the Central Universities (2017BSCXA05).

References

- Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2012).
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- 3. Spek, A. L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. **36** (2003) 7–13.
- Zhao, Z. J.; Chen, S. M.; Lam, J. W. Y.; Lu, P.; Zhong, Y. C.; Wong, K. S.; Kwok, H. S.; Tang, B. Z.: Creation of highly effcient solid emitter by decorating pyrene core with AlE-active tetraphenylethene peripheries. Chem. Commun. 46 (2010) 2221–2223.
- Mishra, A.; Uhrich, C.; Reinole, E.; Pfeiffer, M.; Bauerle, P.: Synthesis and characterization of acceptor-substituted oligothiophenes for solar cell applications. Adv. Enery Mater. 2 (2011) 265–273.
- Sasabe, H.; Kido, J.: Multifunctional materials in highperformance OLEDs: challenges for solid-state lighting. Chem. Mater. 23 (2010) 621–630.
- 7. Nie, J.; Li, N.; Ni, Z. H.; Zhao, Y.; Zhang, L. F.: A sensitive teraphenylethene-based fluorescent probe for Zn²⁺ ion involving ESIPT and CHEF processes. Tetrahedron Lett. **58** (2017) 1980–1984.
- Indumathi, C.; Girisun, T. C. S.; Anitha, K.; Raj, S. A. C.: Structural, thermal, optical and optical properties of ethylenediaminium picrate single crystals. J. Phys. Chem. Solids. 106 (2017) 37–43.

- Zhang, R.; Zhao, Y.; Zhang, L. F.; Xu, L.; Ni, Z. H.: A series of short axially symmetrically 1,3,6,8-tetrasubstituted pyrenebased green and blue emitters with 4-tert-butylphenyl and aryamine attachments. Dyes Pigm. 130 (2016) 106–115.
- Figueira-Duarte, T. M.; Mullen, K.: Pyrene-based materials for organic electronics. Chem. Rev. 111 (2011) 7260-7314.
- 11. Zhang, R.; Zhang, T. F.; Xu, L.; Han, F. F.; Zhao, Y.; Ni, Z. H.: A new series of short axially symmetrically and asymmetrically 1,3,6,8-tetrasubtituted pyrenes with two types of substituents: syntheses, structures, photophysical properties and electroluminescence. J. Mol. Struct. 1127 (2017) 237–246
- 12. Xu, L. H.; Ni, Z. H.: Crystal structure of 1,3,6,8-tetrakis(*p*-tolylthio)pyrene, C₄₄H₃₄S₄. Z. Kristallogr. NCS **229** (2016) 255–257.
- Zhang, X. M.; Wang, H. F.; Wang, S.; Shen, Y. T.; Yang, Y. L.;
 Deng, K.; Zhao, K. Q.; Zeng, Q. D.; Wang, C.: Triphenylene substituted pyrene derivative: synthesis and single molecule investigation. J. Phys. Chem. C 117 (2013) 307–312.
- 14. Banerjee, M.; Vyas, V. S.; Lindeman, S. V.; Rathore, R.: Isolation and X-ray structural characterization of

- tetraisopropylpyrene cation radical. Chem. Commun. **16** (2008) 1889–1891.
- He, M. Q.; Pan, A. X.; Xie, J. M.; Li, H. M.; Yuan, X. H.; Cheng, X. N.; Chen, M.: Synthesis of 1-benzoylpyrene using silica-supported phosphotungstic heteropoly acid as an efficient and reusable catalyst. Korean J. Chem. Eng. 29 (2012) 1388–1392.
- Zhang, R.; Han, F. F.; Zhang, L. F.: Crystal structure of 2-(4-methylbenzoyl)pyrene, C₂₄H₁₆O. Z. Kristallogr. NCS 231 (2016) 855–857.
- Harvey, R. G.; Schmolka, S.; Cortez, C.; Lee, H.: Syntheses of 2bromopyrene and 2-hydroxypyrene. Synth. Commun. 18 (1988) 2207–2209.
- 18. Krreyenschmidt, M.; Baumgarrten, M.; Tyutyulko, N.; Mullen, K.: 2,2'-Bipyrenyl and para-terpyrenyl-a new type of electronically decoupled oligoarylene. Angew. Chem. Int. Ed. Engl. **33** (1994) 1957–1959.
- 19. Suzuki, S.; Takeda, T.; Kuratsu, M.; Kozaki, M.; Sato, K.; Shiomi, D.; Takui, T.; Okada, K.: Pyrene-dihydrophenazine bis(radical cation) in a singlet ground state Org. Lett. **11** (2009) 2816–2818.