
9

Zhi-Hui Wen*, Xiao-Xi Zhao and Dan Zhao

Crystal structure of poly[tetraaqua-(μ_4 -oxalato- $\kappa^4 O, O': O'', O'''$)-(μ_8 -benzene-1,2,4,5-tetracarboxylato- $\kappa^8 O^1: O^2: O^3: O^4: O^5: O^6: O^7: O^8$) yttrium(III)], $C_6 H_5 O_8 Y$

https://doi.org/10.1515/ncrs-2017-0344 Received January 30, 2018; accepted May 3, 2018; available online May 22, 2018

Abstract

C₆H₅O₈Y, triclinic, $P\bar{1}$ (no. 2), $\alpha = 6.2090(17)$ Å, b = 8.573(4) Å, c = 8.863(2) Å, $\alpha = 111.018(6)^{\circ}$, $\beta = 109.850(4)^{\circ}$, $\gamma = 91.866(6)^{\circ}$, V = 407.8(2) Å³, Z = 2, $R_{\rm gt}(F) = 0.0435$, $wR_{\rm ref}(F^2) = 0.1332$, T = 296(2) K.

CCDC no.: 1817313

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

A mixture of benzenetetracarboxylic acid (H_4 btec, 0.10 g), oxalic acid (H_2 C₂O₄, 0.05 g), Y(NO₃)₃·6H₂O (0.05 g), KOH (0.15 g) and deionized water (10 mL) was placed in a 30-mL Teflon-lined stainless steel autoclave. Then the autoclave was sealed, heated to 180 °C under autogenous pressure for 48 h. After slowly cooling to room temperature at a rate of 5 °C/h, a few colorless block shaped crystals were recovered by filtration, washed by distilled water, and air dried.

Xiao-Xi Zhao and Dan Zhao: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan Province 454000, P.R. China

Table 1: Data collection and handling.

Crystal:	Colorless block
Size:	$0.20\times0.15\times0.15~\text{mm}$
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ:	$7.18 \; \text{mm}^{-1}$
Diffractometer, scan mode:	Bruker APEX-II, ω -scans
$\theta_{\sf max}$, completeness:	28.2°, >92% (up to 25.2°, 99%)
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	2579, 1846, 0.021
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 1594
N(param) _{refined} :	137
Programs:	Bruker programs [11], SHELX [12]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	z	U _{iso} */U _{eq}
Y1	-1.18996(9)	0.35228(7)	-0.81616(7)	0.0106(2)
C1	-0.3644(13)	0.9862(9)	-0.5977(9)	0.0263(14)
H1	-0.274567	0.977428	-0.664676	0.032*
C2	-0.5079(12)	0.8424(9)	-0.6264(9)	0.0242(14)
C3	-0.6474(12)	0.8567(9)	-0.5293(9)	0.0239(14)
C4	-0.8150(12)	0.7052(9)	-0.5612(9)	0.0250(14)
C5	-0.5006(11)	0.6737(8)	-0.7612(8)	0.0218(13)
C6	-1.3928(13)	-0.0381(9)	-1.0120(9)	0.0269(15)
01	-0.8143(10)	0.6751(7)	-0.4332(7)	0.0357(13)
02	-0.9474(9)	0.6188(7)	-0.7160(7)	0.0343(12)
03	-0.5788(10)	0.6528(8)	-0.9171(7)	0.0386(13)
04	-0.4014(9)	0.5687(7)	-0.7024(7)	0.0317(12)
05	-1.2015(9)	0.0589(7)	-0.9381(8)	0.0381(13)
06	-1.4317(10)	-0.1955(7)	-1.1041(7)	0.0360(13)
07	-0.8120(9)	0.3090(8)	-0.6656(7)	0.0390(13)
80	-0.9711(10)	0.3167(8)	-0.9924(7)	0.0396(14)
H8A	-1.030843	0.328902	-1.102652	0.047*
H8B	-0.815473	0.295872	-0.942332	0.047*
H7B	-0.714603	0.374022	-0.543962	0.047*
H7A	-0.682813	0.311102	-0.697523	0.047*

Experimental details

H atoms were located in difference Fourier maps, and then refined with a riding model, with $U_{iso}(H) = 1.2U_{eq}(O)$.

Discussion

Coordination polymers have caught much attention in the field of crystal engineering due to the fascinating structures and potential applications in fluorescence, magnetism especially those of rare earth elements [1, 2]. It is well known

^{*}Corresponding author: Zhi-Hui Wen, State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454000, P.R. China, e-mail: wenzhihui2000@163.com

that the organic ligand is a key factor that affects the crystal structures as well as physical properties. Among various ligands, 1,2,4,5-benzenetetracarboxylate has been widely used in constructing metal coordination polymers due to its multiconnectivity, i.e. from two to eight carboxylate oxygen atoms which can bridge metal ions to create chains, layers, and 3D networks [3–6]. On the other hand, the oxalate anion is also an attractive small auxiliary ligand, which may construct many structures with H₄btec liand and metal ions [7, 8]. Hou et al. [9] reported a series of compounds associating with Ln³⁺ ions, btec⁴⁻ ligands and $C_2O_4^{2-}$ ligands for Ln = Eu, Tb, Dy and Ho. In this study, we provide a isostructural compound $C_6H_5O_8Y$ by a self-assembly process through simple mixing of the starting reagents.

Single crystal X-ray diffraction (SC-XRD) analysis reveals that the title compound exhibits a three-dimensional framework in the triclinic space group $P\bar{1}$. There is one unique Y^{3+} ion, a half btec⁴⁻ ligand, half C₂O₄²⁻ ligand, and two coordinated agua in the asymmetric unit. Each Y³⁺ is surrounded by eight O atoms. In this group, four O atoms come from carboxylate groups from four different btec4- ligands, two O atoms belongs to a two carboxylate groups of one C₂O₄²⁻ ligand, and two O atoms are coordinated water molecules. The Y-O bond distances fall in the range of 2.296(5)-2.429(5) Å, which is the common value comparing with other Y^{3+} compounds [10]. Moreover, the rationality of eight Y—O bonds can be evaluated by bond valance sum (BVS) calculation. The calculated BVS for Y^{3+} is 3.190, very close to 3. The four carboxylate groups of btec ligand are completely deprotonated, and each carboxylate connects with two Y³⁺ ions via μ_2 -mode. For each $C_2O_4^{2-}$ ligand, it connects to two Y^{3+} ions via μ_2 -bridging mode.

Acknowledgements: This work was supported by the Science and Technology Research Project of Henan Province (No. 172102310678), and the Key research project of Henan Province Office of Education (No. 17A150013).

References

1. Adarsh, N. N.; Novio, F.; Ruiz-Molina, D.: Coordination polymers built from 1,4-bis(imidazol-1-ylmethyl)benzene:

- from crystalline to amorphous. Dalton Trans. **45** (2016) 11233–11255.
- Muniz, C. N.; Patel, H.; Fast, D. B.; Rohwer, L. E. S.; Reinheimer, E. W.; Dolgos, M.; Graham, M. W.; Nyman, M.: Rare earth niobate coordination polymers. J. Solid State Chem. 259 (2018) 48–56.
- 3. Ma, F.-X.; Zhao, D.; Yang, R.-J.; Huang, M.: Crystal structure of poly-tetraaquabis(μ_8 -benzene-1,2,4,5-tetracarboxylato- $1\kappa^3 O^4$: O^6 : O^8 : $2\kappa^4 O^2$: O^5 : O^5 : O^5 : $3\kappa^4 O^1$: O^3 : O^5 : O^7)(di- μ_3 -hydroxido)pentazinc(II) decahydrate, $C_{20}H_{34}O_{32}Zn_5$. Z. Kristallogr. NCS **231** (2016) 897–899.
- Qiao, W.-T.; Zhao, D.; Ma, F.-X.: Crystal structure of poly[octaaqua-tris(benzene-1,2,4,5tetracarboxylato)tetralanthanum(III)] hexahydrate, C₃₀H₃₄La₄O₃₈. Z. Kristallogr. NCS 231 (2016) 289–291.
- Tabatabaee, M.; Sharif, M. A.; Vakili, F.; Saheli, S.: Hydrothermal synthesis and structural studies of a new coordination polymer of lanthanum(III) with benzene-1,2,4,5-tetracarboxylic acid and 4,4'-bipyridine. J. Rare Earths 27 (2009) 356–361.
- Yu, W.; Wang, Y. X.; Fuhr, O.; Fenske, D.; Dehnen, S.:
 [Au₁₂(PPh₂)₂S₄(L₂)₄]²⁺ (L₂ = 3,4-bis(diphenylphosphino)-2,5-bis(trimethylsilyloxy)furan): an Au₁₂ unit protected by modified maleic anhydride phosphine ligands. Dalton Trans. 47 (2018) 1032–1035.
- 7. Zhang, L. J.; Xu, J. Q.; Shi, Z.; Zhao, X. L.; Wang, T. G.: A novel three-dimensional structure based on both μ_8 -bridging benzene-1,2,4,5-tetracarboxylate and μ_2 -bridging oxalate. Chem. Lett. **31** (2002) 1052–1053.
- Zhang, L. J.; Yu, J. H.; Xu, J. Q.; Lu, J.; Bie, H. Y.; Zhang, X.: Synthesis, structural characterization and third-order non-linear optical property of new three-dimensional metal-organic framework K·Na·[M₂II(μ₆-btc)(μ₂-ox)(H₂O)₂]·2H₂O (M = Ni, Co). Inorg. Chem. Commun. 8 (2005) 638–642.
- Hou, K. L.; Bai, F. Y.; Xing, Y. H.; Wang, J. L.; Shi, Z.: A novel family of 3D photoluminescent lanthanide-bta-flexible MOFs constructed from1,2,4,5-benzenetetracarboxylic acidand different spanning of dicarboxylate acid ligands. CrystEngComm 13 (2011) 3884-3894.
- McNerney, B.; Mummadi, S.; Hung-Low, F.; Cordes, D. B.; Unruh, D. K.; Krempner, C.: Synthesis and structure of sterically overloaded tetra-coordinated yttrium and lanthanum disiloxides. Inorg. Chem. Commun. 70 (2016) 103–106.
- Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA (2014).
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C71 (2015) 3–8.