
9

Mao-Yuan Zhang and Da-Bin Shi*

Crystal structure of methyl 4'-amino-3',5'dimethyl-[1,1'-biphenyl]-4-carboxylate, C₁₆H₁₇NO₂

https://doi.org/10.1515/ncrs-2017-0329 Received October 27, 2017; accepted February 20, 2018; available online March 8, 2018

Abstract

 $C_{16}H_{17}NO_2$, orthorhombic, $P2_12_12_1$ (no. 19), a=6.3761(2) Å, b=12.0521(4) Å, c=17.3288(5) Å, V=1331.64(7) Å³, Z=4, $R_{\rm gt}(F)=0.0462$, $wR_{\rm ref}(F^2)=0.1243$, T=153(2) K.

CCDC no.: 1581051

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Block, white
Size:	$0.20\times0.20\times0.20~\text{mm}$
Wavelength:	Cu Κα radiation (1.54178 Å)
μ:	$0.67 \ \text{mm}^{-1}$
Diffractometer, scan mode:	Agilent CCD, $arphi$ and ω -scans
θ_{max} , completeness:	73.6°, >97%
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	2972, 2125, 0.026
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{ m obs} > 2 \ \sigma(I_{ m obs})$, 2010
N(param) _{refined} :	184
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3]

Source of material

Synthesis of 4-iodo-2,6-dimethylaniline [4, 5]. In a round bottom flask 2,6-dimethylaniline (18.12 g, 150 mmol, 1.0 equiv) and NaHCO₃ (37.8 g, 450 mmol, 3.0 equiv) were introduced in MeOH (400 mL). Iodine (40 g, 157.5 mmol, 1.05 equiv) in CH2Cl2 (200 mL) was added and the reaction mixture was stirred at room temperature for 12 hours. Then, the solids were filtered off the mixture and rinsed with CH₂Cl₂. The filtrate was concentrated under vacuum leading to a dark orange oil. A saturated solution of sodium thiosulfate was added and the reaction mixture was stirred for 2 hours. After extraction with CH₂Cl₂, the combined organic layers were dried over MgSO4 and concentrated under vacuum. The product was obtained as brown oil (25.6 g, 69%) yield). Synthesis of the title compound [6]. A mixture of (4-(methoxycarbonyl)phenyl)boronic acid (9.37 g, 52.09 mmol, 1.1 equiv), 4-iodo-2,6-dimethylaniline (11.7 g, 47.35 mmol, 1.0 equiv), palladium tetrakis(triphenylphosphine) (1.64 g, 1.42 mmol, 3 mol%), and K₂CO₃ (21.6 g, 156 mmol, 3.3 equiv) in 330 mL of dioxane/H₂O (3/1) was stirred under nitrogen for 72 h at 90 °C. After the mixture was cooled to room temperature, it was extracted with CH₂Cl₂ and washed with H₂O several times. The organic layer was dried with MgSO₄, and

^{*}Corresponding author: Da-Bin Shi, School of Pharmaceutical Sciences, Zunyi Medical College, Zunyi 563000, People's Republic of China, e-mail: sdb007.student@sina.com

Mao-Yuan Zhang: School of Pharmaceutical Sciences, Zunyi Medical College, Zunyi 563000, People's Republic of China

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
01	-0.3748(2)	-0.01044(15)	-0.03251(9)	0.0348(4)
02	-0.0797(2)	-0.01015(13)	-0.10231(7)	0.0266(4)
N1	0.6156(3)	0.37525(17)	0.38730(10)	0.0318(4)
H1A	0.545(5)	0.389(3)	0.4359(16)	0.052(8)*
H1B	0.717(5)	0.426(2)	0.3745(13)	0.039(7)*
C1	-0.1904(3)	0.01148(17)	-0.03871(11)	0.0232(4)
C2	-0.1975(4)	-0.05720(19)	-0.16556(11)	0.0306(5)
H2A	-0.3055	-0.0063	-0.1810	0.046*
H2B	-0.2601	-0.1258	-0.1494	0.046*
H2C	-0.1053	-0.0707	-0.2083	0.046*
С3	-0.0620(3)	0.06490(17)	0.02223(10)	0.0221(4)
C4	0.1455(3)	0.09717(18)	0.01065(10)	0.0244(4)
H4	0.2096	0.0838	-0.0367	0.029*
C5	0.2570(3)	0.14897(18)	0.06889(10)	0.0240(4)
H5	0.3950	0.1704	0.0598	0.029*
C6	0.1671(3)	0.16990(16)	0.14115(10)	0.0215(4)
C 7	-0.0423(3)	0.13758(18)	0.15166(11)	0.0263(4)
H7	-0.1073	0.1513	0.1987	0.032*
C8	-0.1544(3)	0.08566(18)	0.09357(11)	0.0270(4)
Н8	-0.2926	0.0645	0.1023	0.032*
C9	0.2866(3)	0.22263(15)	0.20517(10)	0.0210(4)
C10	0.4705(3)	0.28263(16)	0.19202(10)	0.0228(4)
H10	0.5217	0.2879	0.1419	0.027*
C11	0.5800(3)	0.33479(15)	0.25138(11)	0.0226(4)
C12	0.5052(3)	0.32717(16)	0.32712(10)	0.0231(4)
C13	0.3237(3)	0.26408(17)	0.34238(11)	0.0256(4)
C14	0.2205(3)	0.21392(16)	0.28138(11)	0.0241(4)
H14	0.1010	0.1723	0.2919	0.029*
C15	0.2467(4)	0.2485(2)	0.42396(12)	0.0374(6)
H15A	0.1360	0.1945	0.4245	0.056*
H15B	0.1949	0.3178	0.4435	0.056*
H15C	0.3602	0.2231	0.4558	0.056*
C16	0.7758(3)	0.40006(18)	0.23400(12)	0.0299(5)
H16A	0.8878	0.3748	0.2666	0.045*
H16B	0.7504	0.4774	0.2434	0.045*
H16C	0.8140	0.3896	0.1809	0.045*

the solvent was removed with a rotary evaporator. The crude product was purified by column chromatography using silica gel and petroleum ether/ethyl acetate (20/1) as the eluent. The product was obtained after removal of the solvents (7.2 g, 60% yield). The crystal suitable for X-ray analysis was obtained by slow evaporation of methanol at room temperature over a period of seven days, yield: 0.62 g (88.5%). Melting point: 113–114 °C. Elemental analysis–found: C, 75.22%; H, 6.73%; N, 5.52%; calculated for $C_{16}H_{17}NO_2$: C, 75.27%; H, 6.71%; N, 5.49%.

Experimental details

All hydrogen atoms were identified in difference Fourier syntheses. The structure was solved by direct methods [2] and refined on F^2 by full-matrix least-squares technique using

the SHELX program [3]. Except the solvent molecules, hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding model.

Discussion

In recent years, biphenyl moieties have emerged as versatile and useful building units in a variety of synthetic transformations, which can build all kinds of biologically active molecules [7–9]. For example, biphenyl mannoside FimH inhibitors were designed. Diverse modifications to the biphenyl ring to improve drug like physical and pharmacokinetic properties of mannosides were assessed for FimH binding affinity based on their effects on hemagglutination and biofilm formation along with direct FimH binding assays [10].

The title compound is composed of two substituted phenyl moieties. The dihedral angle between the planes of two aromatic rings is 18.5°. The bond lengths of C12-N1 and C1-O1 are 1.385(3) Å and 1.210(2) Å, respectively. And the bond lengths of C1-O2 and C2-O2 are 1.334(2) Å and 1.445(2) Å, respectively. As a result of the conjugation of these aromatic rings, the bond length of C6—C9 is 1.488(3) Å, which is shorter than that of typical C—C (1.53 Å). The bond angle (C1-O2-C2) and (O1-C1-O2) are 115.37(16)° and 122.99(19)°, respectively. There is an intermolecular hydrogen bond (d D··· A 3.254 Å; H··· A 2.335 Å) between H1A and O1 atom (symmetry code: -x, y + 1/2, -z + 1/2), which produce one dimensional chains to stabilize the crystal structure. In the crystal packing, dipole-dipole and van der Waals interactions are effective besides an intermolecular hydrogen bond in the molecular packing. Bond lengths and angles of the title molecule are in the typical ranges [11, 12].

Acknowledgements: We are grateful for financial support from National Natural Science Foundation of China (grant no. 21362047) and Science and Technology Foundation of Guizhou Province (grant no. QKHSYZ-2013-3061 and QKHJZ-2014-2175).

References

- Agilent Technologies: CrysAlis^{PRO} Software system, version 1.171.38.43, Agilent Technologies UK Ltd, Oxford, UK (2015).
- Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany (1997).
- 3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- D'Souza, B. R.; Lane, T. K.; Louie, J.: Iron-catalyzed cycloaddition of alkynenitriles and alkynes. Org. Lett. 13 (2011) 2936–2939.
- Brody, M. S.; Finn, M. G.: Palladium-catalyzed coupling of functionalized bromoarenes to a polystyrene-bound aryl tributylstannane. Tetrahedron Lett. 40 (1999) 415–418.

- Shi, D.; Ren, Y.; Jiang, H.; Cai, B.; Lu, J.: Synthesis, structures, and properties of two three-dimensional metal-organic frameworks, based on concurrent ligand extension. Inorg. Chem. 51 (2012) 6498–6506.
- Ghisaidoobe, A. T.; van den Berg, R. J. B. H. N.; Butt, S. S.; Strijland, A.; Donker–Koopman, W. E.; Scheij, S.; van den Nieuwendijk, A. M. C. H.; Koomen, G. J.; van Loevezijn, A.; Leemhuis, M.; Wennekes, T.; van der Stelt, M.; van der Marel, G. A.; van Boeckel, C. A. A.; Aerts, J. M. F. G.; Overkleeft, H. S.: Identification and development of biphenyl substituted iminosugars as improved dual glucosylceramide synthase/neutral glucosylceramidase inhibitors. J. Med. Chem. 57 (2014) 9096–9104.
- Uehling, D. E.; Shearer, B. G.; Donaldson, K. H.; Chao, E. Y.; Deaton, D. N.; Adkison, K. K.; Brown, K. K.; Cariello, N. F.; Faison, W. L.; Lancaster, M. E.; Lin, J.; Hart, R.; Milliken, T. O.; Paulik, M. A.; Sherman, B. W.; Sugg, E. E.; Cowan, C.: Biarylaniline phenethanolamines as potent and selective β₃ adrenergic receptor agonists. J. Med. Chem. 49 (2006) 2758–2771.

- Woo, L. W. L.; Jackson, T.; Putey, A.; Cozier, G.; Leonard, P.; Acharya, K. R.; Chander, S. K.; Purohit, A.; Reed, M. J.; Potter, B. V. L.: Highly potent first examples of dual aromatase–steroid sulfatase inhibitors based on a biphenyl template. J. Med. Chem. 53 (2010) 2155–2170.
- Han, Z.; Pinkner, J. S.; Ford, B.; Chorell, E.; Crowley, J. M.;
 Cusumano, C. K.; Campbell, S.; Henderson, J. P.; Hultgren, S. J.;
 Janetka, J. W.: Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable orthosubstituted biphenyl mannosides. J. Med. Chem. 51 (2008) 4002–4020.
- 11. Hartmann, M.; Daniliuc, C. G.; Studer, A.: Preparation of phenanthrenes from ortho-amino-biphenyls and alkynes via base-promoted homolytic aromatic substitution. Chem. Commun. **51** (2015) 3121–3123.
- Dikhtiarenko, A.; Olivos Suarez, A. I.; Pustovarenko, A.; García-Granda, S.; Gascon J.: Crystal structure of 2,2'-diamino-[1,1'-biphenyl]-4,4'-dicarboxylic acid dihydrate, C₁₄H₁₆N₂O₆.
 Kristallogr. NCS 231 (2016) 65–67.