9

Sheng-Yue Tong, Jin-Zong You, Yi-Ping Zhang, Zhen-Zhen Wang, Ke-Ji Yu, Qiong Hu, Hui-Juan Pan, Cheng-Jie Wu and De-Qiang Qi*

Crystal structure of ethyl 1-(4-fluorobenzyl)-3-phenyl-1*H*-pyrazole-5-carboxylate, C₁₉H₁₇FN₂O₂

https://doi.org/10.1515/ncrs-2017-0266 Received September 4, 2017; accepted January 18, 2018; available online February 7, 2018

Abstract

 $C_{19}H_{17}FN_2O_2$, triclinic, $P\bar{1}$ (no. 2), a=7.8593(19) Å, b=10.3322(18) Å, c=10.9747(19) Å, $\alpha=108.914(18)^\circ$, $\beta=92.931(3)^\circ$, $\gamma=99.544(3)^\circ$, V=826.1(3) Å³, Z=2, $R_{\rm gt}(F)=0.0431$, $wR_{\rm ref}(F^2)=0.1170$, T=296.15 K.

CCDC no.: 1817865

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

A mixture of methyl 3-phenyl-1*H*-pyrazole-5-carboxylate (2.02 g, 0.01 mol), 1-(chloromethyl)-4-fluorobenzene (1.44 g,

Table 1: Data collection and handling.

Crvstal: Block, colorless Size: $0.28\times0.24\times0.16~\text{mm}$ Wavelength: Mo $K\alpha$ radiation (0.71073 Å) 0.09 mm^{-1} Bruker P4, φ and ω -scans Diffractometer, scan mode: θ_{max} , completeness: 27,5°, >92% (>99% up to 25°) N(hkl)_{measured}, N(hkl)_{unique}, R_{int}: 6650, 3524, 0.014 Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), 2739$ N(param)_{refined}: 218

Programs: Bruker programs [1], SHELX [2, 3]

0.01 mmol) and K_2CO_3 (1.38 g, 0.01 mmol) in acetonitrile (25 mL) was refluxed for 3 h. The resulting solution was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using ethyl acetate and petroleum ether (1:5, v/v) as eluent, to obtain the target compound in 78% yields. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethanol at room temperature.

Experimental details

All H atoms were placed in idealized positions and treated as riding on their parent atoms, with d(C-H) = 0.96 (methyl) and 0.97 Å (methylene), $U_{\rm iso}(H) = 1.5 U_{\rm eq}(C)$ and d(C-H) = 0.93 Å (aromatic), $U_{\rm iso}(H) = 1.2 U_{\rm eq}(C)$.

Discussion

In recent years, much effort has been focused on the pyrazole derivatives due to their wide range of biological properties such as antiviral, anti-bacterial, anti-inflammatory, analgesic activities [4–7]. Pyrazoles were also found to possess inhibitory activities against xanthine oxidase, cyclooxygenase, and alkaline phosphatases [8–10]. The modification of pyrazole such as substituent moiety should provide potential biological activities [11, 12]. In continuation of interest in the development of pyrazole derivatives, we report here the crystal structure of ethyl 1-(4-fluorobenzyl)-3-phenyl-1*H*-pyrazole-5-carboxylate.

In the title crystal structure, all bond lengths and angles are within normal ranges [13]. The pyrazole ring

^{*}Corresponding author: De-Qiang Qi, School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, P.R. China, e-mail: deqiangqi@zisu.edu.cn Sheng-Yue Tong, Jin-Zong You, Yi-Ping Zhang, Zhen-Zhen Wang, Ke-Ji Yu, Qiong Hu, Hui-Juan Pan and Cheng-Jie Wu: School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, P.R. China

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
F1	-0.01323(14)	-0.58034(13)	-0.21251(12)	0.0901(4)
01	-0.64722(14)	-1.23471(11)	-0.23397(10)	0.0546(3)
02	-0.65599(16)	-1.09658(12)	-0.35449(10)	0.0631(3)
N1	-0.74054(15)	-0.89038(12)	-0.12490(11)	0.0445(3)
N2	-0.78245(15)	-0.82174(12)	-0.00687(11)	0.0478(3)
C1	-0.1830(2)	-0.63934(18)	-0.21325(18)	0.0607(4)
C2	-0.2740(2)	-0.72360(17)	-0.32873(15)	0.0565(4)
H2	-0.2223	-0.7409	-0.4053	0.068*
C3	-0.4450(2)	-0.78248(16)	-0.32874(14)	0.0511(4)
Н3	-0.5088	-0.8409	-0.4064	0.061*
C4	-0.52324(19)	-0.75619(14)	-0.21538(13)	0.0456(3)
C5	-0.7127(2)	-0.81596(16)	-0.21714(15)	0.0515(4)
H5A	-0.7774	-0.7409	-0.1966	0.062*
H5B	-0.7572	-0.8794	-0.3037	0.062*
C6	-0.78467(16)	-0.91048(14)	0.05959(13)	0.0418(3)
C7	-0.74270(17)	-1.03579(14)	-0.01670(13)	0.0434(3)
H7	-0.7356	-1.1136	0.0069	0.052*
C8	-0.71420(17)	-1.01971(14)	-0.13383(13)	0.0418(3)
C9	-0.66953(18)	-1.11765(15)	-0.25349(13)	0.0450(3)
C10	-0.6040(2)	-1.34105(16)	-0.34517(15)	0.0589(4)
H10A	-0.4985	-1.3049	-0.3751	0.071*
H10B	-0.6972	-1.3712	-0.4156	0.071*
C11	-0.5793(3)	-1.45924(19)	-0.3017(2)	0.0777(5)
H11A	-0.5523	-1.5329	-0.3731	0.117*
H11B	-0.6840	-1.4930	-0.2710	0.117*
H11C	-0.4857	-1.4283	-0.2330	0.117*
C12	-0.82513(17)	-0.86888(15)	0.19470(13)	0.0447(3)
C13	-0.8751(2)	-0.74226(17)	0.25307(16)	0.0572(4)
H13	-0.8883	-0.6838	0.2056	0.069*
C14	-0.9056(2)	-0.7029(2)	0.38276(17)	0.0695(5)
H14	-0.9373	-0.6174	0.4220	0.083*
C15	-0.8892(2)	-0.7896(2)	0.45337(17)	0.0704(5)
H15	-0.9096	-0.7625	0.5399	0.084*
C16	-0.8429(2)	-0.9155(2)	0.39602(16)	0.0663(5)
H16	-0.8329	-0.9745	0.4434	0.080*
C17	-0.8108(2)	-0.95507(17)	0.26763(15)	0.0549(4)
H17	-0.7791	-1.0408	0.2295	0.066*
C18	-0.4251(2)	-0.67022(18)	-0.10037(15)	0.0623(4)
H18	-0.4756	-0.6519	-0.0233	0.075*
C19	-0.2534(2)	-0.6114(2)	-0.09867(18)	0.0722(5)
H19	-0.1876	-0.5542	-0.0214	0.087*

(N1/N2/C9/C8/C7) and the aryl ring (C1/C2/C3/C4/C5/C6) are almost coplanar with a dihedral angle of 6.0°. The dihedral angle between the pyrazole ring (N1/N2/C9/C8/C7) and the aryl moiety (C12/C13/C14/C15/C16/C17) is 81.9°. The two aryl moieties are twisted by an angle of 87.3°.

Acknowledgements: This work was supported by Project of Science and Technology Department of Zhejiang Province of China (no. 2017C33098).

References

- Bruker.: APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2009).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- El-Sabbagh, O. I.; Baraka, M. M.; Ibrahim, S. M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A. A.: Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem. 44 (2009) 3746–3753.
- Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J.: Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem. 47 (2004) 3693–3696.
- Bekhit, A. A.; Abdel-Aziem, T.: Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem. 12 (2004) 1935–1945.
- Sahu, S. K.; Banerjee, M.; Samantray, A.; Behera, C.; Azam, M. A.: Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives. Trop. J. Pharm. Res. 7 (2008) 961–968.
- 8. Qi, D. Q.; Yu, C. M.; You, J. Z.; Yang, G. H.; Wang, X. J.; Zhang, Y. P.: Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives. J. Mol. Struct. **1100** (2015) 421–428.
- Abdellatif, K. R.; Abdelall, E. K.; Fadaly, W. A.; Kamel, G. M.: Synthesis, cyclooxygenase inhibition, and anti-inflammatory evaluation of novel diarylheterocycles with a central pyrazole, pyrazoline, or pyridine ring. Med. Chem. Res. 24 (2015) 2632–2644.
- Sidique, S.; Ardecky, R.; Su, Y.; Narisawa, S.; Brown, B.; Millán, J. L.; Sergienko, E.; Cosford, N. D. P.: Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg. Med. Chem. Lett. 19 (2009) 222–225.
- Xia, Y.; Dong, Z. W.; Zhao, B. X.; Ge, X.; Meng, N.; Shin, D. S.; Miao, J. Y.: Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1*H*-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells. Bioorg. Med. Chem. 15 (2007) 6893–6899.
- 12. Qi, D. Q.; Yu, C. M.; You, J. Z.; Yang, G. H.; Wang, X. J.; Zhang, Y. P.: Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory of sulfur-containing pyrazole derivatives incorporated with oxadiazole and triazole. Phosphorus, Sulfur Silicon Relat. Elem. 191 (2016) 70–75.
- 13. Xia, Y.; Dong, W.-L.; Ding, X.-L.; Zhao, B.-X.: Acta Crystallogr. **E63** (2007) 03298.