9

Xiaohua Pu*

The crystal structure of (E)-4-chloro-2-(((5-methylpyridin-2-yl)imino)methyl)phenol, $C_{13}H_{11}ClN_2O$

https://doi.org/10.1515/ncrs-2017-0254
Received October 16, 2017; accepted December 11, 2017; available online January 10, 2018

Abstract

C₁₃H₁₁ClN₂O, monoclinic, $P2_1/n$ (no. 14), a=13.997(5) Å, b=4.6734(15) Å, c=18.019(7) Å, $\beta=102.714(5)^\circ$, V=1149.7(7) ų, Z=4, $R_{\rm gt}(F)=0.0481$, $wR_{\rm ref}(F^2)=0.1141$, T=153(2) K.

CCDC no.: 1590411

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The ethanol solution (10 mL) of 5-chlorosalicylaldehyde (0.2 mmol, 31.32 mg) was added dropwise to the ethanol solution (10 mL) of 2-amino-5-methylpyridine (0.2 mmol, 21.63 mg,) over a period of 30 min with stirring. The stirring was continued for 1 h to give a clear orange solution, allowed to evaporate slowly in air at room temperature. After 7 days, orange prism-shaped crystals of the title compound were formed at the bottom of the vessel. The crystals were isolated, washed with ethanol and dried at room temperature (yield 54%).

Table 1: Data collection and handling.

Crystal: Prism, orange Size: $0.58 \times 0.13 \times 0.13~\text{mm}$ Wavelength: Mo $K\alpha$ radiation (0.71073 Å) $0.32 \ mm^{-1}$ Diffractometer, scan mode: AFC10/Saturn724+, φ and ω -scans θ_{max} , Completeness: 28°, >99% N(hkl)_{measured}, N(hkl)_{unique}, R_{int}: 8971, 2775, 0.027 Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), 2484$ N(param)_{refined}:

Programs: Rigaku programs [1], SHELX [2]

Experimental details

All hydrogen atoms were identified in difference Fourier syntheses and placed in geometrically idealized positions. The $U_{\rm iso}$ values of the hydrogen atoms of methyl groups were set to 1.5 $U_{\rm eq}(C)$ and the $U_{\rm iso}$ values of all other hydrogen atoms were set to 1.2 $U_{\rm eq}(C)$.

Discussion

The synthesis of Schiff bases and its metal complexes have drawn much attention due to their extensive applications. It was demonstrated that the complexes play an important role as antimicrobial [3], antioxidative [4], antibiotic [5] and anticancer [6] reagents. All the properties have a particularly close connection to its structural features. Previously, we have synthesized a series of Schiff bases and its metal complexes in order to explore its extensive applications [7, 8]. To study the structure-activity relationship we have undertaken the synthesis and single crystal structure determination of the title compound (*cf.* the figure).

The title crystal structure is built up by only one crystallographically independent Schiff base molecule. There is a E configuration at the C=N bond. All the bond lengths and bond angles within the Schiff base agree with the values reported [9]. The C(8)—N(1), C(7)—N(1), C(8)—N(2) and C(12)—N(2) bonds are significantly shorter than a normal single C—N bond (1.47 Å) [10] and longer than a C=N bond (1.28 Å) [11], which may be caused by the significant

^{*}Corresponding author: Xiaohua Pu, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, People's Republic of China, e-mail: pxh913@163.com

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	Х	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.88851(3)	-0.25239(11)	0.60279(3)	0.03357(15)
01	0.77266(9)	0.3044(3)	0.30495(7)	0.0254(3)
N1	0.64689(10)	0.6072(3)	0.35980(8)	0.0204(3)
N2	0.53197(10)	0.8812(3)	0.40995(8)	0.0239(3)
C1	0.74993(12)	0.2552(3)	0.43334(9)	0.0199(3)
C2	0.79527(12)	0.1782(4)	0.37350(10)	0.0209(3)
C3	0.86697(12)	-0.0349(4)	0.38516(10)	0.0243(4)
Н3	0.8965	-0.0896	0.3446	0.029*
C4	0.89540(13)	-0.1669(4)	0.45517(11)	0.0259(4)
H4	0.9446	-0.3105	0.4630	0.031*
C5	0.85125(12)	-0.0875(4)	0.51402(10)	0.0242(4)
C6	0.77900(12)	0.1176(4)	0.50359(10)	0.0226(4)
Н6	0.7488	0.1658	0.5442	0.027*
C7	0.67370(12)	0.4718(4)	0.42309(9)	0.0209(3)
H7	0.6431	0.5142	0.4639	0.025*
C8	0.57167(12)	0.8149(4)	0.35096(9)	0.0197(3)
C9	0.54224(12)	0.9427(4)	0.28009(10)	0.0235(4)
H9	0.5731	0.8946	0.2398	0.028*
C10	0.46717(12)	1.1415(4)	0.26925(10)	0.0242(4)
H10	0.4457	1.2302	0.2210	0.029*
C11	0.42317(12)	1.2114(4)	0.32894(10)	0.0228(4)
C12	0.46019(12)	1.0762(4)	0.39815(10)	0.0252(4)
H12	0.4325	1.1259	0.4400	0.030*
C13	0.34098(13)	1.4245(4)	0.31998(11)	0.0312(4)
H13A	0.3630	1.6093	0.3042	0.037*
H13B	0.3213	1.4469	0.3686	0.037*
H13C	0.2851	1.3562	0.2813	0.037*
H10	0.7287(18)	0.434(6)	0.3055(14)	0.053(7)*

electron delocalization in the pyridine system. The pyridinyl moiety is planar (maximum deviation = 0.0065 Å) and the chloro phenyl adopts a planar formation (maximum deviation = 0.0058 Å). The two rings are nearly coplanar with a dihedral angle of 2.49°, which is interpreted as conjugation effect and stablization of the ring by an intramolecular $OH\cdots N$ hydrogen bond, well known for such molecules [9]. The adjacent molecular unit are parallel to each other in one direction. one set of parallelmolecular connected with the other ones. $CH\cdots O$ play important roles in the formation, stability and crystallization of the title compound.

Acknowledgements: The support of the research was supported by the Scientific Research Project of Education Department of Shaanxi Provincial Government in 2014 (No. 14JK1045) and the key project of Baoji University of Arts and Sciences in 2014 (No. ZK14009).

References

- 1. Rigaku Inc.: CrystalClear and CrystalStructure. Rigaku Inc., Tokyo, Japan (2008).
- Sheldrick, G. M.: SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. C71 (2015) 3–8.
- Shebl, M.: Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes. Spectrochim. Acta A 117 (2014) 127–137.
- Tabassum, S.; Amir, S.; Arjmand, F.; Pettinari, C.; Marchetti, F.; Masciocchi, N.; Lupidi, G.; Pettinari, R.: Mixed-ligand Cu(II)vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. Eur. J. Med. Chem. 60 (2013) 216–232.
- Abdel-Rahman, L. H.; Abu-Dief, A. M.; Hamdan, S. K.; Seleem, A. A.: Nano structure iron (II) and copper (II) Schiff base complexes of a NNO-tridentate ligand as new antibiotic agents: spectral, thermal behaviours and DNA binding ability. Int. J. Nano. Chem. 1 (2015) 65–77.
- Bakkialakshmi, S.; Chandrakala, D.: A spectroscopic investigation of anticancer drug binding to bovine serum albumin. Spectrochim. Acta A. 88 (2012) 2–9.
- Guo, Y. N.: Synthesis, Crystal structures, and antibacterial activities of schiff-Base zinc(II) complexes [ZnL₁Cl₂] and [ZnL₂l₂]·0.5CH₂OH. Synth. React. Inorg. Met-Org. Nano-Met. Chem. 41 (2011) 987–991.
- 8. Zhang, X. L.: Copper(II) bis [2-((E)-2-(pyrid-2-yl)ethylimino)methyl)-6-bromo-4-chlorophenolate]. Crystallogr. Rev. **58** (2013) 127–129.
- Zhao, J.-X.; Zhao, L.; Li, P.-P.; Wang, F.; An, Q.-Q.: Crystal structure of (E)-1-(4-(((E)-5-bromo-2-hydroxybenzylidene) amino)phenyl)ethan-1-one O-methyl oxime, C₁₆H₁₅BrN₂O₂.
 Kristallogr. NCS 232 (2017) 731–732.
- Chen, X. B.; Li, K.; Shi, D. Q.: Synthesis and crystal structure of N-(1,3,4-thiadiazol-2-yl)-1-[1-(6-chloropyridin-3-yl)methy]-5-methyl-lH-[1,2,3]triazol-4-carboxamide. Chin. J. Struct. Chem. 27 (2008) 1389–1392.
- 11. Wang, Z. X.; Jian, F. F.; Duan, C. Y.; Bai, Z. P.; You, X. Z.: 2-(2-Hydroxybenzylidene)-1-(2-picoloyl)hydrazine Hemihydrate. Acta Crystallogr. **C54** (1998) 1927–1929.