
9

Fang Xiangqing*, Xu Jiajia, Wu Qi, Yang Liguo and Li Ya

Crystal structure of *catena*-poly[(μ_2 -dicyanamido- $\kappa^2 N:N'$)-(μ_2 -2-(pyridin-2-yl)ethan-1-olato- $\kappa^3 N,O:O'$)copper(II)], $C_9 H_8 CuN_4 O$

https://doi.org/10.1515/ncrs-2017-0186 Received September 27, 2017; accepted January 17, 2018; available online February 6, 2018

Abstract

C₉H₈CuN₄O, triclinic, $P\bar{1}$ (no. 2), a=7.6740(6) Å, b=8.6401(8) Å, c=8.8869(9) Å, $\alpha=109.201(2)^{\circ}$, $\beta=106.629(1)^{\circ}$, $\gamma=105.410(1)^{\circ}$, V=489.21(8) Å³, Z=2, $R_{\rm gt}(F)=0.0406$, $wR_{\rm ref}(F^2)=0.0993$, T=298(2) K.

CCDC no.: 1817625

Wu Qi and Li Ya: Department of Energy and Architecture, Xi'an Aeronautical University, Xi'an 710077, Shanxi, P.R. China

Yang Liguo: College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, Henan, P.R. China

Table 1: Data collection and handling.

Red block
$0.20\times0.14\times0.13~\text{mm}$
Mo $K\alpha$ radiation (0.71073 Å)
$2.21 \ \text{mm}^{-1}$
Bruker SMART, $arphi$ and ω -scans
25°, >99%
2520, 1710, 0.027
$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 1351
136
Bruker programs [1], SHELX [2, 3]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
Cu1	0.51395(7)	0.44079(6)	0.32654(7)	0.0417(2)
01	0.3834(4)	0.3509(3)	0.4552(4)	0.0432(7)
N1	0.7298(5)	0.5400(5)	0.2647(5)	0.0492(9)
C1	0.3281(6)	0.1747(5)	0.4360(6)	0.0445(10)
H1A	0.1846	0.1155	0.3835	0.053*
H1B	0.3760	0.1764	0.5503	0.053*
N2	1.0708(6)	0.6740(5)	0.3067(6)	0.0778(14)
C2	0.4104(7)	0.0707(6)	0.3236(6)	0.0473(11)
H2A	0.5539	0.1297	0.3776	0.057*
H2B	0.3749	-0.0476	0.3193	0.057*
N3	1.2734(6)	0.5396(5)	0.1896(6)	0.0601(10)
C3	0.3371(6)	0.0525(5)	0.1400(5)	0.0408(9)
N4	0.3865(5)	0.2047(4)	0.1219(4)	0.0387(8)
C4	0.2245(7)	-0.1099(6)	-0.0036(6)	0.0568(12)
H4	0.1889	-0.2141	0.0106	0.068*
C5	0.1641(7)	-0.1177(7)	-0.1701(6)	0.0628(13)
H5	0.0869	-0.2266	-0.2682	0.075*
C6	0.2197(7)	0.0368(6)	-0.1874(6)	0.0532(12)
Н6	0.1837	0.0350	-0.2973	0.064*
C7	0.3298(6)	0.1950(6)	-0.0393(6)	0.0464(11)
H7	0.3668	0.3003	-0.0513	0.056*
C8	0.8893(6)	0.5934(5)	0.2791(6)	0.0449(10)
C9	1.1695(6)	0.5913(6)	0.2379(6)	0.0450(10)

A part of the polymeric title crystal structure is shown in the figure. Table 1 and Table 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

^{*}Corresponding author: Fang Xiangqing, Department of Energy and Architecture, Xi'an Aeronautical University, Xi'an 710077, Shanxi, P.R. China, e-mail: xqfang@xaau.edu.cn

Xu Jiajia: Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Phyisycs, Chinese Academy of Sciences, Shanghai 200083, P.R. China

Source of material

The title compound was synthesized by the reaction of CuCl₂ (1 mmol), 2-(2-pyridyl)ethanol (2 mmol) and Na(N(CN)₂) (2 mmol) in methanol (10 mL). The mixture was stirred for 6 h, then a colourless solution formed. The resulting solution was filtered. The filtrate was allowed to stand for a few days at room temperature until light-pink crystals were obtained. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a dichloromethane/n-hexane solution (30%, m.p. 290-291 K).

Experimental details

All H atoms were placed geometrically and treated as riding on their parent atoms, with C-H 0.96, with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C}).$

Discussion

The rational design, synthesis and characterization of supermolecular frameworks are of great interest [4, 5]. One of the greatest challenges in this area is the construction of porous materials from metal ions and organic ligands as building blocks [6, 7]. As part of our search for new porous metalorganic frameworks, we are studying complexes of transition metals with thiocyanato ligands.

As shown in the figure, the complex is a polymer. Every unit possesses binuclear structures consisting of two Cu atoms, two dicyanamido ligands and two 2-(pyridin-2yl)ethan-1-olato ligands. The asymmetric unit contains one half of such a dinuclear unit. The Cu atom is coordinated by two nitrogen atoms from two different dicyanamide ligands and by two O atoms and one N atoms from organic ligand. Adjacent units are linked to one-dimensional chain polymer by bridging bonds of dicyanamido ligands. Bond lengths and angels are in the expected ranges [8].

Acknowledgements: The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21503154), Science Foundation of Shaanxi Province of China (2016JQ2001) and the Open Project Program of the Key Laboratory of Infrared Imaging Materials and Detectors (IIMDKFII-16-03), Shanghai Institute of Technical Physics, Chinese Academy of Sciences.

References

- 1. Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2009).
- 2. Sheldrick, G. M.: SHELXT-Integrated space-group and crystalstructure determination. Acta Crystallogr. C71 (2015)
- 3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- 4. Liu, Q. Y.; Yang, Y. T.; Lv, X. T.; Ding, Y. N.; Zhang, Y. Z.; Jing, J. J.; Xu, C. X.: One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H₂O₂ and glucose colorimetric detection. Sens. Actuator B Chem. 240 (2017) 726-734.
- 5. Liu, Q. Y.; Zhao, Q. R.; Li, Y.; Wang, X. Y.: CdCl₂·H₂O Nanorods oriented parallel on the langmuir film of (phthalocyaninato) [tetrakis(4-pyridyl)porphyrinato] cerium complex. CrystEngComm. 14 (2012) 1105-1110.
- 6. Yaghi, O. M.; Davis, C. E.; Li, G.; Li, H. L.: Selective guest binding by tailored channels in a 3-D porous zinc(II)-benzenetricarboxylate network. J. Am. Chem. Soc. 119 (1997) 2861-2868.
- 7. Siaw-Lattey, C.; Zhang, H. M.; Son, M. Y.: Synthesis and characterization of a versatile bis(pyridylether) ligand and its complexes with Ag(I), Cu(II) and Co(II) Polyhedron 24 (2005) 785-790.
- 8. Zhu, X.; Yong-feng Wang, Y.-F.: Crystal structure of bis(dicyanamido-k¹N)-tetrakis[1-benzyl-1H-1,2,4-triazolek¹N]cobalt(II),CoC₄₀H₃₆N₁₈. Z. Kristallogr. NCS **231** (2016) 1175-1176.