

9

Oksana Matselko*, Ulrich Burkhardt, Roman Gladyshevskii and Yuri Grin

Crystal structure of $Ga_{0.62(3)}Sb_{0.38(3)}Pd_3$

https://doi.org/10.1515/ncrs-2017-0179 Received June 23, 2017; accepted October 18, 2017; available online November 21, 2017

Abstract

 $Ga_{0.62(3)}Sb_{0.38(3)}Pd_3$, tetragonal, P4/mbm (no. 127), a = 5.5036(2) Å, c = 7.9990(3) Å, V = 242.29(3) Å³, Z = 4, $R_p = 0.0168$, $R_{wp} = 0.0291$, T = 295 K.

CSD no.: 433694

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement condi-

Ulrich Burkhardt and Yuri Grin: Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany Roman Gladyshevskii: Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

Table 1: Data collection and handling.

Sample, setting:	Grey powder, transmission geometry
Wavelength, μ :	Cu $K_{\alpha 1}$ radiation, (1.54056 Å), 214.6 mm ⁻¹
Diffractometer, scan mode:	Huber Guinier G670, step scan (0.005°)
2θ range / data points:	21-100.3°, 15861
Profile function:	Pseudo-Voigt
No(hkl), N(param):	82, 22
Programs:	WinCSD [6], Diamond [7]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	Х	у	Z	B _{iso} */B _{eq}
Pd1	0.2345(6)	0.7345(6)	0	1.7(2)
Pd2	0	0	0.252(1)	1.53(13)
Pd3	0.3024(7)	0.8024(7)	0.5	1.74(13)
Ga1 ^a	0.5	0	0.241(1)	1.5(2)
Sb1 ^b	0.5	0	0.241(1)	1.5(2)
Ga1 ^a	0.5	0	0.241(1)	1.5

^aOccupancy: 0.62(3), ^bOccupancy: 0.38(3).

tions and a list of the atoms including atomic coordinates and displacement parameters.

Source of materials

New palladium compound with gallium and antimony, $Ga_{0.62(3)}Sb_{0.38(3)}Pd_3$, was synthesized from elemental palladium (granules, ChemPur, 99.95%), gallium (pellets, ChemPur, 99.9999%) and antimony (shots, ChemPur, 99.9999%) by arc melting in a glove box (Ar atmosphere; O_2 and H_2O content below 1 ppm). Sample with a nominal composition $Ga_{14}Sb_{11}Pd_{75}$, placed in alumina crucible and evacuated quartz glass tube, was annealed at 1123 K (48 h) and then at 773 K (408 h) and subsequently quenched in water. For the XRPD analysis the sample was filed and additionally annealed at 773 K for 24 h to remove residual strain. According to the obtained results, formation of the new ternary phase was detected.

Experimental details

The crystal structure of $Ga_{0.62(3)}Sb_{0.38(3)}Pd_3$ was refined from XRPD data.

Comment

 $Ga_{0.62(3)}Sb_{0.38(3)}Pd_3$ crystallizes in the Pt_3Ga structure type [1]. There is no binary phase with composition 3:1 in the Ga-Pd

^{*}Corresponding author: Oksana Matselko, Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany; and Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine, e-mail: oksana.matselko@cpfs.mpg.de

system [2], while Pt_3Al and Pt_3Ga exist in three modifications [3] – high temperature cubic (Cu_3Au -type structure, $Pm\bar{3}m$, cP4), intermediate (U_3Si -type structure, I4/mcm, tI16) and low temperature (Pt_3Al -type structure, P4/mbm, tP16). The new ternary phase behaves similar to the binary platinum representative. Preliminary information on this phase was presented in [4].

Coordination environments of Pd1, Pd2, Ga1/Sb1 may be described as distorted tetragonal prisms with four additional atoms centering side faces (CN=12). In the case of Pd3, the coordination polyhedron is also a distorted tetragonal prism, but with five additional atoms – four are situated opposite side faces and one is centering an edge (CN=13).

In the crystal structure of $Ga_{0.62(3)}Sb_{0.38(3)}Pd_3$ the interatomic Pd–Pd distances are not significantly increased in comparison with elemental palladium (by 0.6% for Pd1, 2.3% for Pd2, 2.5% for Pd3). Thus, palladium atoms are not well isolated. This feature does not allow to consider the title compound as a good potential catalytic material for the selective semi-hydrogenation of acetylene [5].

Acknowledgements: Dr. Horst Borrmann, Dr. Yurii Prots, Mr. Steffen Hückmann are acknowledged for XRPD experi-

ments. OM is grateful to Dr. Lev Akselrud for help during crystal structure refinement.

References

- Chattopadhyay, T.; Schubert, K.: Kristallstruktur von Pt₃Ga(r) und einigen phasen der mischung Pt-Al. J. Less-Common Met. 41 (1975) 19-32.
- Okamoto, H.: Ga-Pd (Gallium-Palladium). J. Phase Equilib. Diffus. 29 (2008) 466-467.
- 3. Oya, Y.; Mishima, Y.; Suzuki, T.: The Pt–Al and Pt–Ga phase diagram with emphasis on the polymorphism of Pt₃Al and Pt₃Ga. Z. Metallkd. **78** (1987) 485–490.
- 4. Matselko, O.; Cardoso-Gil, R.; Burkhardt, U.; Grin, Yu.; Gladyshevskii, R.: On the room and high temperature modifications of Pd₃(Ga,Sb) ternary phase. Coll. Abst. 15th Europ. Conf. Solid State Chem., Vienna (2015) 55.
- Borodziński, A.; Bond, G. C.: Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev.: Sci. Eng. 48 (2006) 91–144.
- Akselrud, L.; Grin, Yu.: WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 47 (2014) 803–805.
- Brandenburg, K.: DIAMOND. Crystal and molecular structure visualization. Version 3.2k. Crystal Impact, Bonn, Germany (2014).