

Yingfan Liu, Kaiming Mao, Xiaochuan Li* and Young-A Son*

Crystal structure of 11-oxo-2,3,6,7-tetrahydro-1*H*, 5*H*,11*H*-pyrano[2,3-*f*]pyrido[3,2,1-*ij*]quinoline-10-carbaldehyde - a julolidine derivative, C₁₆H₁₅NO₃

Table 1: Data collection and handling.

Crystal:	purple block
Size:	0.22 × 0.19 × 0.18 mm
Wavelength:	Mo K α radiation (0.71073 Å)
μ :	0.10 mm ⁻¹
Diffractometer, scan mode:	Bruker SMART, φ and ω -scans
2 θ _{max} , completeness:	28.3°, >99%
$N(hkl)$ _{measured} , $N(hkl)$ _{unique} , R_{int} :	34108, 3173, 0.062
Criterion for I_{obs} , $N(hkl)$ _{gt} :	$I_{obs} > 2 \sigma(I_{obs})$, 2240
$N(param)$ _{refined} :	186
Programs:	Bruker [1], SHELX [2], Diamond [3], ORTEP, WinGX [4]

<https://doi.org/10.1515/ncrs-2017-0121>

Received April 16, 2017; accepted August 29, 2017; available online September 25, 2017

Abstract

C₁₆H₁₅NO₃, monoclinic, $P2_1/c$ (no. 14), $a = 9.802(1)$ Å, $b = 14.492(1)$ Å, $c = 9.667(1)$ Å, $\beta = 112.027(1)$ °, $V = 1272.9$ Å³, $Z = 4$, $R_{gt}(F) = 0.0422$, $wR_{ref}(F^2) = 0.1249$, $T = 296$ K.

CCDC no.: 1543757

The crystal structure is shown in the figure. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title compound was synthesized according to standard Vilsmeier-Haack conditions, under which formylation

at 3-position of julolidine [2,3]quinolone occurred efficiently [5, 6]. All chemicals used were commercially available of AR grade, and were used as received without further purification. The purple crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Experimental details

The hydrogen atoms were placed geometrically and refined using a riding model with $d(C-H) = 0.93$ Å (aromatic), 0.97 Å (-CH₂-), 0.925 Å (-COH). $U_{iso}(H) = 1.2 U_{eq}(C)$ for COH and CH₂ groups.

Discussion

Fluorescent molecules fascinate the physicists and chemists owing to the application of fluorescence signal in smart material artificial intelligence. Intensive effort and development have been made and engineered according to requirement of device fabrication and material research [7–10].

The coumarin moiety (O1/C2/C3/C4/C5/C6/C7/C8/C10) is planar with the mean deviation 0.043 Å. However, the adjacent aliphatic moiety is twisted out of the molecular plane due to the envelope conformation. Two carbonyl oxygen atoms are present in molecule, which are polarized and are gathered by more electron density. Chances are that oxygen atoms may involve H···O interactions. Actually, C–H···O, C–H···π, and π···π interactions are predominant weak forces that joint the molecule into a crystal. All the oxygen atoms including O1, O19, and O20 are involved

*Corresponding authors: Xiaochuan Li, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China; and Young-A Son, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea, e-mail: lixiaochuan@htu.cn (X. Li); yason@cnu.ac.kr (Y-A Son)
Yingfan Liu and Kaiming Mao: College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface and Interface Science, Zhengzhou 450002, P. R. China

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	$U_{\text{iso}}^*/U_{\text{eq}}$
O1	0.47668(10)	0.11771(5)	0.18064(10)	0.0376(2)
C2	0.55368(13)	0.18839(8)	0.14740(13)	0.0311(3)
C3	0.66213(13)	0.16271(8)	0.09744(13)	0.0325(3)
C4	0.74475(13)	0.23394(8)	0.06400(12)	0.0320(3)
C5	0.70775(14)	0.32889(9)	0.07403(13)	0.0351(3)
C6	0.60049(14)	0.34942(8)	0.12724(13)	0.0359(3)
H6	0.5789	0.4110	0.1367	0.043*
C7	0.52149(13)	0.28073(8)	0.16821(13)	0.0326(3)
C8	0.41771(13)	0.29746(8)	0.23347(14)	0.0348(3)
H8	0.3985	0.3580	0.2525	0.042*
C9	0.34402(13)	0.22727(9)	0.26989(13)	0.0346(3)
C10	0.36769(14)	0.13314(9)	0.23612(14)	0.0383(3)
C11	0.69726(15)	0.06282(9)	0.08249(17)	0.0450(3)
H11A	0.6368	0.0407	-0.0162	0.054*
H11B	0.6749	0.0261	0.1552	0.054*
C12	0.85793(16)	0.05188(10)	0.10690(17)	0.0496(4)
H12A	0.9181	0.0650	0.2103	0.060*
H12B	0.8768	-0.0113	0.0859	0.060*
C13	0.89856(17)	0.11638(9)	0.00698(17)	0.0484(4)
H13A	1.0034	0.1119	0.0291	0.058*
H13B	0.8471	0.0982	-0.0962	0.058*
N14	0.86116(12)	0.21214(7)	0.02647(12)	0.0389(3)
C15	0.94382(16)	0.28225(10)	-0.01761(16)	0.0454(3)
H15A	0.9008	0.2901	-0.1250	0.054*
H15B	1.0444	0.2613	0.0085	0.054*
C16	0.94457(15)	0.37357(10)	0.05624(17)	0.0506(4)
H16A	0.9925	0.4195	0.0170	0.061*
H16B	0.9999	0.3682	0.1627	0.061*
C17	0.78955(15)	0.40408(9)	0.02897(17)	0.0455(3)
H17A	0.7386	0.4184	-0.0759	0.055*
H17B	0.7920	0.4595	0.0861	0.055*
C18	0.24370(16)	0.24397(11)	0.34589(15)	0.0435(3)
H18	0.2000(19)	0.1914(12)	0.3647(18)	0.069(5)*
O19	0.21677(11)	0.31875(7)	0.38520(11)	0.0536(3)
O20	0.30346(12)	0.06559(7)	0.25281(13)	0.0588(3)

in C—H \cdots O interactions: C11—H11A \cdots O1ⁱ¹ (ⁱ¹: *x*, *y*, 1+*z*), C12—H12B \cdots O19ⁱ² (ⁱ²: *x*, 1/2−*y*, 1/2+*z*), C15—H15B \cdots O19ⁱ², C16—H16B \cdots O19ⁱ², C6—H6 \cdots O20ⁱ³ (ⁱ³: *x*, *y*, 1+*z*), and C17—H17B \cdots O20ⁱ³. The distance of C \cdots O varied from 3.53 to 3.75 \AA , which falls inside the normal C \cdots O interval of C—H \cdots O interactions [11]. The H \cdots O distances range from 2.50 to 2.78 \AA and the C—H \cdots O angles vary from 138° to 153°, indicating very weak H \cdots O interactions. It is worthy to note

that the H \cdots O interactions with O19 and O20 involve in the crystal are more complicated than the interaction with O1, in which one oxygen atom involve two or more hydrogen bonds. The carbonyl C18=O19, hovering above the carbon ring (O1/C2/C7/C8/C9C10), configure the $\pi\cdots\pi$ interactions.

Apart from the interactions mentioned above, more weaker interactions that cannot be neglected are C—H \cdots π interactions, to which hydrogen atoms of methylene contribute and interact with the coumarin ring.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (21272060). This work was supported by the industrial Fundamental Technology Development Program (10076350) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea.

References

1. Bruker. *APEx2* (Version 2.1.4), *SAINT* (Version 7.34A) and *SADABS* (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA (2005).
2. Sheldrick, G. M.: A short history of SHELLX. *Acta Crystallogr. A* **64** (2008) 112–122.
3. Brandenburg, K.; Putz, H.: Diamond-crystal and molecular structure visualization. Crystal impact GbR, Rathausgasse 30, D-53111 Bonn, Germany (2005).
4. Farrugia, L. J.: WinGX and ORTEP for windows: an update. *Appl. Cryst.* **45** (2012) 849–854.
5. Lee, B.; Chen, S.; Heinis, C.; Scopelliti, R.; Severin, K.: Pattern-based sensing of peptides and aminoglycosides with a single molecular probe. *Org. Lett.* **15** (2013) 3456–3459.
6. Yuan, L.; Lin, W.; Song, J.; Yang, Y.: Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. *Chemm. Commun.* **47** (2011) 12691–12693.
7. Li, X.; Ji, G.; Son, Y.-A.: Tunable emission of hydrazine-containing bipyrrole fluorine-boron complexes by linear extension. *Dye Pigments* **124** (2016) 232–240.
8. Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H.: Photoresponsive host-guest functional systems. *Chem. Rev.* **115** (2015) 7543–7588.
9. Li, H.; Qu, D.-H.: Recent advances in new-type molecular switches. *Sci. China Chem.* **58** (2015) 916–921.
10. Li, X.; Son, Y.-A.: Efficient luminescence from easily prepared fluorine-boron core complexes based on benzothiazole and benzoxazole. *Dye Pigments* **107** (2014) 182–187.
11. Desiraju, G. R.: The C—H \cdots O hydrogen bond in crystals: What is it? *Acc. Chem. Res.* **24** (1991) 290–296.