

Wenxin Zhang, Chenyu Qiu, Shanshan Li, Lina Zhou, Mengwei Hu, Xiaojing Chen, Bin Yu, Yan Hong, Zhiguo Liu* and Qinjin Xia*

Crystal structure of 2,5-bis(*E*)-2-(trifluoromethyl)benzylidene)cyclopentan-1-one, C₂₁H₁₄F₆O

<https://doi.org/10.1515/ncls-2017-0080>

Received May 2, 2017; accepted August 18, 2017; available online September 23, 2017

Abstract

C₂₁H₁₄F₆O, triclinic, $P\bar{1}$ (no. 2), $a = 7.8470(16)$ Å, $b = 7.9390(16)$ Å, $c = 14.993(3)$ Å, $\alpha = 83.25(3)$ °, $\beta = 89.18(3)$ °, $\gamma = 73.79(3)$ °, $V = 890.5(3)$ Å³, $Z = 2$, $R_{\text{gt}}(F) = 0.0658$, $wR_{\text{ref}}(F^2) = 0.1261$, $T = 293$ K.

CCDC no.: 1569702

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of materials

The title compound was synthesized by Aldol condensation between two molecules of 2-(trifluoromethyl)benzaldehyde and cyclopentanone, which was synthesized according our earlier published method [1, 2]. In detail: 5.0 mmol cyclopentanone was added to a solution of 10 mmol 2-(trifluoromethyl)benzaldehyde in MeOH (10 mL). The solution was stirred at room temperature for 30 min, followed

Table 1: Data collection and handling.

Crystal:	Colorless block
Size:	0.30 × 0.22 × 0.20 mm
Wavelength:	Mo K α radiation (0.71073 Å)
μ :	0.13 mm ⁻¹
Diffractometer, scan mode:	Nonius CAD4, $\omega/2\theta$
θ_{max} :	25.0°
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}$:	3150, 3150
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2\sigma(I_{\text{obs}})$, 1298
$N(\text{param})_{\text{refined}}$:	253
Programs:	SHELX [13]

by dropwise addition of NaOCH₃/CH₃OH (1.0 mL, 5.0 mmol). The mixture was stirred at room temperature and monitored with TLC. When the reaction was finished, the residue was poured into saturated NH₄Cl solution and filtered. The precipitate was washed with water and cold ethanol, and dried in vacuum. The solid was further purified by silica gel chromatography (CH₂Cl₂/CH₃OH). All chemicals used for the synthesis were commercially available and were used without further purification. The yellow crystals of the title compound were obtained by slow evaporation of a CH₃OH solution at room temperature.

Experimental details

Position of the H atoms were calculated based on geometric criteria (C–H = 0.97 and 0.93 for methyl and aromatic atoms, respectively) and placed in their calculated position and refined, using a riding model with $U_{\text{iso}}(\text{H}) = 1.5 U_{\text{eq}}(\text{C})$ for methyl and $U_{\text{iso}}(\text{H}) = 1.2 U_{\text{eq}}(\text{C})$ for all others.

Discussion

Curcumin has been demonstrated to possess a wide range of pharmaceutical activities, such as anti-tumor [3, 4], anti-inflammation [5], anti-oxidation [6], anti-bacterial [7], and cardiovascular protection [8, 9]. However, its high metabolic instability and low bioavailability have dramatically limited its practical application [10]. Recently, our research group has synthesized a series of mono-carbonyl analogs of curcumin (MACs) by deleting β -diketone moiety [11, 12]. The title compound is an Curcumin analogon with one central keto group only.

*Corresponding author: Zhiguo Liu and Qinjin Xia, Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China, e-mail: lzgcnu@163.com (Z. Liu); zdxiqinjin@163.com (Q. Xia)

Wenxin Zhang, Chenyu Qiu, Shanshan Li, Lina Zhou, Mengwei Hu, Xiaojing Chen, Bin Yu and Yan Hong: Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	y	z	<i>U</i> _{iso} */* <i>U</i> _{eq}
O	0.3518(3)	0.1788(3)	0.12515(15)	0.0671(8)
F1	0.2333(4)	-0.1261(4)	0.51161(16)	0.1268(12)
C1	0.2977(5)	-0.2847(5)	0.3855(3)	0.0588(11)
F2	0.1382(4)	0.0185(3)	0.38446(16)	0.0995(9)
C2	0.2981(6)	-0.4343(6)	0.4439(3)	0.0852(14)
H2A	0.2831	-0.4267	0.5051	0.102*
F3	0.4119(4)	-0.0540(3)	0.41798(16)	0.0978(9)
C3	0.3207(6)	-0.5934(6)	0.4112(3)	0.0956(16)
H3A	0.3198	-0.6932	0.4503	0.115*
F4	0.0923(5)	0.7135(4)	-0.21608(18)	0.1480(14)
C4	0.3442(6)	-0.6054(6)	0.3227(3)	0.0887(15)
H4A	0.3614	-0.7137	0.3008	0.106*
F5	0.3074(4)	0.5680(4)	-0.12766(19)	0.1099(10)
C5	0.3425(6)	-0.4567(6)	0.2647(3)	0.0771(13)
H5A	0.3568	-0.4666	0.2037	0.093*
F6	0.0446(4)	0.5745(3)	-0.09335(18)	0.1072(9)
C6	0.3202(5)	-0.2930(5)	0.2941(3)	0.0612(11)
C7	0.2711(7)	-0.1148(7)	0.4241(3)	0.0746(13)
C8	0.3224(5)	-0.1373(5)	0.2300(3)	0.0609(11)
H8A	0.3457	-0.0451	0.2560	0.073*
C9	0.2966(5)	-0.1071(5)	0.1416(3)	0.0573(11)
C10	0.2523(5)	-0.2174(5)	0.0759(2)	0.0708(12)
H10A	0.1384	-0.2389	0.0893	0.085*
H10B	0.3421	-0.3302	0.0784	0.085*
C11	0.2460(5)	-0.1119(5)	-0.0179(2)	0.0659(11)
H11A	0.3397	-0.1740	-0.0549	0.079*
H11B	0.1327	-0.0962	-0.0477	0.079*
C12	0.2704(5)	0.0626(5)	-0.0040(2)	0.0596(11)
C13	0.3126(5)	0.0609(5)	0.0919(2)	0.0542(10)
C14	0.2613(5)	0.2052(5)	-0.0631(2)	0.0576(11)
H14A	0.2824	0.3005	-0.0392	0.069*
C15	0.2229(5)	0.2331(5)	-0.1600(2)	0.0591(11)
C16	0.2400(5)	0.0915(5)	-0.2090(3)	0.0710(12)
H16A	0.2774	-0.0230	-0.1798	0.085*
C17	0.2023(6)	0.1174(7)	-0.3013(3)	0.0861(14)
H17A	0.2120	0.0207	-0.3325	0.103*
C18	0.1514(6)	0.2838(7)	-0.3455(3)	0.0898(16)
H18A	0.1281	0.3011	-0.4070	0.108*
C19	0.1347(6)	0.4255(6)	-0.2989(3)	0.0817(14)
H19A	0.0989	0.5393	-0.3290	0.098*
C20	0.1705(5)	0.4016(6)	-0.2071(3)	0.0654(12)
C21	0.1536(8)	0.5632(7)	-0.1621(4)	0.0916(15)

The symmetrical unit of this complex is constructed by two 2-(trifluoromethyl)benzylidene groups and a cyclopentanone linker. The C—C bond lengths of the cyclopentanone moiety are with 1.477(4) to 1.543(4) Å quite normal. The C8—C9 and C12—C14 bond lengths of 1.326(4) and 1.340(4) Å conform to a double bond. The C6—C8 and C14—C15 bond lengths of 1.477(5) and 1.465(5) Å are between double and single bonds. The shortening of the C—C bonds showing the partial double-bond character of the C—C bonds, which are influenced by adjacent double bonds.

Acknowledgements: We are grateful to the project of students academic research of Wenzhou Medical University (wyx2016101001, wyx2016101026, wyx2016101107) for financial support.

References

1. Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S.: Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. *Bioorg. Med. Chem.* **17** (2009) 2623–2631.
2. Zhao, C.; Yang, J.; Huang, Y.; Liang, G.; Li, X.: Crystal structure of ortho-(2E,5E)-2,5-bis(2-methoxybenzylidene) cyclopentanone, C₂₁H₂₀O₃. *Z. Kristallogr. NCS.* **224** (2009) 337–338.
3. Gao, X.; Wang, B. L.; Wu, Q. J.; Wei, X. W.; Zheng, F. J.; Men, K.; Shi, H. S.; Huang, N.; Wei, Y. Q.; Gong, C. Y.: Combined delivery and anti-cancer activity of paclitaxel and curcumin using polymeric micelles. *J. Biomed. Nanotech.* **11** (2015) 578–589.
4. Kumar, D.; Kumar, M.; Saravanan, C.; Singh, S. K.: Curcumin: a potential candidate for matrix metalloproteinase inhibitors. *Expert. Opin. Ther. Targets* **16** (2012) 959–972.
5. Zhang, Y. L.; Zhao, L. P.; Wu, J. Z.; Jiang, X.; Dong, L. L.; Xu, F. L.; Zou, P.; Dai, Y. R.; Shan, X. O.; Yang, S. L.: Synthesis and evaluation of a series of novel asymmetrical curcumin Analogs for the treatment of inflammation. *Molecules*. **19** (2014) 7287–7307.
6. Yu, C.; Wei, C.; Liao, V.: Curcumin-mediated oxidative stress resistance in *Caenorhabditis elegans* is modulated by age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1. *Free Radical Res.* **48** (2014) 371–379.
7. Negi, P. S.; Jayaprakasha, G. K.; Jagan, M.; Sakariah, K. K.: Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. *J. Agric. Food. Chem.* **47** (1999) 4297–4300.
8. Kapakos, G.; Youreva, V.; Srivastava, A. K.: Cardiovascular protection by curcumin: molecular aspects. *Indian J. Biochem. Biophys.* **49** (2012) 306–315.
9. Zeng, C.; Zhong, P.; Zhao, Y.; Kanchana, K.; Zhang, Y.; Khan, Z. A.; Chakrabarti, S.; Wu, L.; Wang, J.; Liang, G.: Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. *J. Mol. Cell. Cardiol.* **79** (2014) 1–12.
10. Mythri, R. B.; Bharath, M. M.: Curcumin: a potential neuroprotective agent in Parkinson's disease. *Curr. Pharm. Des.* **18** (2012) 91–9.
11. Liu, Z.; Tang, L.; Zou, P.; Zhang, Y.; Wang, Z.; Fang, Q.; Jiang, L.; Chen, G.; Xu, Z.; Zhang, H.; Liang, G.: Synthesis and biological evaluation of allylated and prenylated monocarbonyl analogues of curcumin as anti-inflammatory agents. *Eur. J. Med. Chem.* **74** (2014) 671–682.
12. Zhang, Y.; Jiang, X.; Peng, K.; Chen, C.; Fu, L.; Wang, Z.; Feng, J.; Liu, Z.; Zhang, H.; Liang, G.; Pan, Z.: Discovery and evaluation of novel anti-inflammatory derivatives of natural bioactive curcumin. *Drug. Des. Devel. Ther.* **8** (2014) 2161–2171.
13. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.