

Pengfei Wei*, Xiao-Li Yang and Kun-Yan Wang

A single crystal study on 2-(methylcarbamoyl)benzoic acid, $C_9H_9NO_3$

DOI 10.1515/ncls-2017-0078

Received March 23, 2017; accepted August 15, 2017; available online September 16, 2017

Abstract

$C_9H_9NO_3$, monoclinic, $P2_1/c$ (no. 14), $a = 8.7201(8)$ Å, $b = 8.6453(9)$ Å, $c = 11.8083(9)$ Å, $\beta = 100.830(3)^\circ$, $V = 874.35(14)$ Å³, $Z = 4$, $R_{\text{gt}}(F) = 0.0489$, $wR_{\text{ref}}(F^2) = 0.1142$, $T = 296(2)$ K.

CCDC no.: 1569093

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Source of materials

The title compound, can be synthesized according to the literature [5]. In a typical reaction 0.5 g of the title compound was dissolved in 8 mL methanol. Evaporation at room temperature yielded colorless crystals of 2-(methylcarbamoyl)benzoic acid.

Table 1: Data collection and handling.

Crystal:	Colourless block
Size:	$0.28 \times 0.21 \times 0.17$ mm
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ :	1.0 cm ⁻¹
Diffractometer, scan mode:	PHOTON100 CMOS, ω scans
$2\theta_{\text{max}}$, completeness:	50.8° , >99%
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	7023, 1603, 0.072
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 1127
$N(\text{param})_{\text{refined}}$:	125
Programs:	CAD-4 [1, 2], SHELX [3, 4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	$U_{\text{iso}}^*/U_{\text{eq}}$
C1	0.7659(2)	0.9801(2)	0.65405(17)	0.0178(5)
C2	0.7244(2)	0.9605(2)	0.76231(17)	0.0188(5)
C3	0.8129(3)	0.8626(3)	0.84236(19)	0.0292(6)
H3	0.7840	0.8476	0.9152	0.035*
C4	0.9419(3)	0.7869(3)	0.81791(19)	0.0348(6)
H4	1.0025	0.7225	0.8745	0.042*
C5	0.9830(3)	0.8044(3)	0.71166(19)	0.0299(6)
H5	1.0710	0.7511	0.6943	0.036*
C6	0.8954(2)	0.9003(3)	0.63019(19)	0.0233(5)
H6	0.9238	0.9119	0.5569	0.028*
C7	0.6744(2)	1.0860(2)	0.56710(17)	0.0194(5)
C8	0.5960(2)	1.0504(2)	0.80081(16)	0.0175(5)
C9	0.3470(3)	1.0341(3)	0.8655(2)	0.0357(6)
H9A	0.3798	1.1326	0.9036	0.054*
H9B	0.3171	0.9621	0.9217	0.054*
H9C	0.2576	1.0516	0.8030	0.054*
N1	0.4755(2)	0.9687(2)	0.81858(15)	0.0230(5)
H1B	0.467(3)	0.871(3)	0.7987(19)	0.028*
O1	0.74698(18)	1.1135(2)	0.47935(13)	0.0296(4)
H1A	0.692(3)	1.175(3)	0.428(2)	0.036*
O2	0.55076(17)	1.14259(18)	0.57593(11)	0.0247(4)
O3	0.61125(16)	1.19134(17)	0.82207(11)	0.0238(4)

*Corresponding author: Pengfei Wei, School of Material

Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China, e-mail: wpf164199792@163.com

Xiao-Li Yang and Kun-Yan Wang: School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China

Experimental details

All hydrogen atoms were identified in difference Fourier syntheses and either placed on calculated positions with the help of the SHELXL program (AFIX 43 or 137 option

for alkyl and aromatic hydrogens) [3] or freely refined with $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{N,O})$.

Comment

The compound we report here is a very important impurity in the production of milnacipran hydrochloride. Milnacipran hydrochloride is a serotonin-norepinephrine reuptake inhibitor (SNRI) used in the clinical treatment of fibromyalgia that was first approved for the treatment of major depressive episodes in France in December 1996. The bond lengths and angles in the crystal structure are within normal ranges [6]. The carboxyl (C7/O1/O2) and acylamide (C8/O3/N1/C9) groups are oriented at 11.3(3)° and 70.6(4)° with respect to the benzene ring (C1/C2/C3/C4/C5/C6) to which they are bonded. In the crystal of the title compound there are O—H···O and N—H···O intermolecular hydrogen bonds, but no π — π stacking interactions, as the centroid to centroid distance between the two nearest rings is larger than 4 Å.

Acknowledgements: This work is supported by the PhD Research Startup Foundation of Jinling Institute of Technology (JIT-B-201211 and JIT-B-201323).

References

1. Enraf-Nonius: CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands, (1985).
2. Harms, K.; Wocadlo, S.: XCAD4. University of Marburg, Germany, (1995).
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. *Acta Crystallogr. C* **71** (2015) 3–8.
4. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
5. John, W. V.; Louella, W.: Thermolysis of *N*-alkyl-substituted phthalamic acids. Steric inhibition of imide formation. *J. Org. Chem.* **46** (1981) 175–177.
6. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R.: Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. *J. Chem. Soc. Perkin Trans. 2* (1987) S1–S19.