

Niu Yongsheng, Yu Youzhu*, Wei Aimin, Liu Nana and Wang Fengli

Crystal structure of diethyl 3,3'-(diazene-1,2-diyi)(E)-dibenzoate, C₁₈H₁₈N₂O₄

DOI 10.1515/ncrs-2016-0372

Received November 22, 2016; accepted April 25, 2017; available online May 10, 2017

Abstract

C₁₈H₁₈N₂O₄, monoclinic, $P2_1/n$ (no. 14), $a = 5.2291(2)$ Å, $b = 10.5932(4)$ Å, $c = 15.3775(6)$ Å, $\beta = 96.619(2)^\circ$, $V = 846.13(6)$ Å³, $Z = 4$, $R_{\text{gt}}(F) = 0.0479$, $wR_{\text{ref}}(F^2) = 0.1438$, $T = 293(2)$ K.

CCDC no.: 1545390

The molecular structure of the title compound is shown in the figure (' = 2- x , 2- y , 2- z). Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

All reagents and solvents were commercially available and used as received without further purification. Azobenzene-3,3'-dicarbonylchloride (3 mmol) was added to a solution of ethanol (25 mL) and 1,2-dichloroethane (15 mL). The reaction mixture was stirred at 80 °C for 3 h, then the solution was naturally cooled to room temperature. After

*Corresponding author: Yu Youzhu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, Henan, P. R. China, e-mail: 119yyz@163.com

Niu Yongsheng and Liu Nana: College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, Henan, P. R. China

Wei Aimin: College of Civil and Building Engineering, Anyang Institute of Technology, Anyang 455000, Henan, P. R. China

Wang Fengli: Hebi Huashi United Energy Technology Co., LTD, Hebi 458000, Henan, P. R. China

Table 1: Data collection and handling.

Crystal:	Orange block
Size:	0.20 × 0.20 × 0.20 mm
Wavelength:	Mo K α radiation (0.71073 Å)
μ :	0.9 cm ⁻¹
Diffractometer, scan mode:	Bruker APEX-II, φ and ω
2 θ _{max} , completeness:	57°, >99%
$N(hkl)$ _{measured} , $N(hkl)$ _{unique} , R_{int} :	20762, 209, 0.022
Criterion for I_{obs} , $N(hkl)$ _{gt} :	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 1866
$N(\text{param})$ _{refined} :	110
Programs:	Bruker programs [1, 2], SHELX [3], DIAMOND [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	$U_{\text{iso}}^*/U_{\text{eq}}$
O2	0.10504(18)	0.65799(9)	0.85455(6)	0.0555(3)
C6	0.6243(2)	0.86064(10)	0.94331(7)	0.0418(3)
H6	0.6232	0.9208	0.8992	0.050*
C1	0.8062(2)	0.86682(11)	1.01687(7)	0.0419(3)
C5	0.4449(2)	0.76376(10)	0.93660(7)	0.0405(3)
C4	0.4443(2)	0.67457(12)	1.00307(8)	0.0498(3)
H4	0.3222	0.6104	0.9986	0.060*
O1	0.2532(2)	0.83270(11)	0.79680(7)	0.0799(4)
C2	0.8067(3)	0.77771(13)	1.08252(8)	0.0538(3)
H2	0.9289	0.7822	1.1314	0.065*
C7	0.2592(2)	0.75768(11)	0.85532(8)	0.0468(3)
C3	0.6257(3)	0.68168(13)	1.07583(9)	0.0606(4)
H3	0.6262	0.6220	1.1202	0.073*
C8	-0.0801(3)	0.64201(16)	0.77739(9)	0.0657(4)
H8A	0.0084	0.6303	0.7259	0.079*
H8B	-0.1891	0.7161	0.7685	0.079*
C9	-0.2372(3)	0.52945(14)	0.79195(11)	0.0662(4)
H9A	-0.1291	0.4560	0.7969	0.099*
H9B	-0.3687	0.5193	0.7435	0.099*
H9C	-0.3159	0.5401	0.8449	0.099*
N1	1.00062(18)	0.96177(9)	1.03032(6)	0.0463(3)

filtration orange flakes of the title compound were obtained with 94.6% yield. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution including 0.05 g of the product in methanol (5 mL) and chloroform (5 mL).

Experimental details

H atoms were subsequently treated as riding atoms with distances C—H = 0.96 (CH₃), 0.97 (CH₂), 0.93 Å (ArH) and O—H = 0.85 Å.

Comment

In recent years, the study of liquid crystalline materials has been of interest due to their potentially wide range of applications, such as in electrical [5], optical [6], and biological medical fields [7]. In this respect, the preparation of liquid crystalline materials containing azobenzene moieties appears to be very promising, because the photoinduced *trans-cis* isomerization of azobenzene chromophores can give rise to photochromic and optical dichroic effects [8]. Liquid crystalline polymers containing azobenzene derivatives have been widely investigated for the photo-controlled release of drugs [9], the preparation of holographic optical memories [10], and non-linear optical materials [11]. In order to enlarge the number of azobenzene derivatives, the synthesis and crystal structure of the title compound was investigated.

The title crystal structure is centrosymmetric and contains one half of a title molecule in the asymmetric unit. Consequently the title molecule is located around an inversion center in the monoclinic space group *P*2₁/*n* (*cf.* the figure). Thus the intersection angle between two aryl rings is 0°, which is the same to that of azobenzene [12]. The crystal packing does not exhibit classical hydrogen bond interactions.

Acknowledgements: This work was supported by the Foundation of Anyang Institute of Technology.

References

1. Bruker. APEX2. Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
2. Bruker. SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
3. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
4. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany, 2012.
5. Eich, M.; Wendorff, J. H.: Erasable holograms in polymeric liquid crystals. *Makromol. Chem. Rapid Commun.* **8** (1987) 467–471.
6. Eich, M.; Wendorff, J. H.; Ringsdorf, H.; Schmidt, H. W.: Nonlinear optical self diffraction in a mesogenic side chain polymer. *Makromol. Chem.* **186** (1985) 2639–2647.
7. Qiu, H.; Li, M.; Chen, X.; Jing, F.; Zhou, E.: Synthesis and properties of two series of H-bonded and non-H-bonded thermotropic liquid crystal monomers. *Liq. Cryst.* **25** (1998) 419–425.
8. Delaire, J. A.; Nakatani, K.: Linear and nonlinear optical properties of photochromic molecules and materials. *Chem. Rev.* **100** (2000) 1817–1846.
9. Xie, S.; Natansohn, A.; Rochon, P.: Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate. *Macromolecules* **27** (1994) 1885–1890.
10. Altomare, A.; Ciardelli, F.; Marchini, M.; Solaro, R.: Polymeric dispersions of model azobenzene dyes. *Polymer* **46** (2005) 2086–2096.
11. Andruzzi, L.; Altomare, A.; Ciardelli, F.; Solaro, R.; Hvilsted, S.; Ramanujam, P. S.: Holographic gratings in azobenzene side-chain polymethacrylates. *Macromolecules* **32** (1999) 448–454.
12. Harada, J.; Ogawa, K.; Tomoda, S.: Molecular motion and conformational interconversion of azobenzenes in crystals as studied by X-ray diffraction. *Acta. Crystallogr. B* **53** (1997) 662–672.