
Open Access

Peizhi Wang*, Peiyu Wang and Ming Bai

Crystal structure of tetrapropylammonium hydrogen carbonate, C₁₃H₂₉NO₃

DOI 10.1515/ncrs-2016-0361 Received April 10, 2017; accepted July 18, 2017; available online August 8, 2017

Abstract

 $C_{13}H_{29}NO_3$, monoclinic, $P2_1/n$ (no. 14), a=8.9493(3) Å, b=15.2470(7) Å, c=11.3846(5) Å, $\beta=93.824(3)^\circ$, V=1549.97(11) Å³, Z=4, $R_{gt}(F)=0.0501$, $wR_{ref}(F^2)=0.1849$, T=296 K.

CCDC no.: 1562906

Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of materials

The title compound was prepared by accident. Firstly, a synthesized aromatic acid and tetrapropylammonium (25% aqueous solution, C. R.) were dissolved in small amount of $H_2O/EtOH$ (v/v, 2:1) with the molar ratio of 1:3 to evaporate at

Table 1: Data collection and handling.

Crystal: Colourless block Size $0.63 \times 0.23 \times 0.16 \text{ mm}$ Wavelength: $Mo \ K\alpha \ \text{radiation} \ (0.71073 \ \text{Å})$ μ : $0.07 \ \text{mm}^{-1}$ CCD area detector $2\theta_{\text{max}}$, completeness: 58° , 97.3% $N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} : 9797, 3952, 0.024 Criterion for I_{obs} , $N(hkl)_{\text{gt}}$: $I_{\text{obs}} > 2 \ \sigma(I_{\text{obs}})$, 2349

N(param)_{refined}: 157

Programs: Bruker programs [5], SHELXL2014/7 [6]

room temperature to prepare the cocrystal of the related acid. About after 7 days, colorless block crystals appeared in the solution. Determined by single crystal X-ray diffraction, the crystal was proved to be the title compound. It can be concluded that the anions should be from the vigorous stirring during preparation of the solution.

Discussion

Bicarbonate is a triangular anion with three O atoms and one H atom. Due to the existence of H and O atoms, it can act as hydrogen bond donor and acceptor. In many crystal structures, bicarbonate was regarded as the ancillary molecule to help different host molecules form various hydrogen-bonded host frameworks under the guidance of tetraalkylammonium template [1–3]. However, the crystal structures that only involving bicarbonate and tetraalkylammonium are rarely reported. Only two structures of tetraethylammonium bicarbonate and tetrabutylammonium bicarbonate have been reported [4, 5].

Hydrogen carbonate can act as hydrogen bond donor and acceptor. In many crystal structures, hydrogen carbonate was regarded as the ancillary anion to form various hydrogen-bonded frameworks under the guidance of the tetraalkylammonium template [1–3]. However, the crystal structures that only involve hydrogen carbonate and tetraalkylammonium are rarely reported.

There is one crystallography independent hydrogen carbonate anion and one tetrapropylammonium cation in the asymmetric unit of the title compound. In the structure, the

^{*}Corresponding author: Peizhi Wang, Scientific Research Department, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China, e-mail: 191294008@qq.com Peiyu Wang and Ming Bai: Scientific Research Department, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) .

Atom	х	у	Z	U _{iso} */U _{eq}
C1	-0.3411(7)	0.26406(10)	-0.1012(4)	0.1293(17)
H1A	-0.4716	0.2549	-0.1178	0.194*
H1B	-0.3171	0.2728	-0.1831	0.194*
H1C	-0.3359	0.2791	-0.0336	0.194*
C2	-0.2196(4)	0.22459(6)	0.0489(3)	0.0588(7)
C3	-0.0928(4)	0.20057(6)	0.0757(3)	0.0633(7)
Н3	0.0066	0.1975	0.0254	0.076*
C4	-0.1137(4)	0.18125(6)	0.1767(3)	0.0610(7)
H4	-0.0282	0.1650	0.1943	0.073*
C5	-0.2587(4)	0.18557(5)	0.2517(2)	0.0477(6)
C6	-0.3827(5)	0.20947(7)	0.2264(3)	0.0724(9)
Н6	-0.4807	0.2126	0.2777	0.087*
C7	-0.3637(5)	0.22914(7)	0.1245(3)	0.0789(9)
H7	-0.4489	0.2454	0.1076	0.095*
C8	-0.3962(4)	0.14275(6)	0.3527(2)	0.0507(6)
C9	-0.5151(4)	0.13514(6)	0.2117(3)	0.0504(6)
C10	-0.1313(4)	0.17106(5)	0.4890(2)	0.0496(6)
C11	0.0482(4)	0.15607(6)	0.5151(2)	0.0576(7)
H11	0.0779	0.1424	0.4531	0.069*
C12	0.1853(4)	0.16125(6)	0.6335(3)	0.0629(7)
H12	0.3077	0.1512	0.6510	0.075*
C13	0.1395(4)	0.18131(6)	0.7255(3)	0.0596(7)
C14	-0.0412(5)	0.19644(6)	0.6983(3)	0.0633(7)
H14	-0.0713	0.2101	0.7601	0.076*
C15	-0.1772(4)	0.19128(6)	0.5798(3)	0.0595(7)
H15	-0.2992	0.2014	0.5616	0.071*
C16	0.4445(5)	0.17124(8)	0.8805(3)	0.0927(11)
H16A	0.4118	0.1506	0.8745	0.139*
H16B	0.5101	0.1759	0.9711	0.139*
H16C	0.5328	0.1758	0.8198	0.139*
C17	1.5746(4)	0.04762(7)	1.5043(3)	0.0717(8)
H17A	1.5792	0.0303	1.4501	0.108*
H17B	1.6307	0.0431	1.5969	0.108*
H17C	1.6512	0.0632	1.4738	0.108*
C18	1.2664(4)	0.06381(5)	1.3672(2)	0.0468(6)

planar anion is connected to another symmetry related anion to form an anionic dimer by classical $O{-}H{\cdots}O$ hydrogen

bonds. These dimers and tetrapropylammonium cations are arranged to form the final stable salt structure. Obviously, the structure of the title compound is different from the structure of tetraethylammonium hydrogen carbonate [3], in which the related anions and water molecules yield hydrogen-bonded layers and the cations were contained between the layers to form the related structure. Meanwhile, in the structure of tetrabutylammonium bicarbonate, the compound only exist separate cations and anions due to the absence of water molecule [4], which is very similar with the title compound.

Acknowledgements: This work was financially supported by the first batch of traditional Chinese Medicine School inheritance studio program of State Administration of Traditional Chinese Medicine: Henan Shaw acupuncture Schools inheritance studio (The traditional Chinese medicine-2012-228).

References

- 1. Mak, T. C. W.; Xue, F.: Supramolecular rosette ribbon constructed from guanidinium and hydrogen carbonate ions in the crystal engineering of hydrogen-bonded networks. J. Am. Chem. Soc. 122 (2000) 9860–9861.
- Li, Q.; Mak, T. C. W.: Inclusion compounds of thiourea and peralkylated ammonium salts. Part II. Hydrogen-bonded host lattices built of thiourea and cyclic dimeric bicarbonate moieties. J. Inclusion Phenom. Macrocyclic Chem. 20 (1994) 73–88.
- 3. Li, H.; Hou, Y.; Yang, Y.: Tetraethylammonium bicarbonate trihydrate. Acta Crystallogr. E **67** (2011) 01991.
- Ackermann, S. L.; Wolstenholme, D. J.; Frazee, C.; Deslongchamps, G.; Riley, S. H.; Decken, A.; McGrady, G. S.:
 Corrigendum: crystallographic snapshot of an arrested intermediate in the biomimetic activation of CO2. Angew. Chem. Int. Ed. 54 (2015) 7470–7470.
- 5. Bruker. SADABS, SAINT, APEX2, Madison, USA 2008.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Cryst. C 71 (2015) 3–8.