
Open Access

Li Liu, Ming-Yuan Wu, Chao Huang, Ming-Gang Teng and Jian-Xin Cao*

The crystal structure of 4-bromo-N-cyclopropyl-2,5-difluorobenzenesulfonamide, C₉H₈BrF₂NO₂S

DOI 10.1515/ncrs-2016-0352 Received December 18, 2016; accepted April 26, 2017; available online May 10, 2017

Abstract

 $C_9H_8BrF_2NO_2S$, triclinic, $P\bar{1}$ (no. 2), a=7.5277(6) Å, b=8.3730(7) Å, c=9.8785(9) Å, $\alpha=92.637(3)^\circ$, $\beta=111.201^\circ$, $\gamma=105.856(2)^\circ$, V=551.08(8) ų, Z=2, $R_{\rm gt}(F)=0.0330$, $wR_{\rm ref}(F^2)=0.0787$, T=273 K.

CCDC no.: 1515172

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Li Liu: School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China; and School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China Ming-Yuan Wu and Chao Huang: School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China Ming-Gang Teng: School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China

Table 1: Data collection and handling.

Colourless block
$0.22\times0.20\times0.15~\text{mm}$
Mo $K\alpha$ radiation (0.71073 Å)
39.3 cm^{-1}
Bruker CCD, $oldsymbol{arphi}$ and $oldsymbol{\omega}$
50.2°, >99%
3574, 1940, 0.020
$I_{ m obs}>2~\sigma(I_{ m obs})$, 1580
149
Bruker [1], SHELX [2]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	Х	y	Z	U_{iso} * $/U_{eq}$
H1N	0.657(5)	0.053(4)	0.430(3)	0.030(9)*
Br1	0.05704(5)	0.39942(5)	-0.18303(4)	0.05545(17)
C1	0.2215(4)	0.3637(4)	0.0009(4)	0.0380(8)
C2	0.3573(5)	0.4963(4)	0.1075(4)	0.0383(8)
C3	0.4746(5)	0.4730(4)	0.2439(3)	0.0348(7)
Н3	0.5662	0.5647	0.3145	0.042*
C4	0.4544(4)	0.3107(4)	0.2745(3)	0.0298(7)
C5	0.3187(4)	0.1787(4)	0.1658(4)	0.0351(7)
C6	0.2025(4)	0.2011(4)	0.0290(4)	0.0391(8)
H6	0.1136	0.1095	-0.0428	0.047*
N1	0.7084(4)	0.1475(4)	0.4356(3)	0.0372(7)
C8	0.8632(5)	0.1845(4)	0.3784(4)	0.0478(9)
Н8	0.9786	0.2844	0.4309	0.057*
C9	0.9092(6)	0.0406(5)	0.3220(4)	0.0568(10)
H9A	0.8276	-0.0718	0.3207	0.068*
H9B	1.0486	0.0525	0.3421	0.068*
C10	0.8129(7)	0.1440(6)	0.2191(5)	0.0738(14)
H10A	0.8935	0.2190	0.1765	0.089*
H10B	0.6726	0.0946	0.1550	0.089*
01	0.7408(3)	0.4390(3)	0.5240(2)	0.0443(6)
02	0.4574(3)	0.1985(3)	0.5154(3)	0.0425(5)
F1	0.2979(3)	0.0193(2)	0.1936(2)	0.0539(5)
F2	0.3769(3)	0.6550(2)	0.0794(2)	0.0594(6)
S 1	0.59626(11)	0.27917(9)	0.45233(8)	0.0328(2)

Source of material

All chemicals, reagents and solvents are of analytical grade and are commercially available. Preparation of

^{*}Corresponding author: Jian-Xin Cao, Key Laboratory for Green Chemical and Clean Energy Technology of Guizhou Province, Guiyang 550025, P. R. China, e-mail: jxcao@gzu.edu.cn; and School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China

4-bromo-2.5-difluorobenzenesulfonyl chloride: 2-bromo-1,4-difluorobenzene (10.00 g, 52 mmol) was dissolved in 100 mL CH₂Cl₂. To this solution, chlorosulfonic acid (30.18 g. 260 mmol) was added over a period of 20 min at 0 °C. After the addition was complete, the mixture was stirred at room temperature for 5 h. The reaction mixture was poured into 60 g ice water, and then extracted with dichloromethane. The organic phase was dehydrated with anhydrous sodium sulfate and concentrated at reduced pressure to afford a light yellow powder (14.05 g, 93%). Preparation of 4bromo-N-cyclopropyl-2,5-difluorobenzenesulfonamide: mixture of 4-bromo-2,5-difluorobenzenesulfonyl chloride (12.00 g, 41 mmol), cyclopropylamine (2.80 g, 49 mmol), and triethylamine (8.30 g, 82 mmol) in 100 mL dichloromethane was stirred at room temperature for 3 h. The mixture was concentrated at reduced pressure, and the residue was washed with 60 mL water and crystallized from n-hexane to afford pure product (11.60 g, 91%).

Experimental details

All hydrogen atoms were placed in geometrically calculated positions. The $U_{\rm iso}$ values of the hydrogen atoms of methyl groups were set to $1.5U_{eq}(C_{methyl})$ and the U_{iso} values of all other hydrogen atoms were set to $1.2U_{eq}(C)$.

Discussion

The hepatitis C virus is a leading cause of liver disease and represents a serious health concern [3]. The treatment with non-nucleoside thumb pocket 2 HCV NS5B polymerase inhibitors has made a great progress [4]. Phenyl sulfonamide and its derivatives can be used as an important intermediate in the synthesis of non-nucleoside thumb pocket 2 HCV NS5B polymerase inhibitors. In addition, it has been reported that

phenyl sulfonamides can also be used to synthesize the tyrosine kinase inhibitor, which shows anti-cancer effect [5].

All bond lengths and angles are in the expected ranges. Particularly, the bond length of C-Br bond is 1.884 Å. In addition, the bond length of C2-F5 and C5-F1 are 1.349 Å and 1.353 Å, respectively. The angle of C4S1N1 is 108.55° due to the steric stabilization. Title molecules are pairwise connected by classical N-H···O hydrogen bonds. The molecules packing in the crystal structure is additionally stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonds.

Acknowledgements: This work was supported by the Science and Technology Cooperation Program of Guizhou Province (LH20157647).

References

- 1. Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2009).
- 2. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
- 3. Lavanchy, D.: Evolving epidemiology of hepatitis C virus. Clin. Microbiol. Infect. 17 (2011) 107-115.
- 4. Stammers, T. A.; Coulombe, R.; Rancourt, J.; Thavonekham, B.; Fazal, G.; Goulet, S.; Jakalian, A.; Wernic, D.; Tsantrizos, Y.; Poupart, M. A.; Bös, M.; McKercher, G.; Thauvette, L.; Kukolj. G.; Beaulieu, P. L.: Discovery of a novel series of non-nucleoside thumb pocket 2 HCV NS5B polymerase inhibitors. Bioorg. Med. Chem. Lett. 23 (2013) 2585-2589.
- 5. Ali, A. M.; Gómez-Biagi, R. F.; Rosa, D. A.; Lai, P. S.; Heaton, W. L.; Park, J. S.; Eiring, A. M.; Vellore, N. A.; de Araujo, E. D.; Ball, D. P.: Shouksmith, A. E.; Patel, A. B.; Deininger, M. W.; O'Hare. T.; Gunning, P. T.: Disarming an electrophilic warhead: retaining potency in tyrosine kinase inhibitor (TKI)-resistant CML lines while circumventing pharmacokinetic liabilities. Chem. Med. Chem. 11 (2016) 850-861.