

Maha S. Almutairi, Hazem A. Ghabbour and Mohamed I. Attia*

Crystal structure of methyl 1*H*-indole-2-carboxylate, C₁₀H₉NO₂

DOI 10.1515/ncls-2016-0303

Received October 5, 2016; accepted March 1, 2017; available online April 8, 2017

Abstract

C₁₀H₉NO₂, monoclinic, *P*2₁/c (no. 14), *a* = 5.6463(6) Å, *b* = 21.470(3) Å, *c* = 7.3961(9) Å, β = 112.015(4)°, *V* = 831.24(17) Å³, *Z* = 4, *R*_{gt}(*F*) = 0.051, *wR*_{ref}(*F*²) = 0.133, *T* = 150 K.

CCDC no.: 1505543

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Brown block
Size:	0.67 × 0.35 × 0.24 mm
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ :	1.0 cm ⁻¹
Diffractometer, scan mode:	Bruker APEX-II, φ and ω
2θ _{max} , completeness:	68°, >99%
<i>N</i> (<i>hkl</i>) _{measured} , <i>N</i> (<i>hkl</i>) _{unique} , <i>R</i> _{int} :	24965, 3336, 0.048
Criterion for <i>I</i> _{obs} , <i>N</i> (<i>hkl</i>) _{gt} :	<i>I</i> _{obs} > 2 σ (<i>I</i> _{obs}), 2626
<i>N</i> (<i>param</i>) _{refined} :	123
Programs:	SHELX [1], Bruker programs [2]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> _{iso} */* <i>U</i> _{eq}
O1	0.27027(17)	0.55624(4)	0.09698(13)	0.01908(19)
O2	0.69759(16)	0.54864(4)	0.25586(13)	0.01698(18)
N1	0.21554(18)	0.43512(4)	0.22395(14)	0.01329(18)
C1	0.4485(2)	0.46450(5)	0.27445(16)	0.01219(19)
C2	0.6409(2)	0.42628(5)	0.39115(16)	0.0132(2)
H2A	0.8181	0.4357	0.4461	0.016*
C3	0.5216(2)	0.36967(5)	0.41345(16)	0.01238(19)
C4	0.6108(2)	0.31344(5)	0.51472(17)	0.0155(2)
H4A	0.7879	0.3074	0.5875	0.019*
C5	0.4369(2)	0.26728(5)	0.50654(18)	0.0165(2)
H5A	0.4954	0.2296	0.5763	0.020*
C6	0.1736(2)	0.27510(5)	0.39641(17)	0.0163(2)
H6A	0.0586	0.2424	0.3929	0.020*
C7	0.0793(2)	0.32932(5)	0.29350(17)	0.0151(2)
H7A	-0.0976	0.3343	0.2182	0.018*
C8	0.2556(2)	0.37669(5)	0.30490(16)	0.01200(19)
C9	0.4584(2)	0.52724(5)	0.19995(16)	0.0135(2)
C10	0.7243(2)	0.61044(5)	0.18754(18)	0.0182(2)
H10A	0.9018	0.6170	0.2008	0.027*
H10B	0.6776	0.6415	0.2654	0.027*
H10C	0.6115	0.6146	0.0502	0.027*
H1N1	0.075(4)	0.4499(9)	0.139(3)	0.035(5)*

*Corresponding author: Mohamed I. Attia, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; and Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), El Bohooth Street, Dokki, Giza 12622, Egypt, e-mail: mattia@ksu.edu.sa.com

Maha S. Almutairi: Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Hazem A. Ghabbour: Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; and Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt. <http://orcid.org/0000-0002-1011-0276>

Source of material

A suspension containing 1*H*-indole-2-carboxylic acid (2.00 g, 12.42 mmol) and few drops of concentrated sulfuric acid in absolute methanol (30 mL) was refluxed for 4 h. The reaction mixture was cooled to ambient temperature and the

obtained solid was filtered off to afford 2.00 g (92%) of methyl 1*H*-indole-2-carboxylate as yellow crystals, m.p. 434–435 K [3]. Slow evaporation of methanolic solution of this product yielded its pale yellow single crystals.

Experimental details

All hydrogen atoms were identified in difference Fourier syntheses. The methyl groups were idealized and refined using rigid groups allowed to rotate about the O—C bond (AFIX 137 option of the SHELXL-2013 program [1]). The U_{iso} values of the hydrogen atoms of the methyl groups were set to $1.5U_{\text{eq}}(\text{C})$ and the U_{iso} values of all other hydrogen atoms were set to $1.2U_{\text{eq}}(\text{C})$.

Comment

Indole-bearing compounds have received a significant research interest due to their ubiquitous natural occurrence, e.g. in marine natural products, fungal metabolites and vinca alkaloids [4]. Indoles constitute the scaffold of a number of pharmaceuticals and they are considered an important class of therapeutic agents in medicinal chemistry with diverse biological activities such as antimicrobial [5], anti-inflammatory [6], antitumor [7], analgesic [8], management of sleep disorders [9] and antiviral [10]. The title compound is an indole-bearing molecule which can be used for the preparation of different biologically active compounds endowed with a broad spectrum of biological activities.

The asymmetric unit of the title structure contains one molecule where the indole moiety is essentially planar. Centrosymmetric dimers are formed via N1—H1N1···O1 hydrogen bonds [D···A distance 2.8830(14) Å and D—H···A angle 154.4(18)]. When viewed perpendicular to the bc plane, the overall packing can be described as alternating layers of parallel molecules arranged in a herringbone fashion.

Acknowledgements: This research project was supported by a grant from the Research Center of the Female Scientific

and Medical Colleges, Deanship of Scientific Research, King Saud University.

References

1. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
2. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, (2009).
3. Boraei, A. T. A.; El Ashry, E. H.; Barakat, A.; Ghabbour, H. A.: Synthesis of new functionalized indoles based on ethyl indol-2-carboxylate. *Molecules* **21** (2016) 333.
4. Srivastava, A.; Pandeya, S. N.: Indole: A versatile nucleus in pharmaceutical field. *Int. J. Curr. Pharma. Res.* **1** (2011) 1–17.
5. Mehta, D. S.; Sikotra, K. H.; Shah, V. H.: Synthesis and biological screening of some new novel indole derivatives. *Ind. J. Chem.* **44B** (2005) 2594–2597.
6. Tahan, G.; Gramignoli, R.; Marongiu, F.; Aktolga, S.; Cetinkaya, A.; Tahan, V.; Dorko, K.: Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats. *Dig. Dis. Sci.* **56** (2011) 715–720.
7. Lu, J.J.; Fu, L.; Tang, Z.; Zhang, C.; Qin, L.; Wang, J.; Yu, Z.; Shi, D.; Xiao, X.; Xie, F.; Huang, W.; Deng, W.: Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. *Oncotarget.* **7** (2016) 2985–3001.
8. Ambriz-Tututi, M.; Rocha-González, H.I.; Cruz, S.L.; Granados-Soto, V.: Melatonin: a hormone that modulates pain. *Life Sci.* **84** (2009) 489–498.
9. Attia, M. I.; Witt-Enderby, P. A.; Julius, J.: Synthesis and pharmacological evaluation of pentacyclic 6a,7-dihydrodiindole and 2,3-dihydrodiindole derivatives as novel melatonergic ligands. *Bioorg. Med. Chem.* **16** (2008) 7654–7661.
10. Gong, P.; Wang, D.; Yu, D. S.; Qin, F.; Fang, L.: Synthesis and *In Vitro* antiviral activities of some new 2-arylthiomethyl-4-tertiaryaminomethyl-substituted derivatives of 6-bromo-3-ethoxycarbonyl-5-hydroxyindoles. *Chin. Chem. Lett.* **15** (2004) 19–22.