

Syed Saeed Ali, Alanazi Amer, Abdul-Rahman M. Al-Obaid, Eric C. Hosten, Richard Betz, Huda Salem Al-Salem and Ahmed Bari*

Crystal structure of the first characterized polymeric copper and sodium complex diaqua-(tris-acetato- $\kappa O, O'$)(μ^2 -acetato- $\kappa O''$)dinatrium copper(II) monohydrate, $C_8H_{18}CuNa_2O_{11}$

Table 1: Data collection and handling.

Crystal:	Colourless block
Size:	0.71 × 0.55 × 0.23 mm
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ :	15.0 cm ⁻¹
Diffractometer, scan mode:	Bruker APEX-II, φ and ω
$2\theta_{\max}$, completeness:	56.6°, >99%
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	22366, 3912, 0.017
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 3628
$N(\text{param})_{\text{refined}}$:	227
Programs:	Bruker programs [1], SHELX [2, 3], ShelXle [4], ORTEP-3 [5], PLATON [6], Mercury CSD [7]

DOI 10.1515/ncks-2016-0255

Received December 2, 2016; accepted June 5, 2017; available online June 26, 2017

Abstract

$C_8H_{18}CuNa_2O_{11}$, monoclinic, $P2_1/n$ (no. 14), $a = 9.9625(5)$ Å, $b = 14.0145(7)$ Å, $c = 11.3376(6)$ Å, $\beta = 97.602(2)$ °, $V = 1569.04(14)$ Å³, $Z = 4$, $R_{\text{gt}}(F) = 0.0178$, $wR_{\text{ref}}(F^2) = 0.0482$, $T = 200$ K.

CCDC no.: 1554088

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

31% HBr/acetic acid (1 mol equiv) was added to a solution of D-glucose (1 mol equiv) in acetic anhydride (6 mol equiv) under vigorous stirring, at 0 °C for 30 min. The temperature of the reaction mixture was maintained at room temperature and additional 31% HBr/acetic acid (5 mol equiv) was added. The resulting mixture was stirred for 5 h followed by the addition of anhydrous sodium acetate (10 g), $CuSO_4 \cdot 5H_2O$ (1 g) and zinc (5 g) in a solution of water (10 mL) and acetic acid (15 mL). Stirring was continued for further 3 h, solid was removed and the filtrate was washed with ethylacetate (200 mL) and then with water (100 mL). The organic layer of the filtrate was washed with saturated aqueous $NaHCO_3$ (100 mL), then with brine (50 mL) and dried (Na_2SO_4). The crude product obtained was recrystallized in water-ethanol mixture and afforded crystals suitable for crystal structure analysis.

*Corresponding author: Ahmed Bari, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia, e-mail: abari@ksu.edu.sa

Syed Saeed Ali, Alanazi Amer and Abdul-Rahman M. Al-Obaid: Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
Eric C. Hosten and Richard Betz: Nelson Mandela Metropolitan University, Department of Chemistry, P. O. Box 77000, Port Elizabeth 6031, South Africa

Huda Salem Al-Salem: Department of Pharmaceutical Chemistry, College of Pharmacy, Female Campus, King Saud University, P. O. Box 2457, Riyadh 11443, Saudi Arabia

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	y	z	$U_{\text{iso}}^*/U_{\text{eq}}$
Cu1	0.62979(2)	0.30982(2)	0.58404(2)	0.01601(5)
Na1	0.74790(4)	0.15630(3)	0.78110(4)	0.02386(10)
Na2	0.84320(4)	0.47470(3)	0.52589(4)	0.01975(9)
O5	0.69319(9)	0.14333(6)	0.97858(8)	0.02546(17)
O6	0.94525(8)	0.49504(6)	0.35076(7)	0.02241(16)
O7	0.91756(12)	0.64184(8)	0.17966(10)	0.0406(2)
O11	0.91637(9)	0.30969(6)	0.53285(8)	0.02725(19)
O12	0.74826(9)	0.20532(6)	0.54116(8)	0.02674(18)
O21	0.75407(8)	0.48535(6)	0.71032(7)	0.02392(17)
O22	0.71298(8)	0.33388(6)	0.74973(7)	0.02405(17)
O31	0.63107(8)	0.40883(6)	0.46384(7)	0.02380(17)
O32	0.48033(8)	0.33742(6)	0.32996(8)	0.02654(18)
O41	0.43975(8)	0.27975(6)	0.60135(7)	0.02322(17)
O42	0.51953(8)	0.15852(6)	0.71535(8)	0.02670(18)
C11	0.86739(11)	0.22910(8)	0.51831(10)	0.0213(2)
C12	0.94723(14)	0.15036(10)	0.47001(14)	0.0354(3)
H12A	0.8856	0.1085	0.4191	0.053*
H12B	0.9944	0.1133	0.5362	0.053*
H12C	1.0136	0.1780	0.4234	0.053*
C21	0.75449(10)	0.41799(8)	0.78056(10)	0.0196(2)
C22	0.80233(14)	0.43330(11)	0.91107(11)	0.0338(3)
H22A	0.8699	0.4845	0.9204	0.051*
H22B	0.8429	0.3743	0.9457	0.051*
H22C	0.7252	0.4511	0.9519	0.051*
C31	0.55643(10)	0.40478(8)	0.36274(10)	0.0188(2)
C32	0.56903(12)	0.48937(9)	0.28313(11)	0.0257(2)
H32A	0.5128	0.4792	0.2065	0.038*
H32B	0.6638	0.4970	0.2703	0.038*
H32C	0.5387	0.5470	0.3208	0.038*
C41	0.42670(11)	0.21166(8)	0.67322(9)	0.0182(2)
C42	0.28600(12)	0.19667(10)	0.70671(13)	0.0324(3)
H42A	0.2400	0.2584	0.7085	0.049*
H42B	0.2927	0.1669	0.7855	0.049*
H42C	0.2342	0.1551	0.6479	0.049*
H5A	0.7588(13)	0.1666(13)	1.0241(15)	0.052(5)*
H5B	0.6222(12)	0.1645(13)	1.0018(16)	0.054(6)*
H6A	0.9360(17)	0.5415(9)	0.3036(13)	0.045(5)*
H6B	0.9677(18)	0.4484(9)	0.3118(13)	0.045(5)*
H7A	0.961(2)	0.6932(10)	0.186(2)	0.075(8)*
H7B	0.8723(19)	0.6448(15)	0.1121(11)	0.066(6)*

Experimental details

The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bonds to best fit the experimental electron density (HFIX 137 in the SHELX program suite [2]), with $U_{\text{iso}}(\text{H})$ set to $1.5U_{\text{eq}}(\text{C})$. The H atoms of the water molecules were located on a difference Fourier map and refined with the O–H bond lengths and the H···H 1,3 distance (to restrain the H–O–H bond angle) restrained to 0.84 Å and 1.34 Å, respectively.

Discussion

The asymmetric unit contains one copper cation, two sodium cations, four acetato anions and three water molecules, which

pack to give a three-dimensional polymeric structure. Four oxygen atoms (O12, O22, O31, O41) from each of the four acetate anions are coordinated to the copper centre, which adopts a distorted tetrahedral geometry. The shortest and longest Cu–O bond distances are 1.9461(9) and 1.9814(9) Å and involve O31 and O12, respectively. The smallest and largest O–Cu–O bond angles are 99.82(4) and 120.16(4)°, respectively. The Cu atom is bridged to each of the sodium cations via three acetate anions. The copper to sodium distances are 3.2109(5) and 3.2658(5) Å (to Na1 and Na2, respectively). Na1 has a square pyramid geometry with five oxygen atoms, four (O21 [3/2–x, -1/2+y, 3/2–z], O22, O32 [1/2+x, 1/2–y, 1/2+z] and O42) from acetate anions and one (O5) from a water molecule. The shortest and longest Na1–O bond distances are 2.2987(9) and 2.5315(9) Å and involve O42 and O22, respectively. The tau-descriptor for 5-coordination is 0.06 [8]. The least-square plane defined by the four acetate oxygen anions bonded to Na1 has a r.m.s. deviation of 0.0116 with Na1 0.0842(6) Å above the plane. Atom O12 has a distance of 2.8062(10) Å to Na1 and would give Na1 an octahedral geometry if O12 were coordinating. Na2 has an octahedral geometry with six oxygen atoms, three (O5 [3/2–x, 1/2+y, 3/2–z], O6 and O6 [2–x, 1–y, 1–z]) from water molecules and three (O11, O21 and O31) from acetate anions. The shortest and longest Na2–O bond distances are 2.3281(9) and 2.4229(10) Å (to O31 and O11, respectively). The two sodium cations Na1 and Na2 [3/2–x, -1/2+y, 3/2–z] are bridged by two oxygen atoms, one from water O5 and one from acetate anion O21 [3/2–x, -1/2+y, 3/2–z]. The Na1 to Na2 distance is 3.5518(6) Å. Two Na2 atoms are also bridged by two water O atoms, O6 and O6 [2–x, 1–y, 1–z]. The Na2 to Na2 [2–x, 1–y, 1–z] distance is 3.3307(6) Å. There are a number of hydrogen bonds in the structure. The shortest interaction is O6–H6B···O42 [1/2+x, 1/2–y, -1/2+z] with a distance of 1.964(14) Å. The uncoordinated water molecule, O7, receives one hydrogen bond and donates two.

Acknowledgements: This Project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (Med-2446-02).

References

1. Bruker, APEXII, SAINT, SADABS. Bruker AXS Inc., Madison, WI, USA (2007).
2. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
3. SHELXT – Integrated space-group and crystal-structure determination. *Acta Crystallogr. A* **71** (2015) 3–8.
4. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B.: ShelXle: a Qt graphical user interface for SHELXL. *J. Appl. Cryst.* **44** (2011) 1281–1284.

5. Farrugia, L. J.: ORTEP-3 for Windows — A Version of ORTEPIII with a Graphical User Interface (GUI). *J. Appl. Cryst.* **30** (1997) 565–566.
6. Spek, A. L.: Single-crystal structure validation with the program PLATON. *J. Appl. Cryst.* **36** (2003) 7–13.
7. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A.: Mercury CSD 2.0 — New Features for the visualization and investigation of crystal structures. *J. Appl. Cryst.* **41** (2008) 466–470.
8. Addison, A. W.; Rao, W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C.: Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(*N*-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate. *Dalton Trans.* **7** (1984) 1349–1356.