


Kwang Ha\*

# Crystal structure of (1,4,8,11-tetraazacyclotetradecane)palladium(II) tetracyanopalladate(II), $C_{14}H_{24}N_8Pd_2$



DOI 10.1515/ncrs-2016-0193

Received June 16, 2016; accepted October 28, 2016; available online November 16, 2016

## Abstract

$C_{14}H_{24}N_8Pd_2$ , monoclinic,  $P2_1/n$  (no. 14),  $a = 9.075(2)$  Å,  $b = 8.3534(19)$  Å,  $c = 12.106(3)$  Å,  $\beta = 94.895(4)^\circ$ ,  $V = 914.3(4)$  Å $^3$ ,  $Z = 2$ ,  $R_{\text{gt}}(F) = 0.0220$ ,  $wR_{\text{ref}}(F^2) = 0.0654$ ,  $T = 223(2)$  K.

CCDC no.: 1512670

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

## Source of material

To a solution of (1,4,8,11-tetraazacyclotetradecane)palladium(II) dichloride (0.2243 g, 0.594 mmol) in MeOH (10 mL)/H<sub>2</sub>O

**Table 1:** Data collection and handling.

|                                                                            |                                                    |
|----------------------------------------------------------------------------|----------------------------------------------------|
| Crystal:                                                                   | Colourless block                                   |
| Size:                                                                      | $0.27 \times 0.17 \times 0.15$ mm                  |
| Wavelength:                                                                | Mo $K\alpha$ radiation (0.71073 Å)                 |
| $\mu$ :                                                                    | $19.8$ cm $^{-1}$                                  |
| Diffractometer, scan mode:                                                 | PHOTON 100 CMOS, $\varphi$ and $\omega$            |
| $2\theta_{\text{max}}$ , completeness:                                     | $56.8^\circ$ , >95%                                |
| $N(hkl)_{\text{measured}}$ , $N(hkl)_{\text{unique}}$ , $R_{\text{int}}$ : | 11356, 2185, 0.020                                 |
| Criterion for $I_{\text{obs}}$ , $N(hkl)_{\text{gt}}$ :                    | $I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$ , 1591 |
| $N(\text{param})_{\text{refined}}$ :                                       | 112                                                |
| Programs:                                                                  | Bruker programs [3], SHELX [4], Platon [5, 6]      |

**Table 2:** Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å $^2$ ).

| Atom | <i>x</i>     | <i>y</i>    | <i>z</i>     | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|------|--------------|-------------|--------------|----------------------------------|
| Pd1  | 0.5000       | 0.5000      | 0.0000       | 0.02365(9)                       |
| N1   | 0.41976(16)  | 0.33760(17) | -0.11655(12) | 0.0334(3)                        |
| H1   | 0.3186       | 0.3731      | -0.1427      | 0.040*                           |
| N2   | 0.44116(16)  | 0.33414(17) | 0.11241(11)  | 0.0319(3)                        |
| H2   | 0.5324       | 0.2765      | 0.1398       | 0.038*                           |
| C1   | 0.4039(2)    | 0.1821(2)   | -0.05828(16) | 0.0405(5)                        |
| H1A  | 0.5003       | 0.1292      | -0.0461      | 0.049*                           |
| H1B  | 0.3367       | 0.1114      | -0.1032      | 0.049*                           |
| C2   | 0.3427(2)    | 0.2161(2)   | 0.05134(16)  | 0.0391(4)                        |
| H2A  | 0.2422       | 0.2594      | 0.0390       | 0.047*                           |
| H2B  | 0.3386       | 0.1172      | 0.0945       | 0.047*                           |
| C3   | 0.3758(2)    | 0.4014(2)   | 0.21109(15)  | 0.0400(5)                        |
| H3A  | 0.3531       | 0.3138      | 0.2607       | 0.048*                           |
| H3B  | 0.2829       | 0.4559      | 0.1871       | 0.048*                           |
| C4   | 0.4792(3)    | 0.5185(2)   | 0.27367(17)  | 0.0440(5)                        |
| H4A  | 0.5768       | 0.4683      | 0.2867       | 0.053*                           |
| H4B  | 0.4426       | 0.5388      | 0.3462       | 0.053*                           |
| C5   | 0.5027(2)    | 0.3223(2)   | -0.21621(15) | 0.0430(5)                        |
| H5A  | 0.4504       | 0.2477      | -0.2683      | 0.052*                           |
| H5B  | 0.6007       | 0.2773      | -0.1946      | 0.052*                           |
| Pd2  | 0.0000       | 0.5000      | 0.0000       | 0.02629(9)                       |
| N3   | 0.2167(2)    | 0.7952(2)   | 0.00124(14)  | 0.0551(5)                        |
| N4   | -0.10158(19) | 0.6085(2)   | 0.23003(13)  | 0.0420(4)                        |
| C6   | 0.1380(2)    | 0.6877(2)   | 0.00010(14)  | 0.0373(4)                        |
| C7   | -0.0606(2)   | 0.5671(2)   | 0.14771(15)  | 0.0329(4)                        |

\*Corresponding author: Kwang Ha, Chonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju 500-757, Republic of Korea, e-mail: hakwang@chonnam.ac.kr

(10 mL) was added K<sub>2</sub>Pd(CN)<sub>4</sub>·xH<sub>2</sub>O (0.1742 g; 0.603 mmol in anhydrous basis) and stirred for 10 min at room temperature. The formed precipitate was separated by filtration, washed with H<sub>2</sub>O and MeOH, and dried at 50 °C, to give a white powder (0.0908 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from an *N,N*-dimethylformamide/H<sub>2</sub>O solution at 60 °C.

### Experimental details

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms with d(C—H) = 0.98 Å, d(N—H) = 0.99 Å and  $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C}, \text{N})$ . The highest peak (0.23 e Å<sup>-3</sup>) and the deepest hole (-0.69 e Å<sup>-3</sup>) in the difference Fourier map are located 0.41 Å and 0.42 Å from the atoms N1 and Pd2, respectively.

### Discussion

The crystal structures of the related heterometallic complexes [M(cyclam)Pd(CN)<sub>4</sub>] (cyclam = 1,4,8,11-tetraazacyclotetradecane; M = Ag, Cu) have been determined previously [1, 2]. The structures are formed by one-dimensional cyanido-bridged chains exhibiting [-M(cyclam)—NC—Pd(CN)<sub>2</sub>—CN—]<sub>n</sub> composition.

The title compound consists of a cationic Pd(II) complex [Pd(cyclam)]<sup>2+</sup> and an anionic Pd(II) complex [Pd(CN)<sub>4</sub>]<sup>2-</sup>. Each Pd(II) ion is four-coordinated in a slightly distorted square-planar environment and is located on an inversion center, and thus the asymmetric unit contains one half of each ion. In the cationic complex the Pd(II) ion is coordinated by four N atoms from the tetradentate cyclam ligand, whereas in the anionic complex the Pd(II) ion is coordinated by four C atoms from four CN<sup>-</sup> ligands. The Pd—N and Pd—C bond lengths are almost equal with (d(Pd—N) = 2.0447(14)–2.0459(14) Å and d(Pd—C) = 1.9955(19)–2.007(2) Å), respectively. In the crystal structure, the cationic and anionic com-

plexes are linked by intermolecular N—H···N4(cyanido) hydrogen bonds with d(N···N) = 2.973(2)–3.123(2) Å, forming a three-dimensional network. In the reported heterometallic complexes, the metal ions (Ag, Cu) are coordinated by different bridging cyanido ligands in axial positions with d(Ag—N) = 2.567(9) Å [1] and d(Cu—N) = 2.518(2) Å [2], respectively. In the title compound, on the contrary, such a cyanido-bridging is not observed: the distance between the Pd1 and N3 atoms is relatively long with 3.563(2) Å.

**Acknowledgements:** This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094055). The author thanks the KBSI, Seoul Center, for the X-ray data collection.

### References

1. Munakata, M.; Zhong, J. C.; Ino, I.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Oiji, N.: 1-D cyano-bridged heterometallic complexes consisting of 1,4,8,11-tetraazacyclotetradecanesilver(II) and tetracyanopalladium(II) or tetracyanoplatinum(II). *Inorg. Chim. Acta* **317** (2001) 268–275.
2. Černák, J.; Kuchár, J.; Stolárová, M.; Kajňáková, M.; Vavra, M.; Potočnák, I.; Falvello, L. R.; Tomás, M.: Preparation, spectroscopic and magnetic characterization of Cu(cyclam)M(CN)<sub>4</sub> complexes exhibiting one-dimensional crystal structures (cyclam = 1,4,8,11-tetraazacyclotetradecane, M = Ni, Pd, Pt). *Transit. Met. Chem.* **35** (2010) 737–744.
3. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.
4. Sheldrick, G. M.: SHELXT-Integrated space-group and crystal-structure determination. *Acta Cryst.* **C71** (2015) 3–8.
5. Farrugia, L. J.: ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). *J. Appl. Crystallogr.* **30** (1997) 565.
6. Spek, A.: Single-crystal structure validation with the program PLATON. *J. Appl. Cryst.* **36** (2003) 7–13.