
# **Open Access**

Bo-Shu Qi, Xiao-Nan Sun, Huan-Huan Yang, Ying Fu and Fei Ye\*

# Crystal structure of 2-dichloromethyl-2-p-nitrophenyl-1,3-dioxolane, C<sub>10</sub>H<sub>9</sub>Cl<sub>2</sub>NO<sub>4</sub>



DOI 10.1515/ncrs-2016-0192 Received June 16, 2016; accepted October 28, 2016; available online November 9, 2016

## Abstract

 $C_{10}H_9Cl_2NO_4$ , orthorhombic, *Pbca*, a = 11.151(2) Å, b = 7.0923(14) Å, c = 29.243(6) Å, V = 2312.7(8) Å<sup>3</sup>, Z = 8,  $R_{\rm gt}(F) = 0.0459$ ,  $wR_{\rm ref}(F^2) = 0.1223$ , T = 293 K.

**CCDC no.:** 1512673

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

## Source of material

A mixture of p-nitrobenzaldehyde (0.1 mol), glycol (0.15 mol), CuSO<sub>4</sub> (1.5 g) and cyclohexane (40 mL) was exposed to microwave radiation (600 W) for 20 min with refluxing

**Bo-Shu Qi:** College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China

Xiao-Nan Sun, Huan-Huan Yang and Ying Fu: College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China

Table 1: Data collection and handling.

| Crystal:                                              | Colourless blocks                              |
|-------------------------------------------------------|------------------------------------------------|
| Size:                                                 | $0.22\times0.12\times0.09~\text{mm}$           |
| Wavelength:                                           | Mo $K\alpha$ radiation (0.71073 Å)             |
| μ:                                                    | $5.6 \; cm^{-1}$                               |
| Diffractometer, scan mode:                            | Rigaku RAXIS-RAPID, $\omega$ -scans            |
| $2\theta_{max}$ , completeness:                       | 55°, >99%                                      |
| $N(hkl)_{measured}$ , $N(hkl)_{unique}$ , $R_{int}$ : | 20774, 2641, 0.053                             |
| Criterion for $I_{obs}$ , $N(hkl)_{gt}$ :             | $I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$ , 1765 |
| $N(param)_{refined}$ :                                | 154                                            |
| Programs:                                             | SHELX [7], CrystalClear [8]                    |

**Table 2:** Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ .

| Atom | X           | У           | Z           | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-------------|-------------|-------------|------------------------------------|
| C1   | 0.97875(19) | 0.9758(3)   | 0.38665(7)  | 0.0432(5)                          |
| C2   | 1.0763(2)   | 1.0560(3)   | 0.40896(7)  | 0.0487(5)                          |
| H2   | 1.1532      | 1.0366      | 0.3976      | 0.058*                             |
| C3   | 1.0604(2)   | 1.1636(3)   | 0.44748(7)  | 0.0498(5)                          |
| Н3   | 1.1258      | 1.2175      | 0.4623      | 0.060*                             |
| C4   | 0.9462(2)   | 1.1905(3)   | 0.46385(7)  | 0.0454(5)                          |
| C5   | 0.8466(2)   | 1.1170(3)   | 0.44197(8)  | 0.0519(6)                          |
| H5   | 0.7698      | 1.1396      | 0.4531      | 0.062*                             |
| C6   | 0.8642(2)   | 1.0092(4)   | 0.40324(8)  | 0.0499(5)                          |
| Н6   | 0.7983      | 0.9583      | 0.3881      | 0.060*                             |
| C7   | 0.9980(2)   | 0.8459(4)   | 0.34583(8)  | 0.0494(6)                          |
| C8   | 1.0891(3)   | 0.5609(4)   | 0.35709(12) | 0.0732(8)                          |
| H8A  | 1.1091      | 0.5294      | 0.3885      | 0.088*                             |
| H8B  | 1.1373      | 0.4835      | 0.3368      | 0.088*                             |
| C9   | 0.9622(3)   | 0.5297(4)   | 0.34866(13) | 0.0836(10)                         |
| H9A  | 0.9513      | 0.4576      | 0.3208      | 0.100*                             |
| H9B  | 0.9268      | 0.4600      | 0.3738      | 0.100*                             |
| C10  | 0.9963(2)   | 0.9450(4)   | 0.29915(8)  | 0.0574(6)                          |
| H10  | 1.0068      | 0.8482      | 0.2756      | 0.069*                             |
| Cl1  | 1.11593(7)  | 1.10883(11) | 0.29357(2)  | 0.0677(2)                          |
| Cl2  | 0.85863(7)  | 1.05993(13) | 0.28860(3)  | 0.0794(3)                          |
| N1   | 0.93076(19) | 1.2955(3)   | 0.50668(6)  | 0.0530(5)                          |
| 01   | 1.11029(15) | 0.7530(2)   | 0.34872(6)  | 0.0585(5)                          |
| 02   | 0.90781(16) | 0.7057(2)   | 0.34454(7)  | 0.0655(5)                          |
| 03   | 0.82968(18) | 1.3431(3)   | 0.51767(7)  | 0.0826(6)                          |
| 04   | 1.01977(17) | 1.3326(3)   | 0.52943(6)  | 0.0620(5)                          |

and removing water. The reaction mixture was cooled and washed with water until the organic phase was colourless. The organic layer was extracted with EtOAc and dried over anhydrous MgSO<sub>4</sub>. Evaporation of the solvent under reduced

<sup>\*</sup>Corresponding author: Fei Ye, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China, e-mail: yefei@neau.edu.cn

pressure gave the crude products. 50% NaOH ag. was dropped into mixture of 0.05 mol dioxolane, CHCl3 (60 mL), anhydrous Na<sub>2</sub>SO<sub>4</sub> (30 g), and triethyl benzyl ammonium chloride (TEBA) (2 g) at 0° with vigorous stirring for 24 h. Then 100 mL water and 100 mL Et<sub>2</sub>O were added into the mixture. The aqueous layer was extracted with ether. The organic layers were combined and washed with water and dried over anhydrous MgSO<sub>4</sub>. The ether was removed by distillation and the residue was subjected to silica gel chromatography eluting with ethyl acetate-petroleum ether mixture. The product was collected as white solid in yield 32.6%.

## **Experimental details**

H atoms were then constrained to an ideal geometry, with C-H distances of 0.93-0.98 Å. The  $U_{\rm iso}$  values were set to  $1.2U_{\rm eq}({\rm C}).$ 

#### **Discussion**

The 2-dichloromethyl-1,3-dioxolanes as an important class of heterocyclic compounds have received considerable attention with their biological and pharmacological activities [1]. 1,3-Dioxolanes were commonly used as fragrance, pharmaceuticals and protecting groups for ketones, aldehydes, and 1,2diols [2], and they were also an important industrial high boiling solvent which could be used as a plasticizer, curing agent, pigment dispersing agent [3]. MG-191 (2-dichloromethyl-1,3dioxolane) is a herbicide safener with high efficiency and good selectivity, to protect corn, sorghum, and rice from amides and thiocarbamate herbicides injury [4, 5]. As part of our work to find more efficient and green methods for the synthesis of novel herbicide safener with better biological activity [6], the title compound was synthesized by microwaveirradiated acetalization followed by dichlorocarbene insertion of dioxolanes.

In the 1,3-dioxolane moiety, the distance of C8-C9 (1.453(4)Å), C7—O1 (1.417(3) Å), C7—O2 (1.415(3) Å) are in the normal ranges for a dioxolane. The angles of the 1,3dioxolane, ranging from 106.4(2)° to 108.5(2)°. The torsion angle of C(7)-C(9)-C(8) and C(7)-C(9)-C(10)-C(9)are 13.052(305)° and 5.293(312)°, respectively. The nitrophenyl moiety is almost perpendicular to the plane of the dioxolane ring. No significant  $\pi$ - $\pi$  interactions were found in the crystal structure.

**Acknowledgements:** The authors gratefully acknowledge the support by Undergraduate SIPT Program of Northeast Agricultural University (NO. 201610224127). We thank the editor for providing the figure.

#### References

- 1. Franchini, S.; Battisti, U. M.; Prandi, A.; Tait, A.; Borsari, C.; Cichero, E.: Fossa, P.: Cilia, A.: Prezzavento, O.: Ronsisvalle, S: Arico, G.; Parenti, C.; Brasili, L.: Scouting new sigma receptor ligands: Synthesis, pharmacological evaluation and molecular modeling of 1,3-dioxolane-based structures and derivatives. Eur. J. Med. Chem. 112 (2016) 1-19.
- 2. Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.: An efficient procedure for the preparation of cyclic ketals and thioketals catalyzed by zirconium sulfophenyl phosphonate. Synlett 7 (2001) 1182-1184.
- 3. Prousis, K. C.; Markopoulos, J.; Mckee, V.; Igglessi-Markopoulou, O.: An efficient synthetic approach towards fully functionalized tetronic acids: the use of 1,3-dioxolane-2,4diones as novel protected-activated synthons of a hydroxy acids. Tetrahedron 71 (2015) 8637-8648.
- 4. Jablonkai, I.; Dutka, F.: Uptake, translocation, and metabolism of MG-191 safener in Corn. Weed Sci. 43 (1995) 169-174.
- 5. Jablonkai, I.; Hatzios, K. K.: Microsomal oxidation of the herbicides EPTC and acetochlor and of the safener MG-191 in maize. Pestic. Biochem. Phys. 48 (1994) 98-109.
- 6. Ye, F.; Li, Y.; Fu, Y.; Gao, S.; Zhao, L. X.: Microwave-assisted synthesis and crystal structure of novel 2-dichloromethyl-1,3dioxolane. Heterocycles 87 (2013) 407-415.
- 7. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- 8. Rigaku/MSC. CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, 2006.