

Xue-Jun Yu*, Lin-Ping Zhao, Long-Ji Ma and Hua-Fen Gong

Crystal structure of 2-amino-4-(4-bromo-phenyl)-7-methyl-5-oxo-4H,5H-pyrano[4,3-*b*]pyran-3-carbonitrile, C₁₆H₁₁BrN₂O₃

DOI 10.1515/ncrs-2016-0172

Received June 13, 2016; accepted October 17, 2016; available online November 1, 2016

Abstract

C₁₆H₁₁BrN₂O₃, monoclinic, C₂/c, $a = 21.504(3)$ Å, $b = 8.2788(10)$ Å, $c = 18.170(3)$ Å, $\beta = 110.511(5)$ °, $V = 3029.8(7)$ Å³, $Z = 8$, $R_{\text{gt}}(F) = 0.0429$, $wR_{\text{ref}}(F^2) = 0.1251$, $T = 296$ K.

CCDC no.: 1510293

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title compound was synthesized according to a reported procedure [6]. A mixture of 4-hydroxy-6-methylpyran-2-one

Table 1: Data collection and handling.

Crystal:	Colourless blocks
Size:	0.18 × 0.16 × 0.12 mm
Wavelength:	Mo K α radiation (0.71073 Å)
μ :	27.3 cm ⁻¹
Diffractometer, scan mode:	Bruker XSCANS, ω -scans
2 θ_{max} , completeness:	50°, >99%
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	9161, 2663, 0.023
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 2213
$N(\text{param})_{\text{refined}}$:	199
Programs:	SHELX [7], Bruker programs [8]

(10 mmol), 4-bromobenzaldehyde (10 mmol), malononitrile (10 mmol) and 4-(dimethylamino)pyridine (DMAP) (1 mmol) in ethanol (100 mL) was refluxed for 2–3 h and then cooled to room temperature. After filtering the precipitates, they were sequentially washed with ice-cooled water and ethanol and then dried under vacuum.

Experimental details

The H atoms bonded to C and N were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and 0.86 Å and with $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C}, \text{N})$.

Discussion

The synthesis of pyrans and their derivatives has attracted considerable attention from organic and medicinal chemists for many years as a large number of natural and synthetic products contain this heterocyclic nucleus [1, 2]. Pyrans possess diverse pharmacological and biological activities such as antitumor, analgesic and ulcerogenic, anti-inflammatory, anticoagulant, phototriggering, and fungicidal properties, and can act as anticoagulants in the production of pesticides [3, 4]. In particular, the anticancer activity of pyran compounds has received considerable attention because of their cytotoxic activity against numerous types of cancers, including malignant melanoma, leukemia, renal cell carcinoma, prostate and breast cancer cell progression [5].

In the crystal structure of the title compound, the 4H-pyran ring is nearly planar and the adjacent pyran-2-on-3,4-diyil ring also adopts an almost planar conformation. The

*Corresponding author: Xue-Jun Yu, Department of Cardiothoracic Surgery, Shouguang People's Hospital of Shandong Province, Shouguang, Shandong, China, e-mail: xuejun_yu66@163.com

Lin-Ping Zhao, Long-Ji Ma and Hua-Fen Gong: Department of Cardiothoracic Surgery, Shouguang People's Hospital of Shandong Province, Shouguang, Shandong, China

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	y	z	U _{iso} */U _{eq}
C1	-0.15561(14)	0.7447(4)	-0.23949(17)	0.0474(7)
C2	-0.16301(14)	0.8920(3)	-0.20193(17)	0.0432(6)
C3	-0.15003(15)	1.0332(3)	-0.23085(18)	0.0472(7)
C4	-0.12421(19)	1.0379(4)	-0.2927(2)	0.0598(9)
H4A	-0.1156	1.1363	-0.3119	0.072*
C5	-0.11255(18)	0.9000(4)	-0.3229(2)	0.0593(8)
C6	-0.0816(2)	0.8764(6)	-0.3836(3)	0.0862(13)
H6A	-0.0710	0.9796	-0.4002	0.129*
H6B	-0.1121	0.8204	-0.4278	0.129*
H6C	-0.0417	0.8139	-0.3619	0.129*
C7	-0.18528(14)	1.1865(3)	-0.14360(17)	0.0462(7)
C8	-0.19815(14)	1.0511(3)	-0.10985(17)	0.0424(6)
C9	-0.18439(13)	0.8813(3)	-0.13198(17)	0.0419(6)
H9A	-0.2256	0.8188	-0.1466	0.050*
C10	-0.22607(16)	1.0648(3)	-0.0507(2)	0.0507(7)
C11	-0.13245(13)	0.7989(3)	-0.06265(16)	0.0406(6)
C12	-0.06519(14)	0.8254(4)	-0.04449(18)	0.0518(7)
H12A	-0.0512	0.8939	-0.0761	0.062*
C13	-0.01846(15)	0.7528(4)	0.01928(19)	0.0589(8)
H13A	0.0266	0.7709	0.0301	0.071*
C14	-0.03920(15)	0.6534(4)	0.06666(18)	0.0534(7)
C15	-0.10578(17)	0.6263(4)	0.0509(2)	0.0589(8)
H15A	-0.1196	0.5600	0.0836	0.071*
C16	-0.15181(15)	0.6982(4)	-0.01385(19)	0.0518(7)
H16A	-0.1968	0.6786	-0.0249	0.062*
O1	-0.15946(12)	1.1804(2)	-0.20255(13)	0.0556(5)
O2	-0.12832(12)	0.7553(3)	-0.29775(13)	0.0585(6)
O3	-0.17084(11)	0.6110(3)	-0.22451(13)	0.0578(6)
N1	-0.19546(15)	1.3389(3)	-0.12754(18)	0.0633(8)
H1A	-0.2121	1.3599	-0.0919	0.076*
H1B	-0.1854	1.4165	-0.1528	0.076*
N2	-0.24789(19)	1.0700(3)	-0.0018(2)	0.0748(10)
Br1	0.02508(2)	0.55281(5)	0.15404(2)	0.0848(2)

plane of the heterocyclic moiety is almost perpendicular to the mean plane of the bromophenyl substituent (*cf.* the figure).

References

1. Li, J.; Xue, X. Y.; Li, X.; Hou, Z.; Yang, X. H.; Qu, D.; Zhou, Y.; Zhang, Z. D.; Luo, X. X.; Li, J. T.; Li, M. K.: Synthesis of biscoumarin and dihydropyran derivatives as two novel classes of potential anti-bacterial derivatives. *Arch. Pharm. Res.* **39** (2016) 1349–1355.
2. Li, J.; Meng, J.; Qu, D.; Zhang, Z.-d.; Li, F.; Yang, X.-H.; Li, J.-T.; Li, M.-K.: New biscoumarin and dihydropyran derivatives as antimicrobials. *Res. Chem. Intermed.* **41** (2015) 8257–8267.
3. Li, J.; Xue, X. Y.; Li, X.; Hou, Z.; Yang, X. H.; Qu, D.; Zhou, Y.; Zhang, Z. D.; Luo, X. X.; Li, J. T.; Li, M. K.: Synthesis of biscoumarin and dihydropyran derivatives and evaluation of their antibacterial activity. *Molecules*. **20** (2015) 17469–17482.
4. Li, J.; Zhou, P.; Liu, Z.; Li, J.: Crystal structure, photoluminescence, and theoretical studies of dihydropyran derivatives. *Chinese J. Struct. Chem.* **34** (2015) 319–323.
5. Li, J.; Xin, J.-J.; Liu, Z.; Hu, X.-B.: Synthesis, crystal structures and anti-cervical cancer activity of two dihydropyran derivatives. *Lat. Am. J. Pharm.* **34** (2015) 404–407.
6. Li, J.; Sui, Y. P.; Xin, J. J.; Du, X. L.; Li, J. T.; Huo, H. R.; Ma, H.; Wang, W. H.; Zhou, H. Y.; Zhan, H. D.; Wang, Z. J.; Li, C.; Sui, F.; Li, X.: Synthesis of biscoumarin and dihydropyran derivatives with promising antitumor synthesis of biscoumarin and dihydropyran derivatives with promising antitumor and antibacterial activities. *Bioorg. Med. Chem. Lett.* **25** (2015) 5520–5523.
7. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr.* **A64** (2008) 112–122.
8. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA, (2009).