
Open Access

Fa-Xue Ma, Dan Zhao* and Rui-Juan Zhang

Crystal structure of *poly*-[diaqua-[bis(μ_2 -hydroxy)-bis(μ_4 -3,4,5,6-tetrachlorophthalato- κ^3 0,0':0'; κ^2 0'':0''')dilanthanum(III)], $C_8H_3Cl_4LaO_6$

DOI 10.1515/ncrs-2016-0154
Received June 20, 2016; accepted November 9, 2016; available online December 21, 2016

Abstract

C₈H₃Cl₄LaO₆, monoclinic, $P2_1/n$ (no. 14), a=6.6874(10) Å, b=6.0956(9) Å, c=30.281(4) Å, $\beta=91.094(3)^{\circ}$, V=1234.1(3) Å³, Z=4, $R_{\rm gt}(F)=0.048$, $wR_{\rm ref}(F^2)=0.143$, T=296(2) K.

CCDC no.: 1515750

A part of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

Colorless prism-shaped single crystals of the title compound were initially obtained using hydrothermal method. A mixture of 2 mmol 3,4,5,6-tetrachlorophthalic acid, 2 mmol of $La(Ac)_3$ and 4.0 mmol KOH was sealed in a 30 mL Teflon-lined

Table 1: Data collection and handling.

Crystal:	Colourless prism		
Size:	$0.20\times0.05\times0.05~\text{mm}$		
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)		
μ :	43.4 cm ⁻¹		
Diffractometer, scan mode:	Bruker APEX-II, ω -scans		
$2 heta_{ ext{max}}$, completeness:	56.8°, >97%		
$N(hkl)_{measured}$, $N(hkl)_{unique}$, R_{int} :	7933, 3014, 0.081		
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 1926		
$N(param)_{refined}$:	172		
Programs:	Bruker programs [5], SHELX [6]		

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
La1	0.23121(8)	0.21435(8)	0.00479(2)	0.01912(17)
Cl1	1.1296(4)	0.5628(4)	0.14107(8)	0.0337(6)
Cl2	1.1677(4)	0.2442(5)	0.22141(9)	0.0435(7)
Cl3	0.8639(4)	-0.1394(5)	0.23045(8)	0.0395(7)
Cl4	0.5247(4)	-0.1971(4)	0.16043(8)	0.0363(6)
C1	0.9758(13)	0.3391(15)	0.1454(3)	0.0196(19)
C2	0.9864(13)	0.2002(14)	0.1820(3)	0.0205(19)
С3	0.8507(13)	0.0333(14)	0.1857(3)	0.022(2)
C4	0.6990(13)	0.0043(15)	0.1541(3)	0.023(2)
C5	0.6955(12)	0.1340(14)	0.1164(3)	0.0151(17)
C6	0.8345(12)	0.2998(14)	0.1123(3)	0.0164(17)
C7	0.8333(12)	0.4488(14)	0.0723(3)	0.0174(18)
C8	0.5308(12)	0.1181(14)	0.0807(3)	0.0163(18)
01	0.9517(9)	0.4087(10)	0.0414(2)	0.0251(15)
02	0.7135(9)	0.6037(10)	0.0706(2)	0.0260(15)
03	0.5820(9)	0.0603(10)	0.04201(19)	0.0234(14)
04	0.3586(10)	0.1723(12)	0.0889(2)	0.0334(17)
H5B	0.4244	0.5898	0.0561	0.040*
H5A	0.2755	0.6970	0.0369	0.040*
Н6	0.0159	-0.1128	0.0627	0.040*
05	0.3535(10)	0.5944(11)	0.0308(2)	0.0310(16)
06	0.0674(9)	-0.1014(10)	0.03728(19)	0.0228(14)

bomb at 180 °C for 7 days and then cooled to room temperature. A few crystals suitable for X-ray diffraction analysis were obtained.

^{*}Corresponding author: Dan Zhao, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China, e-mail: iamzd1996@163.com
Fa-Xue Ma: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
Rui-Juan Zhang: Academic Affairs Office, Henan Polytechnic University, Jiaozuo, Henan 454000, China

Experimental details

Hydrogen atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with $U_{\rm iso}({\rm H})$ set to $1.2U_{\rm eq}$ of the parent atom.

Discussion

The self-assembly of coordination polymers (CPs) is an intriguing area, which is yielding new generations of supramolecular architectures [1, 2]. Coordination by transition or rare-earth metals with multifunctional ligands is one of the main design principles. The 3,4,5,6tetrachlorophthalate ligand is a remarkably versatile building block for the construction of supramolecular architectures due to its two rigid carboxyl groups and various coordination modes in the self-assembly reactions. By such coordination, a variety of supramolecular scaffolds are generated to control the arrangement of periodic channels and the formation of 1-, 2-, 3-D networks [3, 4].

The title structure contains one La(III) atom, one water molecule, one hydroxy ligand and one 3,4,5,6tetrachlorophthalate in an asymmetric unit. The 3,4,5,6tetrachlorophthalate ligand is deprotonated and acts as μ_4 -bridging. Considering the linking environment of the La(III) atoms, it is surrounded by nine O atoms, six from 3,4,5,6-tetrachlorophthalate ligands, one from coordinated

water molecule, and two from hydroxy ligands. In an overview, the title compound features a two-dimensional structure, in which the layers are stacking along the *c*-axis.

References

- 1. Xi, Y.: Wei, W.: Xu, Y.: Huang, X.: Zhang, F.: Hu, C.: Coordination polymers based on substituted terpyridine ligands: synthesis, structural diversity, and highly efficient and selective catalytic oxidation of benzylic C-H bonds. Cryst. Growth Des. 15 (2015) 2695-2702.
- 2. Lei, X.-W.; Yue, C.-Y.; Zhao, J.-Q.; Han, Y.-F.; Ba, Z.-R.; Wang, C.; Liu, X.-Y.; Gong, Y.-P.; Liu, X.-Y.: Syntheses, crystal structures, and photocatalytic properties of polymeric iodoargentates $[TM(2,2-bipy)_3]$ Ag₃I₅ (TM = Mn, Fe, Co, Ni, Zn). Eur. J. Inorg. Chem. 26 (2015) 4412-4419.
- 3. Liang, M.; Sun, Y. Q.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P.; Cheng, P.: A novel, three-dimensional, tetrachlorophthalato-bridged samarium(III) complex Sm(tcph)₂(H₂O)₆ Hpip·5H₂O. J. Coord. Chem. 57 (2004) 275-280.
- 4. Whitcomb, D. R.; Rajeswaran, M.: Unusual silver coordination by mono-carboxylate utilization of a poly-carboxylate anion, solid-state structures of silver-tetrachlorophthalate with phthalazine and amine ligands. Inorg. Chim. Acta 361 (2008)
- 5. Bruker, APEX2, SAINT and SADABS, Brucker AXS Inc., Madison, Wisconsin, USA, 2009.
- 6. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.