Startseite Crystal structure of N′-(2-phenylacetyl)thiophene-2-carbohydrazide monohydrate, C13H14N2O3S
Artikel Open Access

Crystal structure of N′-(2-phenylacetyl)thiophene-2-carbohydrazide monohydrate, C13H14N2O3S

  • Ayman El-Faham , Adel El-Merghany und Hazem A. Ghabbour EMAIL logo
Veröffentlicht/Copyright: 29. Oktober 2016

Abstract

C13H14N2O3S, monoclinic, C2/c (no. 15), a = 27.9910(12) Å, b = 6.5721(3) Å, c = 14.2821(7) Å, β = 92.600(3)°, V = 2624.6(2) Å3, Z = 8, Rgt(F) = 0.042, wRref(F2) = 0.105, T = 100 K.

CCDC no.:: 1479028

The crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Colourless blocks
Size:0.60 × 0.35 × 0.11 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.5 cm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
2θmax, completeness:66.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:64167, 5018, 0.059
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3921
N(param)refined:2188
Programs:SHELX [17], Bruker programs [18]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
S10.446973(10)0.51307(5)0.40672(2)0.01996(8)
O10.35067(3)0.32976(13)0.42592(6)0.01678(17)
O20.25925(3)0.53262(13)0.27788(6)0.01604(17)
N10.31011(3)0.62900(15)0.43446(7)0.01299(18)
N20.26610(3)0.53175(15)0.43549(7)0.01220(17)
C10.47559(4)0.7261(2)0.36984(10)0.0244(3)
H1A0.50920.73410.36330.029*
C20.44483(4)0.8840(2)0.35081(10)0.0223(3)
H2A0.45451.01330.32880.027*
C30.39675(4)0.83209(18)0.36783(9)0.0166(2)
H3A0.37050.92290.35890.020*
C40.39258(4)0.63457(17)0.39874(8)0.0130(2)
C50.34972(4)0.51718(16)0.42038(8)0.01170(19)
C60.24225(4)0.49004(16)0.35350(8)0.01168(19)
C70.19405(4)0.39035(17)0.36177(8)0.0136(2)
H7A0.19420.31230.42110.016*
H7B0.18880.29280.30950.016*
C80.15280(4)0.54074(17)0.36007(7)0.01192(19)
C90.10973(4)0.48058(18)0.39783(9)0.0167(2)
H9A0.10730.35020.42590.020*
C100.07054(4)0.6105(2)0.39449(9)0.0217(3)
H10A0.04140.56830.41990.026*
C110.07387(4)0.8015(2)0.35426(9)0.0231(3)
H11A0.04690.88940.35130.028*
C120.11668(5)0.8640(2)0.31834(9)0.0212(2)
H12A0.11920.99590.29180.025*
C130.15602(4)0.73407(18)0.32095(8)0.0168(2)
H13A0.18520.77750.29590.020*
O1W0.21712(3)0.53391(13)0.10304(6)0.01396(16)
H1N10.3082(6)0.759(3)0.4219(12)0.028(4)*
H1N20.2553(6)0.508(2)0.4852(12)0.016(4)*
H2OW0.2285(7)0.530(3)0.1580(15)0.034(5)*
H1OW0.1988(7)0.633(3)0.0987(14)0.036(5)*

Source of material

Thiophene-2-carbonyl chloride (1.6 g, 11 mmol) in 10 mL dichloromethane was added dropwise to a mixture of hydrazide (1.50 g, 10 mmol) and NaOH (0.4 g, 10 mmol) in 30 mL dichloromethane and 20 mL water at 0 °C. After complete addition of acid chloride, the reaction mixture was continued stirring at 0 °C for 2 hours and at room temperature another 2 hours. The organic layer was separated and the aqueous layer extracted with another 50 mL dichloromethane. The collected organic layer was washed with water (20 mL), saturated NaCl solution (20 mL), and then dried over anhydrous MgSO4. The dichloromethane was filtered from MgSO4 and then was concentered under reduced pressure to give a white solid. The crude product was recrystallized from ethanol to afford the pure product in 85% yield. (mp 220-1 °C). 1H-NMR (400 MHz, DMSO-d6) δ: 3.54 (s, 2H, CH2), 7.17 (d, J = 4.4 Hz, 2H, Ar), 7.19–7.36 (m, 5H, Ar), 7.83 (d, J = 4.4 Hz, CH-thiophene), 10.20 (s, 1H, NH), 10.41 (s, 1H, NH) ppm; 13C-NMR (100 MHz, DMSO-d6) δ: 40.9, 127.2, 128.8, 128.9, 129.6, 129.7, 132.2, 136.3, 137.9, 161.2, 170.2 ppm. Anal. Cacled for C13H12N2O2S (260.31): C, 59.98; H, 4.65; N, 10.76; S, 12.32; found: C, 60.06; H, 4.76; N, 10.54; S, 12.13.

Experimental details

Carbon-bound hydrogen atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Discussion

Bishydrazides (N,N′-diacylhydrazines) are usually obtained from esters, acid chlorides or acids [1]. They are considered as valuable intermediates in the synthesis of many heterocyclic compounds by employing the dehydrative cyclization method in the presence of strong acids (dehydration agents), such as H2SO4 [2], P2O5 [3], SOCl2 [4], POCl3 [5] or under microwave irradiation of N,N′-diacylhydrazines by grafting onto polymer support [6; 7; 8]. Hydrazides are considered to be an important class of compounds with various types of biological activity such as anti-bacterial [9], anti-inflammatory, anti-cancer [10], anti-microbial [11, 12], anti-fungal [9, 13] and anti-biotic [13, 14, 15].

First, 2-phenylacetohydrazide was prepared following the reported method [16]; the product was obtained as white crystals from ethanol in yield 86% (Lit. [16] 90% yield). The hydrazide was reacted with thiophene-2-carbonyl chloride using an easy two phase method (dichloromethane-water) in the presence of NaOH as HCl scavenger and help to remove the traces of acid chloride or acid remaining in the reaction medium.

The asymmetric unit of the title structure contains only one independent molecule and one molecule of water. The thiophen ring (S1/C1/-C4) is nearly parallel to the phenyl ring (C8—C13). The molecules are packed in the crystal structure with the water molecules forming three classical intermolecular hydrogen bonds N1—H1N1⋯O1Wi, N2—H1N2⋯O1Wii, O1W—H1OW⋯O1i. The H⋯A distances are 1.967(19), 2.053(17), 1.92(2), respectively and the angles are 162.4(16), 170.4(16), 169(2) respectively with symmetry code: (i) − x + 1/2, y + 1/2, − z + 1/2; (ii) x, − y + 1, z + 1/2.

Acknowledgements

The authors thank the Deanship of Scientific Research at King Saud University for funding this work through Prolific Research Group Program (PRG-1437-33; Saudi Arabia).

References

1 Dingemans, T. J.; Murthy, N. S.; Samulski, E. T.: Javelin-, Hockey Stick-, and Boomerang-shaped liquid crystals structural variations on p-quinquephenyl. J. Phys. Chem. B. 105 (2001) 8845–8860.10.1021/jp010869jSuche in Google Scholar

2 Short, F. W.; Long, L. N.: Synthesis of 5-aryl-2-oxazolepropionic acids and analogs antiinflammatory agents. J. Heterocycl. Chem. 6 (1969) 707–712.10.1002/jhet.5570060518Suche in Google Scholar

3 Carlsen, P. H. J.; Jorgensen, K. B.: Synthesis of unsymmetrically substituted 4H-1,2,4-triazoles. J. Heterocycl. Chem. 31 (1994) 805–807.10.1002/jhet.5570310419Suche in Google Scholar

4 Klingsberg, E.: Synthesis of carboxylic acid hydrazides and s-triazoles of the anthraquinone series. J. Am. Chem. Soc. 80 (1958) 5786–5789.10.1021/ja01554a048Suche in Google Scholar

5 Kerr, V. N.; Ott, D. G.; Hayes, F. N.: Quaternary salt formation of substituted oxazoles and thiazoles. J. Am. Chem. Soc. 82 (1960) 186–189.10.1021/ja01486a042Suche in Google Scholar

6 Brain, T. C.; Paul, M. J.; Loong, Y.; Oakley, J. P.: Novel procedure for the synthesis of 1,3,4-oxadiazoles from 1,2-diacylhydrazines using polymer-supported Burgess reagent under microwave conditions. Tetrahedron Lett. 40 (1999) 3275–3278.10.1016/S0040-4039(99)00382-2Suche in Google Scholar

7 Katritzky, A. R.; Mohapatra, P. P.; Huang, L.: 1,3,4-Oxadiazoles from functionalized N-acylbenzotriazoles and acyl hydrazides. ARKIVOC. ix (2008) 62–68.10.3998/ark.5550190.0009.907Suche in Google Scholar

8 Paraschivescu, C. C.; Dumitraşcu, F.; Drăghici, C.; Ruţă, L. L.; Matache, M.; Baciu, I.; Dobrotă, C.: New non-symmetrical 2,5-disubstituted 1,3,4-oxadiazoles bearing a benzo[b]thiophene moiety. ARKIVOC. xiii (2008) 198–206.10.3998/ark.5550190.0009.d22Suche in Google Scholar

9 Mishra, A. K.; Mishra, S. B.; Tiwari, A. D.; Mamba, B. B.; Njobeh, P. B.; Dutton, M. F.; Fosso-Kankeu, E.: Synthesis, characterization, and in vitro antibacterial and antifungal studies of tin(IV) thiohydrazide complexes. J. Coord. Chem. 64 (2011) 3622–3636.10.1080/00958972.2011.628017Suche in Google Scholar

10 Ying-Xia, Z.; Rui-Fang, Y.; Cai-Ling, F.; Li-E, L.; Ben-Lai, W.; Hong-Yun, Z.: Complexes of unsymmetric bis-hydrazide ligands: crystal structures and properties. J. Coord. Chem. 65 (2012) 3133–3146.10.1080/00958972.2012.708411Suche in Google Scholar

11 Sengupta, D.; Gangopadhyay, S.; Sanchita, G.; Arnab, D.; Kumar, V.; De, S.; Gangopadhyay, P. K.: Novel low spin mixed ligand thiohydrazide complexes of iron(III): synthesis, spectral characterization, molecular modeling, and antibacterial activity. Int. J. Inorg. Chem. 2014 (2014) 1–9.10.1155/2014/580232Suche in Google Scholar

12 Beaucage, S. L.; Iyer, R. P.: The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49 (1993) 1925–1963.10.1016/S0040-4020(01)86295-5Suche in Google Scholar

13 Salawu, O. W.; Abdulsalam, A. O.: Synthesis, characterization and biological activities of Cd(II) complexes with hydrazide ligands. Der Pharma Chem. 3 (2011) 298–304.Suche in Google Scholar

14 Raja, M.; Ashoka, G. S.: Substitution-modulated anticancer activity of half-sandwich ruthenium(II) complexes with heterocyclic ancillary ligands. Eur. J. Inorg. Chem. 22 (2014) 3536–3546.10.1002/ejic.201402205Suche in Google Scholar

15 Yadav, A. A.; Patel, D.; Hasinoff, B. B.: Chiroptical properties of anionic and cationic porphyrins and metalloporphyrins in complex with left-handed Z-DNA and right-handed B-DNA. J. Inorg. Biochem. 126 (2013) 1–6.10.1016/j.jinorgbio.2013.04.013Suche in Google Scholar PubMed

16 Mauri, E.; Rossi, F.; Sacchetti, A.: Simple and efficient strategy to synthesize PEG-aldehyde derivatives for hydrazine orthogonal chemistry. Polym. Adv. Technol. 26 (2015) 1456–1460.10.1002/pat.3578Suche in Google Scholar

17 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

18 Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA, 2009.Suche in Google Scholar

Received: 2016-5-11
Accepted: 2016-10-6
Published Online: 2016-10-29
Published in Print: 2017-1-1

©2016 Ayman El-Faham et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Editorial
  3. Twenty years of crystal structure publication and the road ahead
  4. Crystal Structures
  5. Crystal structure of poly-[triaqua-(μ4-5′-carboxy-[1,1′-biphenyl]-2,3,3′-tricarboxylate-κ6O1,O2:O3,O4:O5:O6)praseodymium(III), C16H13O11Pr
  6. Crystal structure of (R)-1-(2,3-dihydro-1H-pyrrolizin-5-yl)-2,3-dihydroxypropan-1-one, C10H13NO3
  7. Crystal structure of (E)-4-nitro-2-((2-phenoxyphenylimino)methyl)phenol, C19H14N2O4
  8. Crystal structure of 3,3′-di(furan-2-yl)-5,5′-bi-1,2,4-triazine
  9. Crystal structure of 11-(p-coumaroyloxy)-tremetone, C22H20O5
  10. The crystal structure of 1,3-bis(2,6-diiso-propylphenyl)imidazol-2-ylidene)-dibromido-(1-methyl-1H-imidazole-κ1N)palladium(II) – ethyl acetate – water (1/1/1), C31H42Br2N4Pd
  11. Crystal structure of 2-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)-1H-indene-1,3(2H)-dione, C28H19N5O2
  12. Crystal structure of 2-(5-(4-fluorophenyl)-3-p-tolyl-4,5-dihydro-1H-pyrazol-1-yl)-4-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)thiazole, C29H25FN6S
  13. Crystal structure of poly-[aqua-(μ7-benzene-1,3,5-tricarboxylato)-(μ3-1,2,4-triazol-1-ido)dicobalt(II)], C11H7Co2N3O7
  14. Crystal constructure of 16(S)-methyl-6α-carboxy-1, 15-dioxo-6, 7-seco-ent-kaur-2-en-7, 20-olide, C20H24O6
  15. Crystal structure of 1-(benzo[d]thiazol-2-yl)-3-phenylthiourea, C14H11N3S2
  16. Crystal structure of 3-(2-bromophenyl)-1,1-dimethylthiourea, C9H11BrN2S
  17. Crystal structure of 1-(adamantan-1-yl)-3-(3-chlorophenyl)thiourea, C17H21ClN2S
  18. Crystal structure of 3-(adamantan-1-yl)-1-(4-bromophenyl)urea, C17H21BrN2O
  19. Crystal structure of (Z)-Ethyl 2-cyano-2-(3-phenylthiazolidin-2-ylidene) acetate, C14H14N2O2S
  20. Crystal structure of methyl 2b-ethyl-1a,2a,2b,2b1,3,5,10,11-octahydro-1H-oxireno[2′,3′:6,7]indolizino[8,1-cd]carbazole-4-carboxylate, C21H24N2O3
  21. Crystal structure of 2-amino-5-oxo-4-(3,4,5-trimethoxy-phenyl)-4,5,6,7-tetrahydro-cyclopenta[b]pyran-3-carbonitrile, C18H18N2O5
  22. Crystal structure of 1,2,3-trimethyl-2,3-dihydro-1H-perimidine, C14H16N2
  23. Crystal structure of bis(2,6-dihydroxymethyl)pyridine-κ3N,O,O′)-bis(μ2-6-chloropyridin-2-olato-κ3N,O:O)-bis(6-chloropyridin-2-olato-κO)-bis(nitrato-κ2O,O′)digadolinium(III), C34H30Cl4Gd2N8O14
  24. Crystal structure of 8-isopropyl-8-aza-bicyclo[3.2.1]octan-3-yl 3-hydroxy-2-phenylpropanoate, C19H27NO3
  25. Crystal structure of 1-methyl-3-[((naphthalen-2-ylsulfonyl)oxy)imino]indolin-2-one, C19H14N2O4S
  26. Crystal structure (7,8-bis(diisopropylphosphino)-7,8-dicarba-nido-undecaborane-κ2P,P′)-(benzoato-κ2O,O′)nickel(II), C21H42B9NiO2P2
  27. Crystal structure of methyl-2-methyl-4-(2-oxo-2-phenylethyl)-5-phenyl-1H-pyrrole-3-carboxylate, C21H19NO3
  28. Crystal structure of 2-[(2-oxo-thiazolidine-3-carbonyl)sulfamoyl]-methy-benzoic acid methyl ester, C13H14N2O6S2
  29. Crystal structure of N′-(2-phenylacetyl)thiophene-2-carbohydrazide monohydrate, C13H14N2O3S
  30. Crystal structure of 1,1′-(hexane-1,6-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoro phosphate), C14H24F12N4P2
  31. Crystal structure of di-μ-chlorido-bis[1,2-bis(dicyclohexylphosphino)-1,2-dicarba-closo-dodecaborane-κ2P,P′]zinc(II), C52H108B20Cl2P4Zn2
  32. Crystal structure of dibromido-bis[μ-1-[(2-methyl-1H-benzoimidazol-1-yl)methyl]-1H-benzotriazole-κN]mercury(II), C30H26Br2HgN10
  33. Crystal structure of bis(μ-nitrato-κ2O:O)-bis[1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane-κ2P,P′]disilver(I) dicloromethane monosolvate, C54H64B20Cl4O6P4Ag2
  34. Crystal structure of dinuclear dichloridobis(dimethylformamide-kO)bis[μ2-3-(2-oxyphenyl)-5-(pyrazin-2-yl)-1,2,4-triazol-1ido-κ4-O,N:N′,N′′(2)]diiron(III) dimethylformamide (1/1), C36H42Cl2Fe2N14O6
  35. Crystal structure of diaqua-dinitrato-κO-bis(4-(1H-pyrazol-3-yl)pyridine-κN)manganese(II), C16H18MnN8O8
  36. Crystal structure of (Z)-6-methoxy-2-(2,2,2-trifluoro-1-hydroxyethylidene)-2,3-dihydro-1H-inden-1-one, C12H6F6O3
  37. Crystal Structure of 4-(2-chloroacetamido)pyridinium chloride monohydrate, C7H10Cl2N2O2
  38. Crystal structure of 2-amino-4-(4-chloro-phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13ClN2O2
  39. Crystal structure of (E)-1-(2-(thiophen-2-ylmethylene)hydrazinyl)phthalazine hydrochloride–ethanol (1/1), C15H17ClN4OS
  40. Crystal structure of N,N-diethyl-5-bromo-3,4-dihydro-2,4-dioxopyrimidine-1(2H)-carboxamide, C9H12BrN3O3
  41. Crystal structure of 3-(2-(4-chlorophenyl)-3-hydroxy-3,3-diphenylpropyl)-1,1-dimethylurea, C24H25ClN2O2
  42. Crystal structure of 3-(4-chlorophenyl)-1,1-dimethylthiourea, C9H11ClN2S
  43. Crystal structure of 2-amino-4-(4-bromo-phenyl)-7-methyl-5-oxo-4H,5H-pyrano[4,3-b]pyran-3-carbonitrile, C16H11BrN2O3
  44. Crystal structure of 4-(3,4-dimethyl-phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester, C21H25NO3
  45. Crystal structure of (E)-2-({4-hydroxy-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]phenyl} methylidene)-1-indanone, C23H26N2O3
  46. Crystal structure of tripropylammonium 2′-carboxy-[1,1′-biphenyl]-2-carboxylate – [1,1′-biphenyl]-2,2′-dicarboxylic acid (2/1), C60H72N2O12
  47. Crystal structure of catena-poly-{aqua-[μ2-1,2-bis((1H-imidazol-1-yl)methyl)benzene-κ2N:N′]-[μ2-4,4′-(dimethylsilanediyl)dibenzato-κ3O,O′:O′]nickel(II)}, C30H30N4NiO5Si
  48. The crystal structure of 1-(4-bromophenyl)-2-(4-(4-fluorophenyl)piperazin-1-yl)ethanol, C18H20BrFN2O1
  49. Crystal structure of trimethylammonium 4-((4-carboxyphenyl)sulfonyl)benzoate, C17H19NO6S
  50. Crystal structure of syn-2,4-di-o-tolylpentane-2,4-diol, C19H24O2
  51. Crystal structure of 2-[3,5-bis(trifluoromethyl)benzylsulfanyl]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C15H7BrF6N2OS2
  52. Crystal structure of (E)-3-((naphthalen-1-ylimino)methyl)-4-nitrophenol, C17H12N2O3
  53. Crystal structure of 2-dichloromethyl-2-p-nitrophenyl-1,3-dioxolane, C10H9Cl2NO4
  54. Crystal structure of (1,4,8,11-tetraazacyclotetradecane)palladium(II) tetracyanopalladate(II), C14H24N8Pd2
  55. Crystal structure of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid monohydrate, C5H7NO4S2
  56. Crystal structure of a P4-bridged (η5-pentamethyl-cyclopentadienyl)(η5-adamantylcyclopentadienyl) titanium(III)complex, C50H66P4Ti2
  57. Crystal structure of cis-bis(2,2′-bipyrimidine-κ2N,N′)bis(thiocyanato-κN)nickel(II), C18H12N10NiS2
  58. Crystal structure of cis-bis(2,2′-bipyridine-κ2N,N′)dibromidomanganese(II), C20H16Br2MnN4
  59. Crystal structure of cis-bis(2,2′-bipyridine-κ2N,N′)bis(thiocyanato-κN)nickel(II), C22H16N6NiS2
  60. Crystal structure of trans-dibromido(1,4,8,11-tetraazacyclotetradecane)nickel(II), C10H24Br2N4Ni
  61. Crystal structure of cis-tetrabromidobis(pyridine-κN)platinum(IV), C10H10Br4N2Pt
  62. Crystal structure of (E)-5-((4-chlorophenyl)diazenyl)-2-(5-(4-fluorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazole, C23H17ClFN5S2
  63. The crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium tetrachloridocobaltate(II) monohydrate, C10H18Cl4CoN2O
Heruntergeladen am 5.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0152/html?licenseType=open-access
Button zum nach oben scrollen