
# **Open Access**

Hai-Tao Qu, Ying Fu and Fei Ye\*

# Crystal structure of 2,4-dichlorobenzene anhydride, C<sub>14</sub>H<sub>6</sub>Cl<sub>4</sub>O<sub>3</sub>



DOI 10.1515/ncrs-2015-0036

Received March 10, 2015; accepted November 4, 2015; available online December 15, 2015

## Abstract

 $C_{14}H_6C_{14}O_3$  orthorhombic, Pccn (no. 56), a = 11.884(2) Å, b = 11.902(2) Å, c = 10.509(2) Å, V = 1235.9(5) Å<sup>3</sup>, Z = 4,  $R_{gf}(F) = 0.0440$ ,  $wR_{ref}(F^2) = 0.1047$ , T = 293 K.

CCDC no.: 1267/4365

Table 1: Data collection and handling.

| Crystal:                                                | Colorless, block,                                 |
|---------------------------------------------------------|---------------------------------------------------|
|                                                         | size $0.16 \times 0.21 \times 0.23$ mm            |
| Wavelength:                                             | Mo $K_{\alpha}$ radiation (0.71073 Å)             |
| μ:                                                      | 8.00 cm <sup>-1</sup>                             |
| Diffractometer, scan mode:                              | Rigaku RAXIS-RAPID, $\omega$ scans                |
| $2	heta_{max}$ :                                        | 50°                                               |
| N(hkl) <sub>measured</sub> , N(hkl) <sub>unique</sub> : | 10417, 1303                                       |
| Criterion for $I_{obs}$ , $N(hkl)_{gt}$ :               | $I_{\rm obs} > 2 \ \sigma \ (I_{\rm obs})$ , 1033 |
| $N(param)_{refined}$ :                                  | 96                                                |
| Programs:                                               | SHELXS-97 (SHELDRICK, 2008)                       |

### Source of material

The title compound was prepared according to the literature procedure [1]. 2,4-Dichlorobenzoic acid (0.04 mol) was added

\*Corresponding author: Fei Ye, College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China, e-mail: fuying@neau.edu.cn

Hai-Tao Qu: College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China; and Harbin Product Quality Supervision and Inspection Institute, Harbin 150030, People's Republic of China

Ying Fu: College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China

**Table 2:** Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ .

| Atom | Site       | х      | у      | Z      | U <sub>iso</sub> |
|------|------------|--------|--------|--------|------------------|
| H(2) | 8 <i>e</i> | 0.0039 | 0.3476 | 0.8534 | 0.064            |
| H(5) | 8 <i>e</i> | 0.27   | 0.6027 | 0.9912 | 0.058            |
| H(4) | 8 <i>e</i> | 0.2382 | 0.4415 | 1.1065 | 0.066            |

in the mixture containing N,N'-dicyclohexylcarbodiimide (0.02 mol) and cold acetone (45 mL). The system was stirred in ice bath for 1 h and TLC monitored, then kept overnight in a refrigerator at 4°. A white precipitate of dicyclohexylurea was filtered off and the solvent was evaporated under vacuum to give the crude anhydride product as oil. A crystalline product could be obtained from hot ethanol or methanol, in 65% yield, mp=110-111°. Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of the reaction mixture from pure ethyl acetate.

### **Experimental details**

The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.93–0.98 Å. The  $U_{\rm iso}$  values of the hydrogen atoms of methyl groups were set to 1.5 $U_{\rm eq}$  (C<sub>methyl</sub>) and the  $U_{\rm iso}$  values of all other hydrogen atoms were set to 1.2 $U_{\rm eq}$ (C).

### **Discussion**

Benzoic anhydride and its derivatives, as traditional compounds, played a significant role in the organic synthetic chemistry. It was reported that some benzoic anhydride derivatives were applied as preservatives, additives, and softeners for some polymers [2, 3]. They are also intermediates in the synthesis of some valuable compounds with special properties [4, 5]. Meanwhile, some members of this class of compounds are effective acylating reagents [4, 6]. The title compound is composed of two 2,4-dichlorobenzoyl moieties. One oxygen atom as a bridge connects the two identical moieties. The two 2,4-dichlorobenzoyl moieties of title compound are not coplanar with the dihedral angle being 64.9°. The distance between the two carbonyl oxygen atoms [O(1)—O(1A)]

**Table 3:** Atomic coordinates and displacement parameters ( $\mathring{A}^2$ ).

| Atom  | Site       | х           | у          | z          | <b>U</b> <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
|-------|------------|-------------|------------|------------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Cl(1) | 8 <i>e</i> | 0.09041(8)  | 0.25896(6) | 1.0762(1)  | 0.0793(6)              | 0.0437(4)       | 0.1170(8)       | 0.0035(4)       | 0.0163(5)       | 0.0221(4)       |
| Cl(2) | 8 <i>e</i> | -0.00610(8) | 0.51465(8) | 0.67797(8) | 0.0821(6)              | 0.0810(6)       | 0.0678(5)       | -0.0140(4)      | -0.0258(4)      | -0.0092(4)      |
| 0(1)  | 8 <i>e</i> | 0.1423(2)   | 0.7062(2)  | 0.6795(2)  | 0.063(1)               | 0.064(1)        | 0.065(1)        | 0.003(1)        | -0.012(1)       | 0.013(1)        |
| C(1)  | 8 <i>e</i> | 0.0757(2)   | 0.4965(2)  | 0.8124(2)  | 0.047(2)               | 0.046(1)        | 0.052(2)        | 0.002(1)        | -0.000(1)       | -0.012(1)       |
| 0(2)  | 4d         | 0.2500      | 0.7500     | 0.8473(3)  | 0.104(2)               | 0.050(2)        | 0.043(1)        | -0.033(2)       | 0.0             | 0.0             |
| C(7)  | 8 <i>e</i> | 0.1789(2)   | 0.6794(2)  | 0.7799(3)  | 0.049(2)               | 0.041(1)        | 0.050(2)        | 0.003(1)        | 0.004(1)        | -0.007(1)       |
| C(2)  | 8 <i>e</i> | 0.0571(2)   | 0.3995(2)  | 0.8808(3)  | 0.051(2)               | 0.039(1)        | 0.070(2)        | -0.006(1)       | 0.005(1)        | -0.014(1)       |
| C(5)  | 8 <i>e</i> | 0.2162(2)   | 0.5517(2)  | 0.9631(3)  | 0.047(2)               | 0.042(1)        | 0.055(2)        | -0.003(1)       | -0.003(1)       | -0.002(1)       |
| C(6)  | 8 <i>e</i> | 0.1564(2)   | 0.5749(2)  | 0.8518(2)  | 0.043(1)               | 0.037(1)        | 0.048(1)        | 0.001(1)        | 0.003(1)        | -0.008(1)       |
| C(4)  | 8 <i>e</i> | 0.1976(2)   | 0.4555(2)  | 1.0325(3)  | 0.054(2)               | 0.047(1)        | 0.064(2)        | 0.005(1)        | -0.006(1)       | 0.007(1)        |
| C(3)  | 8 <i>e</i> | 0.1180(2)   | 0.3801(2)  | 0.9903(3)  | 0.051(2)               | 0.035(1)        | 0.071(2)        | 0.005(1)        | 0.012(1)        | 0.002(1)        |

is 2.763 Å, this distance is shorter than the sum of the van der Waals radii of both atoms (3.04 Å), which suggests there are weak intramolecular interaction between two atoms. In the crystal, molecules are stablized by weak C–H...O hydrogen bonds, C–H... $\pi$  interactions,  $\pi$ – $\pi$  interactions and van der Waals forces.

**Acknowledgements:** This work was supported by the Project funded by China Postdoctoral Science Foundation (2014M551208), the Natural Science Foundation of Heilongjiang Province (B201303).

### References

 Solanko, K. A.; Bond, A. D.,: Influence of impurities on the crystallisation of 5-X-aspirin and 5-X-aspirin anhydride polymorphs (X = Cl, Br, Me). CrystEngComm 13 (2011) 6991–6996.

- Erasmus, V.; Marcus, T.; Bursa, J.: Packaging of preservatives containing carboxylic acid anhydrides. (2013) EP 2580968.
- 3. Kaulen, J.; Vogl, E.; Ritzer, E.; Hoffmann, M. Preservatives based on carboxylic anhydrides. (2008) DE 102006035202.
- Shiina, I.; Nakata, K: The first asymmetric esterification of free carboxylic acids with racemic alcohols using benzoic anhydrides and tetramisole derivatives: an application to the kinetic resolution of secondary benzylic alcohols. Tetrahedron Lett. 48 (2007) 8314–8317.
- Faria, A. C.; Mello, .R. S.; Orth, E. S.; Nome, F.: Hydrolysis of benzoic anhydride mediated by ionenes and micelles. J. Mol. Catal. A: Chem. 289 (2008) 106–111.
- Shiina, I.: An effective method for the synthesis of carboxylic esters and lactones using substituted benzoic anhydrides with Lewis acid catalysts. Tetrahedron. 60 (2004) 1587–1599.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany 2012.
- 8. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.