

Redetermination of the crystal structure of 1,4-dithiane, at 200 K – Analysis of intermolecular forces, $C_4H_8S_2$

Eric Hosten and Richard Betz*

Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa

Received April 03, 2014, accepted July 21, 2014, available online September 03, 2014, CCDC no. 1267/4132

Abstract

$C_4H_8S_2$, monoclinic, $P2/c$ (no. 14), $a = 6.7630(3)$ Å, $b = 5.4100(2)$ Å, $c = 10.0272(4)$ Å, $\beta = 129.660(2)$ °, $V = 282.4$ Å³, $Z = 2$, $R_{gt}(F) = 0.0182$, $wR_{ref}(F^2) = 0.0510$, $T = 200$ K.

Table 1. Data collection and handling.

Crystal:	colourless blocks, size 0.116×0.236×0.273 mm
Wavelength:	Mo $K\alpha$ radiation (0.71069 Å)
μ :	7.90 cm ⁻¹
Diffractometer, scan mode:	Bruker APEX-II CCD, φ and ω
$2\theta_{\max}$:	55°
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$:	2495, 647
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2\sigma(I_{\text{obs}})$, 607
$N(\text{param})_{\text{refined}}$:	45
Programs:	SHELX [14], ORTEP-3 [15], MERCURY [16], PLATON [17]

Source of material

The compound was obtained commercially (Aldrich). Crystals suitable for the diffraction study were obtained upon storing a freshly molten sample at room temperature over a time span of several months upon which sublimed crystals of high quality could be obtained.

Experimental details

All H atoms were located in a difference map and refined freely.

Discussion

Chelate ligands play a major role in coordination chemistry due to the enhanced thermodynamic stability of their coordination com-

pounds in relation to similar compounds derived from comparable monodentate ligands. Incorporating two donor atoms into a cyclic compound offers an additional level of confinement that might give rise to interesting coordination patterns. 1,4-Dichalcogeno derivatives of cyclohexane appeared as interesting bonding partners as the variation in conformation could easily turn them from mono- into bidentate ligands. 1,4-Dithiane was chosen to act as a starting point in an upcoming study about the coordination behaviour of the aforementioned compounds as it has been found to realize a variety of coordination modes: it has been found to act as a purely monodentate ligand [1], as a monodentate, μ_1 bridging ligand [2], as a monodentate, μ_2 bridging ligand [3] and as bidentate chelating ligand [4]. Its crystal structure has been reported earlier, however, at room temperature only with [5] and without [6] hydrogen atom positions localized or as a private communication at low temperature [7] so that no discussion of metrical parameters is at hand for these latter conditions. The present study is intended to close this gap and to enable the comparison of metrical parameters in envisioned coordination compounds whose structures will be determined at low temperature as well. As the quality of the diffraction data is very high, all hydrogen atoms were located on a DFM and refined freely. Furthermore, the structure of the title compound has also been determined by means of electron diffraction in the gas phase [8] as well as by spectroscopic and quantummechanical methods [9]. The asymmetric unit contains half a molecule. C–S bond lengths vary only slightly with values of 1.8059(10) and 1.8106(11) Å, the latter values invariably bigger than the ones found at room temperature [5] but shorter than available for the data deposited at 100 K [7]. A slightly deviating behaviour is found for the C–S–C angle measured at 99.91(5)° that invariably slightly exceeds both its counterparts, the one at room temperature [5] as well as the one at 100 K [7]. The two S–C–C angles of 113.16(7)° and 113.30(7)° are nearly identical in value. They both exceed the corresponding values deductible from the deposited data obtained at 100 K [7], however, they entirely lie in between the two values reported for the structure determination conducted at room temperature [5]. The intracyclic S–S distance of 3.4731(5) Å is in between a shorter value reported at room temperature [5] and a slightly longer value that can be derived for the data obtained at 100 K [7]. In comparison to the values obtained by structural characterization methods based on electron diffraction studies in the gas phase [8], the length of the C–S bond as well as the C–S–C angle found in the present study deviate to smaller values while both S–C–C angles exceed the ones deduced from the electron diffraction experiments [8]. No data is available from the electron diffraction studies for the intracyclic distance between the two sulfur atoms. A puckering analysis [10] shows the six-membered ring to adopt a 1C_4 chair conformation according to [11]. The latter finding is

* Correspondence author (e-mail: Richard.Betz@nmmu.ac.za)

corroborated by projections of the structure along the C–S bonds showing nearly ideal staggered conformations for all methylene groups, the relevant C–S–C–C dihedral angles measuring 59.23(9) and 59.34(9)°. An investigation of intra- and intermolecular interactions in the crystal structure of the title compound revealed an interesting picture. Not only are there no interactions whose range falls below the sum of van-der-Waals radii of atoms but – additionally – there are no intermolecular contacts shorter than the sum of van-der-Waals radii plus at least 0.1 Å. Although the hydrogen atoms were located unambiguously on a DFM and refined freely in the current study, X-ray diffractometry is inherently susceptive for introducing errors into the correct localization of this element. Therefore, the cell constants were compared as these allow for quantifying the shortest centroidal distances between the individual molecules. It is found that these continuously shrink with lowering the temperature during the data collection experiment as the reported shortest cell length decreases from 5.453(5) Å at room temperature [5] over 5.4100(2) Å in the present study at 200 K down to 5.383(1) Å as reported for the study conducted at 100 K [7]. In this context it is noteworthy that the stepwise substitution of the sulfur atoms for its heavier homologue, selenium, gradually increases the dimension of the shortest cell length gradually from 5.464(5) Å for 1,4-dithiane over 5.552(10) Å for 1,4-selenothiane to 5.62(2) Å for 1,4-diselenane [5, 12, 13]. This marked absence of pronounced intermolecular interactions in the crystalline state is in agreement with the surprisingly high volatility and ability of the title compound to sublime despite its high melting point of more than 100 °C. However, the latter is – in turn – not so easy to rationalize given exactly this lack of intermolecular interactions.

Table 3. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	<i>x</i>	<i>y</i>	<i>z</i>	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
S(1)	4e	0.68062(4)	0.33676(5)	0.46182(3)	0.0285(2)	0.0272(2)	0.0333(2)	0.00181(8)	0.0223(1)	-0.00329(9)
C(1)	4e	0.3386(2)	0.3113(2)	0.3443(1)	0.0269(5)	0.0300(5)	0.0260(5)	-0.0033(4)	0.0160(4)	-0.0070(4)
C(2)	4e	0.7346(2)	0.6492(2)	0.5420(2)	0.0286(5)	0.0264(5)	0.0351(5)	-0.0049(4)	0.0228(5)	-0.0040(4)

Acknowledgments. The authors thank Ms Sandra Crossman for helpful discussions.

References

- Charreteur, K.; Capon, J.-F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J.: Diiiron Complexes with a [2Fe3S] Core Related to the Active Site of [FeFe]H₂ases. *Eur. J. Inorg. Chem.* (2011) 1038–1042.
- Burton, S.; Fronczeck, F. R.; Maverick, A. W.: A cofacial Binuclear copper(II) complex with a bridging 1,4-dithiane ligand. *Acta Crystallogr. E* **63** (2007) m1977–m1978.
- Boorman, P. M.; Langdon, N. L.; Mozol, V. J.; Parvez, M.; Yap, G. P. A.: Syntheses, Crystal Structures, Spectroscopic Characterization, and Electrochemical Studies of the Ditungsten(III) Complexes Cl₃W(μ-L)₃WCl₃ and [Cl₃W(μ-L)₂(μ-Cl)WCl₃][–] (L = 1,4-Dithiane, 1,4-Thioxane, pms = Pentamethylene Sulfide). C–S Bond Cleavage of the Bridging Thioether(s) in Cl₃W(μ-L)₃WCl₃. *Inorg. Chem.* **37** (1998) 6023–6029.
- Johansson, M. H.; Engelbrecht, H. P.: *cis*-(1,4-Dithiane-*S,S*)-diiodoplatinum(II). *Acta Crystallogr. E* **57** (2001) m114–m116.
- Effendy; bin Silong, S.; Skelton, B. W.; White, A. H.: Synthesis and Structural Characterization of Some Adducts of 1,4-Dithiane and -Oxathiane with Silver(I) Nitrate and Perchlorate. *Aust. J. Chem.* **56** (2003) 23–26.
- Marsh, R. E.: The Crystal Structure of 1,4-Dithiane. *Acta Crystallogr. B* **8** (1955) 91–94.
- Spek, A. L.; Edema, J. J. H.; Kellogg, R. M.: CSD Ref-No.: DITHAN02. Private Communication (2004).
- Hassel, O.; Viervoll, H.: Electron Diffraction Investigations of Molecular Structures. II. Results Obtained by the Rotating Sector Method. *Acta Chem. Scand.* **1** (1947) 149–168.
- Rosso, T. E.; Ellzy, M. W.; Jensen, J. O.; Hameka, H. F.; Zeroka, D.: Vibrational frequencies and structural determinations of 1,4-dithiane. *Spectrochim. Acta Part A* **55** (1999) 121–134.
- Cremer, D.; Pople, J. A.: General definition of ring puckering coordinates. *J. Am. Chem. Soc.* **97** (1975) 1354–1358.
- Boeyens, J. C. A.: The conformation of six-membered rings. *J. Cryst. Molec. Struct.* **8** (1978) 317–320.
- McCullough, J. D.; Radlick, P.: Studies on the Synthesis and Crystal Structure of 1,4-Selenothiane. *Inorg. Chem.* **3** (1964) 924–925.
- Marsh, R. E.; McCullough, J. D.: The Crystal Structure of 1,4-Diselenane. *J. Am. Chem. Soc.* **73** (1951) 1106–1109.
- Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. *J. Appl. Crystallogr.* **45** (2012) 849–854.
- Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A.: Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. *J. Appl. Crystallogr.* **41** (2008) 466–470.
- Spek, A. L.: Structure validation in chemical crystallography. *Acta Crystallogr. D* **65** (2009) 148–155.