

Crystal structure of poly[$(\mu_3\text{-di-2-pyrimidylsulfide-}\kappa^3\text{S:N,N'})\text{-silver(I)}$] pentafluoropropionate, $\text{C}_{11}\text{H}_6\text{AgF}_5\text{N}_4\text{O}_2\text{S}$

Xin-Zhan Sun, Hao-Jie Yan and Chong-Qing Wan*

Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China

Received October 31, 2013, accepted March 25, 2014, available online April 22, 2014, CCDC no. 1267/4086

Abstract

$\text{C}_{11}\text{H}_6\text{AgF}_5\text{N}_4\text{O}_2\text{S}$, monoclinic, $P2_1/m$ (No. 11), $a = 5.962(3)$ Å, $b = 13.088(6)$ Å, $c = 9.339(4)$ Å, $\beta = 105.449(5)$ °, $V = 702.4$ Å³, $Z = 2$, $R_{\text{gt}}(F) = 0.0214$, $wR_{\text{ref}}(F^2) = 0.0556$, $T = 296$ K.

Table 1. Data collection and handling.

Crystal:	colourless blocks, size 0.15×0.20×0.25 mm
Wavelength:	Mo K_α radiation (0.71073 Å)
μ :	16.58 cm ⁻¹
Diffractometer, scan mode:	Bruker APEXII CCD, φ and ω
$2\theta_{\text{max}}^*$:	50°
$N(hkl)$ measured, $N(hkl)$ unique:	6718, 1291
Criterion for I_{obs} , $N(hkl)$ gt:	$I_{\text{obs}} > 2\sigma(I_{\text{obs}})$, 1189
$N(\text{param})$ refined:	133
Programs:	SHELX [5]

Source of material

All reagents and solvents from commercial sources were used without further purification. Di-2-pyrimidylsulfide (*DprS*) was synthesized according to reported procedures [1]. At room temperature, di-2-pyrimidylsulfide (*DprS*, 19 mg, 0.1 mmol) and $\text{AgC}_2\text{F}_5\text{CO}_2$ (27 mg, 0.1 mmol) were dissolved in 2 mL of methanol followed by addition of 3 mL of mixed solvent of acetonitrile and deionized water with stirring at room temperature. The colorless solution was filtered and then left to stand in air. After five days, colourless block-shaped crystals of the title compound were deposited.

Experimental details

All hydrogen atoms were identified in difference Fourier syntheses. H atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with $d(\text{C}-\text{H}) = 0.93$ Å and $U_{\text{iso}}(\text{H}) = 1.2 U_{\text{eq}}(\text{C})$.

Discussion

Pyridyl-based building blocks are widely used in construction various supramolecules of transition metal complexes with distinct topological structures [2]. Among them, pyridyl sulfide de-

rivatives are of great interest due to their versatile linkage behavior in coordination supramolecular assemblies [3, 4]. As a continuation work of the study on the coordination chemistry of di-2-pyrimidylsulfide [4], herein we report one new allomorphism of Ag(I) complex. In the mononuclear complex, the ligand takes a $\kappa^3\text{-S:N,N'}$ -chelating mode with the pair of 2-pyrimidyl rings of each ligand exhibit a dihedral angle of 70.78(4)° (Figure). Each silver(I) center in the complex is surrounded by two N atoms from one di-2-pyrimidylsulfide ligand (Ag–N distance of 2.387(2) Å) and one S atom from another ligand (Ag–S distance of 2.510(2) Å). Furthermore, each Ag1 ion is weakly connected to O1 and O1a (symmetry code $x, -y+0.5, z$) atoms from one pentafluoropropionate anion with Ag–O distances of 2.655(3) Å. The mononuclear Ag(I) and a pair of the μ_3 -bridging di-2-pyrimidyl sulfide ligands are alternately arranged and link together, forming a V-shaped chain-structure along a axis. The formed chains are stacked along bc plane and interconnect through weak C2–H2...O1b (symmetry code $-x, -y, -z+1$) interactions to form a three-dimensional framework, herein, the C2–O1b distance is 3.108(2) Å and the C2–H2...O1b angle equals 128.45°.

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	x	y	z	U_{iso}
H(1A)	4f	-0.5672	0.0427	0.3116	0.023
H(2A)	4f	-0.3586	-0.0667	0.2013	0.025
H(3A)	4f	0.0371	-0.0396	0.2445	0.021

* Correspondence author (e-mail: wanchqq@163.com)

Table 3. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	Occ.	x	y	z	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ag(1)	2e		0.48014(4)	¹ ₄	0.51798(3)	0.0098(2)	0.0186(2)	0.0161(2)	0	0.0047(1)	0
S(1)	2e		0.0653(1)	¹ ₄	0.53168(9)	0.0096(4)	0.0152(4)	0.0141(4)	0	0.0029(3)	0
F(1)	2e		0.8022(4)	¹ ₄	1.0959(2)	0.031(1)	0.072(2)	0.019(1)	0	0.012(1)	0
F(2)	4f	0.5	0.9401(6)	0.3755(2)	1.0148(3)	0.060(3)	0.011(2)	0.025(2)	0.002(2)	-0.004(2)	-0.008(1)
F(3)	2e		1.2488(4)	¹ ₄	0.9196(3)	0.022(1)	0.060(2)	0.025(1)	0	0.008(1)	0
F(4)	2e		1.2803(4)	¹ ₄	1.1558(2)	0.031(1)	0.057(2)	0.018(1)	0	-0.010(1)	0
F(5)	4f	0.5	1.1413(6)	0.1248(2)	1.0301(3)	0.027(2)	0.030(2)	0.032(2)	0.010(1)	0.001(2)	0.001(1)
O(1)	4f		0.6948(3)	0.1662(1)	0.7772(3)	0.028(1)	0.028(1)	0.081(2)	-0.0105(9)	0.029(1)	-0.025(1)
N(1)	4f		-0.3066(3)	0.1330(2)	0.4086(2)	0.0101(9)	0.017(1)	0.019(1)	-0.0001(8)	0.0045(8)	-0.0003(8)
N(2)	4f		0.0560(3)	0.0849(1)	0.3664(2)	0.014(1)	0.016(1)	0.018(1)	0.0018(8)	0.0068(8)	0.0023(8)
C(1)	4f		-0.4087(4)	0.0535(2)	0.3254(3)	0.012(1)	0.019(1)	0.027(1)	-0.002(1)	0.005(1)	0.000(1)
C(2)	4f		-0.2859(5)	-0.0125(2)	0.2600(3)	0.020(1)	0.017(1)	0.025(1)	-0.003(1)	0.005(1)	-0.003(1)
C(3)	4f		-0.0508(5)	0.0051(2)	0.2850(3)	0.019(1)	0.015(1)	0.021(1)	0.0014(9)	0.010(1)	-0.0013(9)
C(4)	4f		-0.0799(4)	0.1445(2)	0.4211(2)	0.013(1)	0.014(1)	0.012(1)	-0.0003(9)	0.002(1)	0.0032(9)
C(5)	2e		0.7475(5)	¹ ₄	0.8329(4)	0.011(2)	0.018(2)	0.015(2)	0	0.007(1)	0
C(6)	2e		0.9036(9)	¹ ₄	0.9917(5)	0.027(2)	0.141(6)	0.013(2)	0	0.007(2)	0
C(7)	4f	0.5	1.1455(9)	0.2261(4)	1.0254(5)	0.025(2)	0.029(7)	0.015(2)	-0.001(2)	0.005(2)	-0.000(2)

Acknowledgments. This work was supported in part by the Science and Technology program, Beijing Municipal Education Commission.

References

- Scopelliti, R.; Bruno, G.; Donato, C.; Tresoldi, G.: Incorporation of non-planar chelating ligands in the coordination sphere of ruthenium(II) complexes: Unusual S-thioether N-pyridyl chelation mode of di-2-pyridyl sulfide (*dps*) to Ru(*N,N*-dps)₂ core: NMR studies of sterically induced internal dynamics. *Inorg. Chim. Acta* **313** (2001) 43-55.
- Wang, Y.; Zhao, X.-Q.; Shi, W.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.: Self-Assembly of a Series of Metal-Organic Frameworks Based on 4-Pyridyl-1,2,4-triazole and Copper(II) Ion. *Cryst. Growth Des.* **9** (2009) 2137-2145.
- Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Park, K.-M.; Lee, S. S.: Subtle Role of Polyatomic Anions in Molecular Construction: Structures and Properties of AgX Bearing 2,4'-Thiobis(pyridine) (X⁻ = NO₃⁻, BF₄⁻, ClO₄⁻, PF₆⁻, CF₃CO₂⁻, and CF₃SO₃⁻). *Inorg. Chem.* **42** (2003) 844-850.
- Wan, C.-Q.; Wang, Z.-J.; Wang, G.; Liu, H.; Deng, Y.-H.; Jin, Q.-H.: Conformation Restriction of Nonplanar Di-2-pyrimidyl Sulfide with Intramolecular N...C Interaction and Its Supramolecular Silver(I) Complexes. *Cryst. Growth Des.* **12** (2012) 376-386.
- Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr.* **A64** (2008) 112-122.