
Crystal structure of 2,3-bis(3'-methylthiophene-5'-carbaldehyde-2-yl) thiophene, $C_{16}H_{12}O_2S_3$

Xiaochuan $\operatorname{Li}^{*,I}$, Wenjuan Jiang and Young-A $\operatorname{Son}^{*,II}$

Received October 16, 2013, accepted February 10, 2014, available online March 25, 2014, CCDC no. 1267/4059

Abstract

 $C_{16}H_{12}O_2S_3$, orthorhombic, Pbcn (no. 60), a = 10.8457(4) Å, b = 8.1000(3) Å, c = 17.6048(6) Å, V = 1546.6 Å³, Z = 4, $R_{gt}(F) = 0.0401$, $wR_{ref}(F^2) = 0.0953$, T = 296 K.

Table 1. Data collection and handling.

Crystal: colourless blocks, size 0.15×0.23×0.34 mm

Wavelength: Mo K_{α} radiation (0.71073 Å)

 4.79 cm^{-1}

Diffractometer, scan mode: Bruker SMART CCD, φ and ω

 $\begin{array}{ll} 2\theta_{\text{max}} \colon & 56.58^{\circ} \\ N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}} \colon & 6441, 1920 \\ \text{Criterion for } I_{\text{obs}}, N(hkl)_{\text{gi}} \colon & I_{\text{obs}} > 2 \ \sigma(I_{\text{obs}}), 980 \end{array}$

 $N(param)_{refined}$: 99

Programs: SHELX [10], DIAMOND [11]

Source of material

2,3-Bis(3'-methylthiophene-5'-carbaldehyde-2-yl)thiophene was synthesized by two step reactions. Firstly, 2,3-dibromothiophene coupled with (3-methylthiophen-2-yl)magnesium bromide by a conventional Kumada coupling reaction generated 2,3-bis-(3'-methylthiophene-2-yl)thiophene [1-5]. Secondly, 2,3-bis(3'-methylthiophene-2-yl)thiophene was formylated under standard Vilsmeier-Haack conditions and yielded the target compound, 2,3-bis(3'-methylthiophene-5'-carbaldehyde-2-yl)thiophene [6-8]. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the petroleum ether solution at room temperature.

Experimental details

Hydrogen atoms were placed geometrically and refined using a riding model with d(C-H) = 0.93 Å (aromatic), 0.96 Å (-CH₃). $U_{\rm iso}(H) = 1.2~U_{\rm eq}(C)$ for CH groups or $U_{\rm iso}(H) = 1.5~U_{\rm eq}(C)$ for

(e-mail: lixiaochuan@henannu.edu.cn and yason@cnu.ac.kr)

 $-\mathrm{CH_3}$ groups. The central thiophene ring was disordered over opposite direction and overlapped each other with site occupation factors of 0.5 and 0.5.

Discussion

2,3-Bis(3'-methylthiophene-5'-carbaldehyde-2-yl)thiophene shows photochromic activity with the tow side thiophene rings configuring anti-parallel conformation. The distance between the reactive carbon atoms (C4ⁱ¹ and C4ⁱ², i1: 0.5+x, 0.5-y, 1-z, i2: 1.5-x, 0.5-y, 0.5+z) is estimated to be 3.69 Å. It is shorter than the distance (4.2 Å) defined by Irie and co-authors, which is an experience rule for determining the solid photochromic activity of diarylethene derivatives [9]. Upon irradiation of the crystal with UV light (254 nm), the colour of crystal turns to yellow gradually. Photo-induced conrotatory cyclization reaction occurr between the two anti-paralleled thiophene rings. The ring closed isomer shows an expanded π conjugated system with respect to the ring-opened isomer, and thus lead to enhanced absorbance in the visible region. The yellow colour can be bleached by irradiation of visible light (>400 nm). The cycles between colour and colourless in crystal state can be repeated by alternated irradiation of UV (254 nm) and Visible light (>400 nm) without observable degradation. The photochromic property in crystalline state is similar to that in solution. It should be noted that the photo-induced conrotatory cyclization reaction in solid state is more effective than that in solution due to the uniformly anti-parellel configured molecule array promoted by inter-molecular weak interaction.

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Z	$U_{ m iso}$
H(3)	8 <i>d</i>	0.5414	-0.2530	0.4239	0.067
H(6)	8d	0.3555	-0.2701	0.5249	0.094
H(8A)	8d	0.6565	-0.1444	0.2661	0.089
H(8B)	8 <i>d</i>	0.7241	-0.1389	0.3448	0.089
H(8C)	8d	0.7051	0.0240	0.2981	0.089
H(11)	8d	0.4540	0.4473	0.3716	0.084
H(12)	4c	1/2	0.637(6)	$\frac{1}{4}$	0.14(2)

School of Chemistry and Chemical Engineering, Key Lab of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, Henan Province, P. R. China

II Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea

^{*} Correspondence author

 $C_{16}H_{12}O_{2}S_{3}$

Table 3. A	Atomic coor	dinates and	displacement	parameters	(in Ų).
------------	-------------	-------------	--------------	------------	-------	----

Atom	Site	x	y	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
S(1)	8 <i>d</i>	0.34524(5)	0.07626(8)	0.39793(3)	0.0497(4)	0.0717(4)	0.0547(3)	-0.0024(3)	0.0083(3)	-0.0114(3)
C(2)	8 <i>d</i>	0.3941(2)	-0.1028(3)	0.4397(1)	0.061(2)	0.067(2)	0.043(1)	-0.021(1)	-0.003(1)	-0.005(1)
C(3)	8 <i>d</i>	0.5020(2)	-0.1568(3)	0.4085(1)	0.066(2)	0.052(2)	0.048(1)	-0.009(1)	-0.016(1)	-0.002(1)
C(4)	8 <i>d</i>	0.5484(2)	-0.0531(3)	0.3504(1)	0.043(1)	0.044(1)	0.045(1)	-0.001(1)	-0.010(1)	-0.006(1)
C(5)	8d	0.4717(2)	0.0803(3)	0.3388(1)	0.039(1)	0.050(1)	0.042(1)	-0.002(1)	-0.0007(9)	-0.008(1)
C(6)	8d	0.3265(3)	-0.1727(4)	0.5034(2)	0.095(2)	0.090(2)	0.050(2)	-0.042(2)	-0.003(2)	-0.009(2)
O(7)	8d	0.2342(2)	-0.1107(3)	0.5302(1)	0.106(2)	0.126(2)	0.072(1)	-0.054(1)	0.032(1)	-0.023(1)
C(8)	8d	0.6694(2)	-0.0806(3)	0.3113(1)	0.047(1)	0.064(2)	0.068(1)	0.011(1)	-0.005(1)	0.001(1)
C(9)	8d	0.4858(2)	0.2223(3)	0.2883(1)	0.036(1)	0.046(1)	0.057(1)	0.001(1)	-0.003(1)	-0.004(1)
S(10)	8d	0.4725(1)	0.4104(1)	0.32289(7)	0.0617(7)	0.0558(7)	0.0918(8)	0.0069(5)	-0.0037(6)	-0.0085(6)
C(11)	8d	0.4725(1)	0.4104(1)	0.32289(7)	0.0617(7)	0.0558(7)	0.0918(8)	0.0069(5)	-0.0037(6)	-0.0085(6)
C(12)	4c	1/2	0.5050(5)	1/4	0.063(2)	0.050(2)	0.143(4)	0	-0.029(3)	0

Acknowledgments. This work was supported by the National Natural Science Foundation of China (grant no. 21072048 and 21272060). This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant no. 2013054767). This research was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Trade, Industry & Energy, Republic of Korea.

References

- Li, X.; Tian, H.: One-step synthesis and photochromic properties of a stable triangle terthiophene. Tetrahedron Lett. 46 (2005) 5409-5412.
- Li, X.; Ma, Y.; Wang, B.; Li, G.: "Lock and key control" of photochromic reactivity by controlling the oxidation/reduction State. Org. Lett. 10 (2008) 3639-3642.
- 3. Li, X.; Xu, Y.; Son, Y.: Crystal structure of 2,3-bis(3-methylthiophen-2-yl) benzofuran, C₁₈H₁₄OS₂. Z. Kristallogr. NCS **227** (2012) 235-236.

- Li, X.; Xu, Y.; Son, Y.: Crystal structure of 2,3-bis(3-methylthiophen-2-yl)-benzothiophene-1,1-dioxide, C₁₈H₁₄O₂S₃. Z. Kristallogr. NCS 227 (2012) 233-234.
- Li, X.; Li, Y.; Zhang, J. Son, Y.; Shimada. Y.; Matsumoto. S.: Crystal structure of 2,3-bis(2,4-dimethylthiazole-3-yl)thiophene, C₁₄H₁₄N₂S₃. Z. Kristallogr. NCS 228 (2013) 95-96.
- Li, X.; Li, J.; Zhang, A.; Li, S.; Zhu, J.; Liu, H.; Son, Y.: Crystal structure of 4-(3,4-bis(2,5-dimethylthiophen-3-yl)-cyclopent-3-en-1-yl)benzaldehyde, C₂₄H₂₄OS₂. Z. Kristallogr. NCS 225 (2010) 606-608.
- Li, X.; Lim, W.; Kim, S.; Son, Y.: Crystal structure of 4-formylphenyldiphenylamine, C₁₉H₁₅NO. Z. Kristallogr. NCS 224 (2009) 459-460.
- Li, X.; Kim, S.; Kun, J.; Son, Y.: Synthesis and optical properties of (A)_n-π-(Ph)₃N type dyes. Mol. Cryst. Liq. Cryst. 504 (2009) 164–172.
- Kobatake, S.; Uchida, K.; Tsuchida, E.; Irie, M.: Single-crystalline photochromism of diarylethenes: reactivity-structure relationship. Chem. Commun. 23 (2002) 2804-2805.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany 2012.