
Crystal structure of 1,3,5-tris(thien-2-yl)benzene, C₁₈H₁₂S₃

I. A. Guzei^I, H.-Y. Chang^{II} and M.-G. Choi*, II

I Iowa State University of Science and Technology, Department of Chemistry, Ames, Iowa, 50011, USA

Received January 22, 2000, CCDC-No. 1267/389

Abstract

 $C_{18}H_{12}S_3$, orthorhombic, *Pbcn* (No. 60), a = 16.052(2) Å, b = 11.523(1) Å, c = 8.236(1) Å, V = 1523.3 Å³, Z = 4, $R_{gt}(F) = 0.076$, $wR_{ref}(F^2) = 0.250$, T = 296 K.

Source of material

The title compound was synthesized by modification of cross-coupling reaction of tributyl(2-thienyl)stannane and 1,3,5-tribromobenzene [1]. The starting tributyl(2-thienyl)stannane was prepared as previously described in the literature [2]. To a solution of tributyl(2-thienyl)stannane (5.00 g, 13.4 mmol) in 20 mL of anhydrous toluene were added 1,3,5-tribromobenzene (1.4 g, 4.45 mmol) and LiCl (2.80 g, 65.6 mmol) The reaction mixture was stirred at room temperature under N₂ inert atmosphere for 10 min. To a solution of reaction mixture was added PdCl₂(PPh₃)₂ (0.23 g, 0.33 mmol) and the mixture was refluxed for 24 h. The solvent was evaporated under vacuum and then the solid residue was chromatographed on silicagel column eluting hexanes/CH₂Cl₂ (4:1) mixture. The collected eluent was removed under vacuum to give white product (0.75 g, 2.31 mmol, 52 % yield) of 1,3,5-tris(thieny-2-yl)benzene (I). Single crystals of I suitable for X-ray diffraction studies were grown from ethanol solution by slow cooling to 253 K for 4 days.

Experimental details

The S(2) and S(3) thienyl rings were refined with idealized geometries. The bonds were constrained as follows. Bond S(2)—C(7) was calculated as $0.6 \times 1.714 \text{ Å} + 0.4 \times 1.370 \text{ Å} = 1.576 \text{ Å}$, taking into account the disorder ratio. The S(3)—C(7) bond was estimated to be $0.4 \times 1.714 \text{ Å} + 0.6 \times 1.370 \text{ Å} = 1.508 \text{ Å}$ by the same method. Other S—C distances were constrained to 1.714 Å and the C(α)—C(β) bond distances to 1.370 Å and the C(β)—C(β) bond distances to 1.424 Å. H atoms of the thienyl-rings were not localized.

Discussion

The thienyl rings in the title compound are not co-planar with the plane of the phenyl ring. The torsion angles S(1)–C(5)–C(1)–C(2)and S(2)-C(7)-C(3)-C(2) were found to be $21.4(2)^{\circ}$ and -23.1(6)°, respectively. However the thienyl rings are nearly planar with an average standard deviation from planarity of the ring atoms of 0.02 Å. The molecule occupies a crystallographic two-fold axis passing through atoms C(1), C(4), C(5), and the middle of the bond C(6)-C(6a). Thus, only one half of the molecule is symmetry independent. As a result, a disorder of the S(1) thienyl ring over two positions in a 50:50 ratio is introduced. The positions of atoms S(1) and S(1a) are occupied by sulfur atoms 50% of the time and 50% of the time they are occupies by carbons. Consequently, the observed S(1)—C(5) distance (1.608(7) Å) is the average between a single S—C bond (1.714 Å) and a C=C double bond (1.370 Å). Additionally, there is positional disorder in the orientation of the S(2) thienyl moiety. It is disordered in a 60:40 ratio over two positions. The position of atom S(2) is occupied by a sulfur atom 60% of the time, and the positions of atoms C(8), C(9), and C(33) are occupied by carbon atoms 60% of the time as well. The positions of atoms C(8'), C(9') and C(22) are occupied by carbon atoms 40% of the time while the position of atom S(3) is occupied 40% of the time by a sulfur atom.

Table 1. Data collection and handling.

Crystal: colorless rhombus, size $0.27 \times 0.39 \times 0.42$ mm

Wavelength: Mo K_{α} radiation (0.71073 Å) 4.74 cm^{-1} Diffractometer, scan mode: Siemens SMART CCD, ϕ and ω scans $2\theta_{\text{max}}$: 51.34° $N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$: 1442, 1442Criterion for I_{obs} , $N(hkl)_{\text{gt}}$: $I_{\text{obs}} > 2 \text{ } \sigma(I_{\text{obs}})$, 831 $N(param)_{\text{refined}}$: I_{obs} Programs: SADABS [3], SHELXTL [4]

Yonsei University, Department of Chemistry and Molecular Structure Laboratory, Seoul, 120-749, Korea

^{*} Correspondence author (e-mail: choi@alchemy.yonsei.ac.kr)

Table 2. Atomic coordinates and displacement parameters (in \mathring{A}^2).

Atom	Site	Occ.	x	y	z_	U_{iso}	
C(11)	8 <i>d</i>	0.50	0.566(2)	-0.100(2)	0.221(4)	0.14(1)	
C(22)	8d	0.40	0.6044(9)	0.486(1)	0.018(2)	0.014(3)	
C(33)	8 <i>d</i>	0.60	0.7158(5)	0.2852(8)	0.037(1)	0.025(2)	
H(2)	8 <i>d</i>		0.6028	0.1173	0.112	0.062	
H(4)	4c		1/2	0.4176	1/4	0.061	

Table 2. Continued.

Atom	Site	Occ.	<i>x</i>	у	z	$U_{\rm iso}$	
C(8)	8 <i>d</i>	0.40	0.6960(7)	0.507(2)	-0.069(3)	0.112(9)	
C(9)	8 <i>d</i>	0.40	0.742(1)	0.407(1)	-0.055(2)	0.075(5)	
C(8')	8 <i>d</i>	0.60	0.7587(5)	0.3808(7)	-0.062(1)	0.076(4)	
C(9')	8d	0.60	0.7065(3)	0.4748(8)	-0.072(1)	0.057(3)	

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	Occ.	x	у .	z	U_{11}	U ₂₂	U ₃₃	U_{12}	U_{13}	U_{23}
S (1)	8 <i>d</i>	0.50	0.5795(3)	-0.1118(4)	0.2139(6)	0.062(2)	0.049(2)	0.071(2)	0.016(1)	0.000(2)	-0.005(1)
S(2)	8 <i>d</i>	0.60	0.6207(2)	0.4691(3)	0.0056(5)	0.057(2)	0.058(2)	0.084(2)	0.004(1)	0.009(2)	0.007(2)
S(3)	8d	0.40	0.7123(4)	0.2978(6)	0.029(1)	0.105(5)	0.115(6)	0.153(7)	-0.001(3)	0.012(4)	0.007(3)
C(1)	4 <i>c</i>		1/2	0.0953(5)	1/4	0.050(4)	0.053(4)	0.047(4)	0	-0.007(3)	0
C(2)	8d		0.5616(3)	0.1576(4)	0.1681(5)	0.054(3)	0.052(3)	0.050(3)	0.001(2)	0.000(2)	-0.004(2)
C(3)	8d		0.5631(3)	0.2784(4)	0.1681(5)	0.049(3)	0.051(3)	0.046(2)	0.001(2)	-0.004(2)	0.001(2)
C(4)	4c		1/2	0.3369(5)	1/4	0.054(4)	0.049(4)	0.051(4)	0	-0.007(3)	0
C(5)	4 <i>c</i>		1/2	-0.0310(5)	1/4	0.062(5)	0.047(4)	0.052(4)	0	-0.004(3)	0
C(6)	8 <i>d</i>		0.5386(4)	-0.2323(5)	0.2309(8)	0.161(8)	0.065(3)	0.064(4)	0.031(3)	-0.024(5)	-0.007(3)
C(7)	8 <i>d</i>		0.6279(3)	0.3428(3)	0.0790(5)	0.050(3)	0.064(3)	0.054(3)	-0.006(2)	0.002(2)	-0.003(2)

Acknowledgments. This work was supported by the Korea Science and Engineering Foundation (95-0501-02-01-3) and the Center for Electro- and Photo-Responsive Molecules, KOSEF

References

- Fujita, M.; Oka, H.; Ogura, K.: Palladium(0)/LiCl Promoted Cross-Coupling reaction of (4-Pyridyl)Stannanes and Aromatic Bromides: Easy Acess to Poly(4-pyridyl)-Substituted Aromatics. Tetrahedron Lett. 36 (1995) 5247-5250.
- Pinhey, J. T.; Roche, E. R.: The Chemistry of Organolead(IV)
 Tricarboxylates. Synthesis and Electrophilic Heteroarylation Reaction of
 2- and 3-Thienyl-, and 2- and 3-Furyl-lead Tricarboylates. J. Chem. Soc.
 Perkin Trans. I (1988) 2415- 2421.
- Blessing, R. H.: An Empirical Correction for Absorption Anisotropy. Acta Crystallogr. A51 (1995) 33-38.
- Sheldrick, G. M.: Program Package SHELXTL V.5.03. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA 1997.