
© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of dibarium calcium [tetranitridotungstate(VI)], Ba₂Ca[WN₄]

P. Höhn* and R. Kniep

Max-Planck-Institut für Chemische Physik fester Stoffe, Pirnaer Landstr. 176, D-01257 Dresden, Germany

Received December 17, 1999, CSD-No. 409472

🕒 Ba_{okt.} Ba_{tetr.} Oa_{tetr.} • W \bigcirc N

Ba₂CaN₄W, orthorhombic, Fddd (No. 70), a = 10.873(1) Å, $b = 11.993(1) \text{ Å}, c = 17.937(2) \text{ Å}, V = 2339.0 \text{ Å}^3, Z = 16,$ $R_{\rm gt}(F) = 0.038$, $wR_{\rm ref}(F^2) = 0.107$, T = 293 K.

Source of material

Yellow single crystals were obtained by reaction of pellets of Ca₃N₂, Ba₂N and W (molar ration 1:2:1). The reaction was carried out under N2 at ambient pressure in W crucibles. The mixtures were heated to 1223 K (100 K/h). After a period of 36 h the products were cooled down (50 K/h) to ambient temperature. Starting materials and products are sensitive to moisture and air.

Discussion

The crystal structures of several ternary alkaline earth nitridotungstates with A₃[WN₄] composition have been reported in recent years: Sr₃[WN₄] [1], LT-Ba₃[WN₄] [2], HT-Ba₃[WN₄] [1, 3], and Ca₂Sr[WN₄] [4]. Predominant structural features of these compounds are isolated complex tetrahedral nitridotungstate anions [WN₄]⁶⁻. The above mentioned crystal structures are related to the Na₃As-type structure with the complex anions in a hexagonal close packing arrangement. The tetrahedral holes are occupied by 2/3 of the alkaline earth cations, the remaining alkaline earth cations are in a trigonal planar coordination by the complex anions.

The crystal structure of Ba₂Ca[WN₄] is related to the Li₃Bi-type structure with the complex anions in a cubic close packing arrangement; all octahedral holes as well as half of the tetrahedral holes are occupied by Ba, the remaining tetrahedral holes are occupied by Ca; no disorder is observed. W is tetrahedrally coordinated by N $(\overline{d}(W-N) = 1.879 \text{ Å})$, Ca is octahedrally coordinated by N (\overline{d} (Ca-N) = 2.551 Å) and the corrdination polyhedra around Ba are irregular (CN: 8; d(Ba-N) = 3.057 A). These values are in good agreement with data from literature: $\overline{d}(W-N) =$ 1.902 Å (LT-Ba₃[WN₄] [2]), 1.882 Å (HT-Ba₃[WN₄] [3], 1.873 Å (Ca₂Sr[WN₄] [4]; d(Ca—N) = 2.594 Å (Ca₂Sr[WN₄] [4]; $d(Ba-N) = 2.893 \text{ Å} (LT-Ba_3[WN_4] [2]), 2.916 \text{ Å}$ (HT-Ba₃[WN₄] [3]).

Table 1. Data collection and handling.

yellow, irregular, size $0.1 \times 0.1 \times 0.2$ mm Crystal: Wavelength: Mo K_{α} radiation (0.71073 Å) 337.02 cm Diffractometer, scan mode: Siemens P4, ω/2θ 60.02° N(hkl)measured, N(hkl)unique: 3647, 865 Criterion for Iobs, N(hkl)gt: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}}), 707$ N(param)refined: SHELXS-97 [5], SHELXL-97 [5], Programs: DIAMOND [6]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	<u>x</u>	у	z	U_{11}	U_{22}	U_{33}	<i>U</i> ₁₂	U ₁₃	U ₂₃
W (1)	16 <i>f</i>	1/8	0.88263(3)	5/8	0.0069(3)	0.0068(3)	0.0000(3)	0	0.0001(1)	0
Ba(1)	16g	1/8	1/8	0.51380(4)	0.0135(4)	0.0113(3)	0.0006(3)	-0.0016(2)	0	0
Ba(2)	16e	0.05485(6)	7/8	7/8	0.0103(4)	0.0105(3)	0.0094(4)	0	0	0.0011(2)
Ca(1)	16g	1/8	1/8	0.2857(1)	0.0101(9)	0.0107(8)	0.0000(9)	-0.0019(7)	0	0
N(1)	32 <i>h</i>	0,1154(7)	0.9580(7)	0.0398(5)	0.020(3)	0.020(3)	0.012(3)	0.003(3)	0.001(3)	0.012(3)
N(2)	32h	0.0145(6)	0.0257(6)	0.3833(4)	0.009(2)	0.012(3)	0.007(3)	0.005(3)	-0.002(2)	-0.003(2)

^{*} Correspondence author (e-mail: hoehn@cpfs.mpg.de)

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support of this work.

References

- 1. Höhn, P.; Gudat, A.; Kniep, R.; Maier, J.: Preparation and crystal chemistry of nitridomolybdates (VI) and nitridotungstates (VI). ECSSC IV, A 56, Dresden, Germany 1992.
- Gudat, A.; Höhn, P.; Kniep, R.; Rabenau, A.: The crystal structures of the isotypic compounds Ba₃[MoN₄] and Ba₃[WN₄]. Z. Naturforsch. 46b (1991) 566-572.
- 3. Höhn, P.; Kniep, R.: The crystal structure of the high temperature phase of $tribarium \ [tetranitridotung state (VI)], HT-Ba_3 [WN_4]. \ Z. \ Kristallogr. \ NCS$ **215** (2000) 329-330.
- Berger, U.; Schultz-Coulon, V.; Schnick, W.: Ca₂Sr[WN₄], the first mixed alkaline earth nitridotungstate. Z. Naturforsch. 50b (1995) 213-216.
- 5. Sheldrick, G. M.: SHELXL-97, a program for refining crystal structures.
- University of Göttingen, Germany 1997.

 6. Brandenburg, K.: Diamond (Version 2.1a). Crystal Impact GbR, Germany 1996-1999.