### **Supporting Information for**

## Polarization-Encoded Color Images for Information Encryption Enabled by HfN Refractory Plasmonic Metasurfaces

Yu-Cheng Chu,  $^{1,2}$ Tzu-Yu Peng,  $^{1,2}$  Chen-Yu Wang,  $^{1,2}$  Shyr-Shyan Yeh,  $^{1,2}$  Jia-Wern Chen,  $^1$  and Yu-Jung Lu  $^{1,2}\ast$ 

<sup>1</sup>Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan <sup>2</sup>Department of Physics, National Taiwan University, Taipei 10617, Taiwan

\*To whom correspondence should be addressed.

\*E-mail: yujunglu@gate.sinica.edu.tw

#### This PDF file includes:

Note S1. Device fabrication

Note S2. Characterization of HfN thin films

Note S3. Simulated reflectance spectra of HfN metasurfaces under x- and y- polarized light illumination

Note S4. Simulated reflectance spectra of region I and II under x- and y-polarized light illumination

Note S5. HfN plasmonic metasurfaces before annealing

#### **Note S1. Device fabrication**

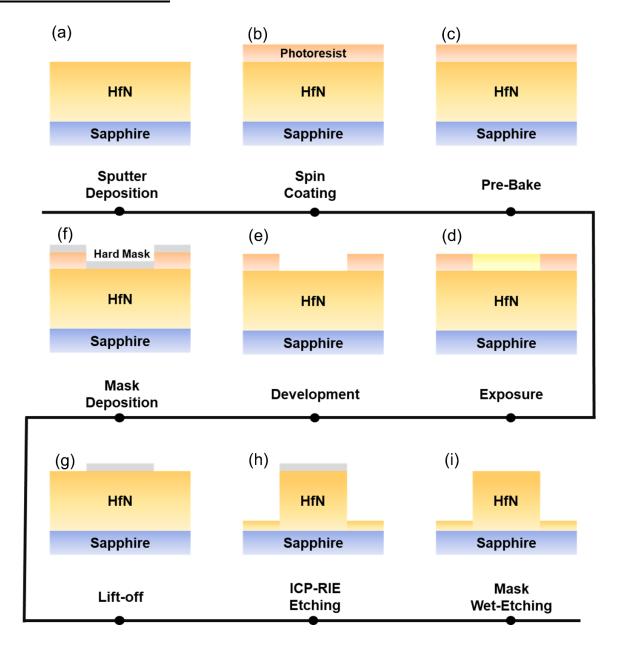
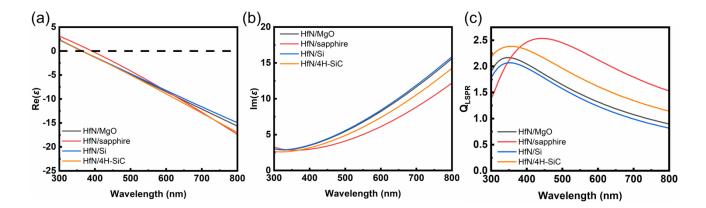




Figure S1. The fabrication process (side view) of the HfN patch antenna. (a) depositing HfN thin film on a sapphire substrate through sputtering. (b) spin-coating photoresist on as-prepared HfN thin film. (c) pre-baking photoresist before electron-beam exposure. (d) exposing the sample through a program-controlled electron beam. (e) developing the exposed area. (f) depositing Cr as the hard mask for the etching process through an electron-gun evaporator. (g) lifting off the residual photoresist and the Cr thereon. (h) etching the bare HfN through inductively coupled plasma reactive ion etching (ICP-RIE). (i) removing the Cr hard mask through Cr etchant to finish the HfN patch antenna fabrication process.

Note S2. Characterization of HfN thin films

| Sample                  | HfN on MgO           | HfN on<br>sapphire   | HfN on Si            | HfN on 4H-SiC        |  |
|-------------------------|----------------------|----------------------|----------------------|----------------------|--|
| Target                  | HfN                  | HfN                  | HfN                  | HfN                  |  |
| Base pressure (Torr)    | 1 × 10 <sup>-8</sup> |  |
| Growth pressure (mTorr) | 3                    | 3                    | 3                    | 3                    |  |
| Ar gas flow (sccm)      | 12                   | 12                   | 12                   | 12                   |  |
| RF bias (V)             | 360                  | 360                  | 360                  | 360                  |  |
| Growth temperature (°C) | 800                  | RT to 800            | 800                  | 800                  |  |
| Thickness (nm)          | 105                  | 105                  | 105                  | 105                  |  |

Table S1. Growth parameters of the HfN on MgO, sapphire, Si, and 4H-SiC by RF sputtering.

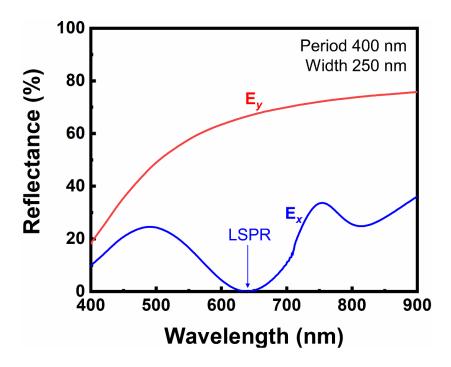


**Figure S2. (a)** real part and **(b)** imaginary part of permittivity of HfN thin films deposited on MgO, sapphire, Si, and 4H-SiC substrates. All the curves show the ENZ point at wavelengths shorter than 400 nm. The HfN film deposited on sapphire exhibits the lowest imaginary part of the dielectric function, which indicates reduced optical losses compared with those on other substrates. **(c)** The  $Q_{LSPR}$  derived from **(a)** and **(b)**. The HfN deposited on sapphire has the highest  $Q_{LSPR}$  in the visible and near-infrared region.

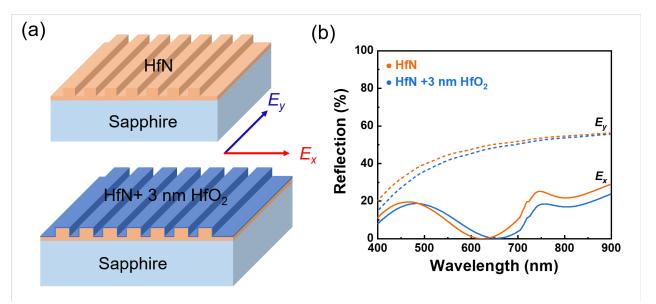
The complex permittivity of HfN films can be described by the Drude-Lorentz model measured by an angle-dependent spectroscopic ellipsometer (VASE, J.A. Woollam Company)[1], which accounts for both intraband and interband transitions. The equation of the Drude-Lorentz model is shown in Eq. (S1)

$$\varepsilon = \operatorname{Re}(\varepsilon) + i \operatorname{Im}(\varepsilon) = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 + i\Gamma\omega} + \sum_{j=1}^n \frac{f_j \cdot \omega_{0j}^2}{\omega_{0j}^2 - \omega^2 - i\gamma_j\omega},$$
 Eq.(S1)

Where complex permittivity  $\varepsilon$  is a function of the photon frequency, the first term  $\varepsilon_{\infty}$  is the permittivity in the condition of ultra-high frequency. The second term represents the Drude model, i.e., the interaction between conduction electrons and electromagnetic waves. The parameter  $\omega_p$  is the plasma frequency, and  $\Gamma$  is the collision rate. The third term relates to Lorentz oscillators, which account for the bound electrons contributing to optical absorption. The parameter  $f_j$  is the strength of the oscillator;  $\omega_{oj}$  is the resonant angular frequency; and  $\gamma_j$  is the damping factor.


|                  | High<br>frequency<br>permittivty | Drude term<br>(intraband) |           | Lorentz oscillator 1<br>(interband) |                      |                     | Lorentz oscillator 2<br>(interband) |                    |                     | ENZ<br>frequency       | Fitting<br>MSE |
|------------------|----------------------------------|---------------------------|-----------|-------------------------------------|----------------------|---------------------|-------------------------------------|--------------------|---------------------|------------------------|----------------|
| Parameter        | $\mathcal{E}_{\infty}$           | $\omega_p$ (eV)           | Γ<br>(eV) | f <sub>1</sub> (eV)                 | ω <sub>01</sub> (eV) | γ <sub>1</sub> (eV) | f <sub>2</sub> (eV)                 | $\omega_{o2}$ (eV) | γ <sub>2</sub> (eV) | ω <sub>s</sub><br>(eV) | MSE            |
| HfN on<br>MgO    | 3.38                             | 7.05                      | 0.63      | 14.43                               | 1.02                 | 2.15                | 5.87                                | 5.56               | 1.81                | 3.38                   | 1.38           |
| HfN on sapphire  | 3.54                             | 7.15                      | 0.54      | 15.77                               | 0.93                 | 1.95                | 5.95                                | 5.54               | 1.86                | 3.38                   | 1.59           |
| HfN on<br>Si     | 3.58                             | 6.95                      | 0.66      | 14.50                               | 1.04                 | 2.19                | 5.51                                | 5.36               | 1.65                | 3.38                   | 1.05           |
| HfN on<br>4H-SiC | 3.12                             | 7.20                      | 0.56      | 14.36                               | 0.95                 | 2.03                | 6.74                                | 5.77               | 1.89                | 3.38                   | 0.99           |

**Table S2.** Ellipsometry fitting parameters for the complex permittivity of HfN thin films on MgO, sapphire, Si, and 4H-SiC. The Drude-Lorentz model consists of a Drude term and two Lorentz oscillators.


| Growth<br>tempera<br>ture | High<br>frequency<br>permittivity | Drude<br>(intra |           | Lorentz oscillator 1<br>(interband) |                      |                     | Lorentz oscillator 2<br>(interband) |                      |                     | ENZ<br>freque<br>ncy | Fitting<br>MSE |
|---------------------------|-----------------------------------|-----------------|-----------|-------------------------------------|----------------------|---------------------|-------------------------------------|----------------------|---------------------|----------------------|----------------|
| T<br>(°C)                 | $\mathcal{E}_{\infty}$            | $\omega_p$ (eV) | Γ<br>(eV) | f <sub>1</sub> (eV)                 | ω <sub>01</sub> (eV) | γ <sub>1</sub> (eV) | f <sub>2</sub> (eV)                 | ω <sub>o2</sub> (eV) | γ <sub>2</sub> (eV) | $\omega_s$ (eV)      | MSE            |
| RT                        | 5.07                              | 4.04            | 1.06      | 18.62                               | 1.10                 | 1.50                | 2.60                                | 3.86                 | 2.69                | 2.28                 | 12.66          |
| 200                       | 4.31                              | 5.23            | 0.62      | 30.24                               | 0.83                 | 1.18                | 3.07                                | 4.98                 | 3.30                | 2.82                 | 7.01           |
| 400                       | 4.89                              | 6.05            | 0.56      | 31.08                               | 0.81                 | 1.18                | 2.83                                | 4.37                 | 2.37                | 3.02                 | 6.46           |
| 600                       | 4.91                              | 6.40            | 0.48      | 33.22                               | 0.76                 | 1.13                | 2.80                                | 4.45                 | 2.32                | 3.10                 | 6.82           |
| 800                       | 5.25                              | 6.16            | 0.53      | 34.16                               | 0.81                 | 1.02                | 2.79                                | 4.11                 | 1.83                | 3.14                 | 7.40           |

**Table S3.** Ellipsometry fitting parameters for the complex permittivity of HfN thin films on sapphire under different growth temperatures (RT, 200 °C, 400 °C, 600 °C, and 800 °C). The Drude-Lorentz model consists of a Drude term and two Lorentz oscillators.

## Note S3. Simulated reflectance spectra of HfN metasurfaces under x- and y- polarized light illumination



**Figure S3.** Simulated reflectance spectra of the HfN plasmonic metasurfaces with a period of 400 nm and a width of 250 nm under polarized light illumination (E<sub>x</sub> and E<sub>y</sub>).



**Figure S4.** The simulation shows that adding a 3 nm surface oxide layer (HfO<sub>2</sub>) on top of the designed nanostructure induces only a slight redshift of the LSPR peak (approximately 30 nm) and causes negligible changes in the resonance linewidth and contrast. The calculation results show that the presence of the surface oxide layer (HfO<sub>2</sub>) does not affect the polarization selectivity.

# Note S4. Simulated reflectance spectra of region I and II under x- and y-polarized light illumination

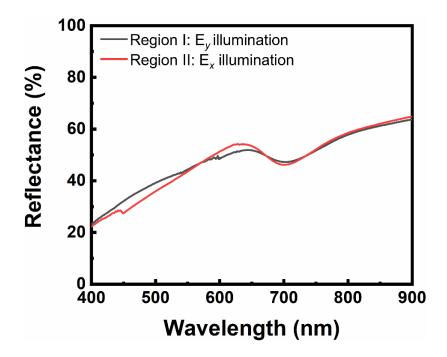
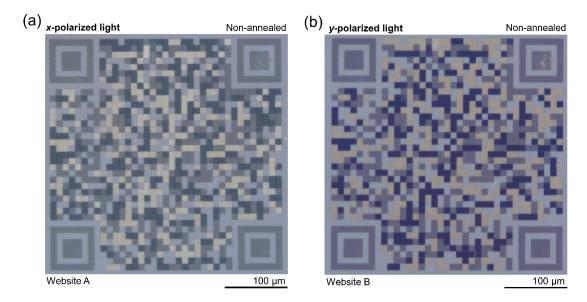
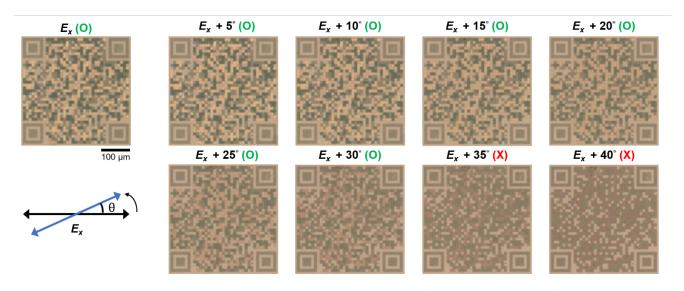
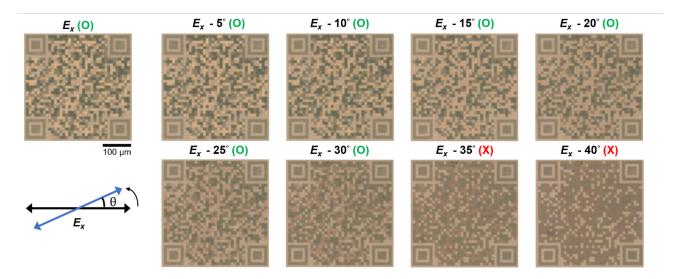
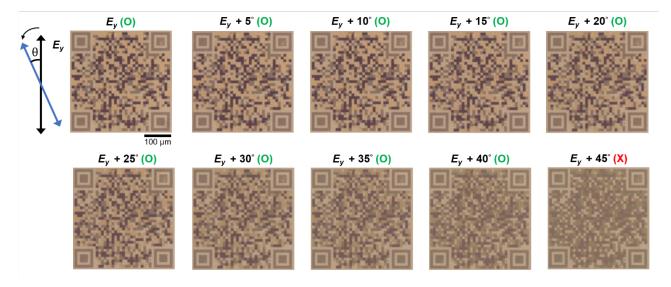




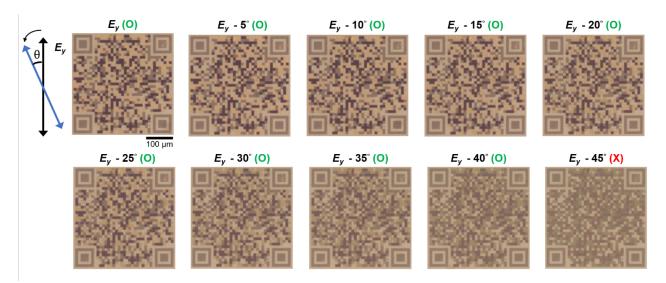

Figure S5. The simulated reflectance spectra of regions I and II under  $E_x$  and  $E_y$  illumination.


### Note S5. HfN plasmonic metasurfaces before annealing




**Figure S6.** Polarization-encoded color image encryption using refractory HfN metasurfaces before annealing. The fabricated QR code patterns are shown under (a) x-polarized and (b) y-polarized light illumination. Both patterns direct users to the same websites as the QR codes measured after 900 °C annealing: pattern (a) links to website A, and pattern (b) links to website B.




**Figure S7.** The encoded image remains clearly distinguishable for polarization angle deviations from  $0^{\circ}$  to  $30^{\circ}$  relative to the nominal *x*-polarization direction, and the QR code image links to website A. Beyond this range, the color contrast gradually decreases.



**Figure S8.** The encoded image remains clearly distinguishable for polarization angle deviations from  $0^{\circ}$  to  $-30^{\circ}$  relative to the nominal *x*-polarization direction, , and the QR code image links to website A. Beyond this range, the color contrast gradually decreases.



**Figure S9.** The encoded image remains clearly distinguishable for polarization angle deviations from  $0^{\circ}$  to  $40^{\circ}$  relative to the nominal y-polarization direction, and the QR code image links to website B. Beyond this range, the color contrast gradually decreases.



**Figure S10.** The encoded image remains clearly distinguishable for polarization angle deviations from  $0^{\circ}$  to  $-40^{\circ}$  relative to the nominal *y*-polarization direction, and the QR code image links to website B. Beyond this range, the color contrast gradually decreases.

### **Reference:**

[1]. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, "Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry," *Thin Solid Films, vol.* 516, pp. 7979-7989, 2008.