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Abstract: Photonic platforms have emerged as versatile and
powerful classical simulators of quantum dynamics, pro-
viding clean, controllable optical analogs of extended struc-
tured (i.e., crystalline) electronic systems. While most real-
izations to date have used only the fundamental mode at
each site, recent advances in structured light — particularly
the use of higher-order spatial modes, including those with
orbital angular momentum - are enabling richer dynamics
and new functionalities. These additional degrees of free-
dom facilitate the emulation of phenomena ranging from
topological band structures and synthetic gauge fields to
orbitronics. In this perspective, we discuss how exploiting
the internal structure of higher-order modes is reshaping
the scope and capabilities of photonic platforms for simu-
lating quantum phenomena.

Keywords: multimodes; polaritons; waveguide arrays;
orbitals; orbital angular momentum; photonic simulators

1 Introduction

Light has become an increasingly powerful medium for
exploring interference effects and transport phenomena in
extended structured systems (i.e., systems with extensive
degrees of freedom), making photonic platforms valuable
model systems for studying condensed matter physics. In
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solids, atoms form periodic lattices, and the electrons bound
to them no longer behave as if they were isolated. Instead,
their energy levels merge into bands, and the resulting band
structure determines whether a material is a conductor, an
insulator, or something more exotic, such as a superconduc-
tor or a topological insulator. Studying these effects directly
in real materials is extremely difficult, since they contain
astronomically many atoms and parameters cannot easily
be tuned. To overcome this, physicists turn to simplified
lattice models — mathematical descriptions (Hamiltonians)
that capture the essential physics. Photonic systems provide
an ideal platform to implement such lattice Hamiltonians
that can be described by tight-binding models: by arrang-
ing “photonic atoms” such as waveguides or micropillars
into lattices, one can mimic the behavior of electrons in
crystals.

To build intuition, consider a one-dimensional sys-
tem where a single photonic site — such as a waveguide,
micropillar, or cavity — plays the role of a potential well.
Each site hosts one or more modes with well-defined eigen-
values. Depending on the platform, these eigenvalues may
correspond to a propagation constant (in waveguides) or
a resonance frequency/energy (in cavities and polariton
lattices). When two sites are brought close together, their
modes hybridize, as light in these structures can couple
between neighboring sites: the original states split into
symmetric and antisymmetric superpositions, analogous
to bonding and antibonding orbitals in quantum mechan-
ics [1]. Extending this principle to many sites arranged in
a lattice gives rise to photonic bands, whose structure is
set by the lattice geometry and coupling strengths, mir-
roring the formation of electronic bands in solids [2]. For
example, take the case of a simple one-dimensional chain
of five sites with one internal degree of freedom per site.
In position space, the Hamiltonian can then be written as a
5 X 5 matrix, where the entries on the diagonal represent
the on-site potentials, and the entries on the off-diagonals
represent the coupling amplitudes between different sites.
This mapping is possible because the equations that gov-
ern light evolution in structured media are mathematically
analogous to the Schrodinger equation [3]. Thus, by care-
fully engineering spatial, temporal, and internal degrees
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of freedom, optical platforms can emulate the behavior of
particles evolving under tailored Hamiltonians, providing
insight into phenomena such as quantum transport [3]-[5],
localization [6]-[10], topological phases [11]-[21] and syn-
thetic gauge fields [22]-[28]. These classical simulators of
quantum dynamics offer remarkable control, enabling the
study of quantum-inspired dynamics in clean and tunable
environments often inaccessible in traditional condensed
matter systems.

Early implementations focused on the fundamental
mode of light in each site, for example, in waveguide arrays
to emulate single-particle dynamics in crystals. However,
waveguides can host a rich internal mode structure. Beyond
the fundamental mode, higher-order modes, including
those carrying orbital angular momentum (OAM), provide
additional degrees of freedom. Higher-order spatial modes
such as Hermite—Gauss p, and p, modes and modes car-
rying orbital angular momentum, resemble atomic orbitals
in their shape and symmetry (Figure 1) and constitute new
degrees of freedom [29]. These structured modes can encode
internal states, mediate inter-orbital couplings, and gen-
erate synthetic gauge fields. In a parallel development,
structured light [30] has offered dynamic, reconfigurable
control. By shaping light with tools such as spatial light
modulators, one can tune modal content and distribution
in photonic lattices on demand. These capabilities enable
the exploitation of orbital degrees of freedom to manipu-
late and transport information, a field often referred to as
“orbitronics” [31], [32], in analogy to “spintronics” in con-
densed matter systems [33]. Orbital degrees of freedom play
a crucial role in various topological phases in condensed
matter [34], [35]. Photonic orbitronics translates these ideas
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by treating each higher-order mode as an orbital degree of
freedom in alattice, enabling the study of orbital-dependent
transport and band-structure engineering in a fully tunable
platform.

In this perspective, we specifically focus on photonic
simulators that combine two essential ingredients: a spatial
structure of discrete sites, such as coupled waveguide arrays
or polariton lattices, and the presence of multiple internal
modes within each site. Of course, multimode physics is not
restricted to spatially structured simulators. Optical fibers,
free-space cavities, and frequency-domain multimode plat-
forms have already enabled remarkable advances in non-
linear optics, multimode lasing, quantum optics, communi-
cations, and photonic computing (see e.g. Refs. [36], [37]).
There is a rapidly growing literature on multimode quan-
tum optics and computational approaches that harness the
large Hilbert spaces of multimode photonic systems. Yet, a
comprehensive discussion of these directions lies outside
the scope of this perspective.

Instead, we concentrate on two platforms that exem-
plify the potential of higher-order modes in each site of a
lattice: photonic waveguide arrays and exciton—polariton
microcavities. In waveguide lattices, light propagation in
the paraxial regime follows the paraxial wave equation
that closely resembles the time-dependent Schrédinger
equation. This analogy allows for simulating quantum
mechanical phenomena by studying the spatial propaga-
tion of light in classical optics. By carefully controlling the
refractive index profile and coupling strengths between
waveguides, various quantum phenomena have been stud-
ied, including Bloch oscillations [38]-[41], disordered sys-
tems and Anderson localization [6], [8], [10], and topological
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Figure 1: Orbital degrees of freedom in waveguide lattices. (a) In a quantum mechanical potential well, modes are classified according to their
symmetry. The same can be done in step-index waveguides, where the effective refractive index plays the role of negative energy (i.e., the well is

flipped). Due to this analogy, we can label different Hermite - Gauss (HG) modes according to the notation used for atomic orbitals (b). Blue and red
color stand for phases with a difference of z. (c) Modes carrying a winding phase front, so-called OAM-modes, are composed of superpositions of HG
modes with complex coefficients. (d) Coupling between different orbitals can be achieved when their propagation constants f match. The propaga-
tion constants can be tuned via the refractive index difference An between two waveguides, or the shape of the waveguides. (d) Adapted with
permission from [29]. Copyrighted by the American Physical Society.
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effects [19], within the realm of classical optics. Exciton-
polariton microcavities, in contrast, rely on strong photon-
exciton coupling to create hybrid quasiparticles called
exciton—polaritons, which are governed by the driven-
dissipative Gross—Pitaevskii equation. These systems con-
sist of a quantum well placed between dielectric Bragg grat-
ings, where excitons, which are bound electron-hole pairs,
interact with confined photons to form polaritons. Polari-
ton lattices allow to study many-body phenomena, such as
Bose—Einstein condensation and superfluidity, as well as
nonequilibrium topological phases such as polariton-based
topological insulators.

Both platforms offer a level of control and observ-
ability rare in traditional condensed matter experiments:
defects, geometry, coupling strength, and boundaries can
be engineered on demand, and temporal evolution can be
directly imaged through spatial propagation in waveguides
or optical emission in cavities. This enables the systematic
exploration of single-particle effects in fundamental models
and the dynamic tuning of system parameters to emulate
quantum dynamics in clean, versatile settings.

In this perspective, we examine how orbital degrees of
freedom and structured light enrich photonic platforms. We
begin with waveguide-based classical simulators of quan-
tum dynamics, where higher-order spatial modes provide
powerful routes to engineer coupling, symmetry, and syn-
thetic fields beyond the ground-state paradigm.

2 Orbitals in photonic waveguide
lattices

Photonic waveguide arrays provide an experimentally
accessible setting to emulate quantum dynamics [3], [4].
By tightly focusing femtosecond laser pulses into a back-
ground medium, optical waveguides can be inscribed along
arbitrary three-dimensional paths within a transparent
medium. This process produces closely spaced higher-
index dielectric cores that confine light yet allow evanes-
cent coupling into neighboring guides. In a conventional
direct laser writing technique in fused silica [3], multi-
photon absorption induces local densification and the sub-
sequent increase in local refractive index [42], [43]. Alter-
natively, two-photon polymerization in a photosensitive
polymer resist (e.g., Nanoscribe) can fabricate an inverse
scaffold for subsequent void infiltration [12], [44], [45] or
directly write a higher-index polymer core [23]. Also, pho-
torefractive crystals [46]-[48] have been used to create
waveguide lattices. In all these platforms, each high-index
waveguide core serves as an artificial lattice site, while the

J. Noh et al.: Orbital frontiers: Higher modes in photonic simulators =3

coupling between adjacent waveguides mimics the quan-
tum tunneling of particles separated by a potential barrier.
The fundamental analogy underpinning this approach lies
in the mathematical correspondence between the paraxial
Helmbholtz equation for light propagation in a weakly guid-
ing medium
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and the time-dependent Schrédinger equation
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Szameit etal. and Longhi [3], [4], with the bulk
refractive index n,, refractive index variation An(x, y,z) =
n(x, y, z) — n,, wave vector in vacuum k,, mass m, and we
have set 7 = 1. In this analogy, the longitudinal propagation
direction z of the light takes the role of time, while variations
in the transverse refractive index n(x, y) take the role of
an effective potential V in the analogous Schrodinger-like
equation. Since light is guided in (or bound to) the material
with the higher refractive index, an increase in An acts
as a negative, i.e., an attractive potential V. In this regard,
arbitrary control of positions and refractive indices of each
waveguide allows for a controllability impossible to achieve
in solid-state systems.

This optical analogy enables the direct simulation of
dynamics over a range of physical systems. For example,
waveguide arrays have been used to model adiabatic state
transfer (e.g., STIRAP) [4], explore Dirac cones and edge
states in graphene-like lattices [49]-[52], and realize topo-
logical insulators [21], [44], [53], [54]. These experiments
are typically implemented using single-mode waveguides,
where each waveguide supports only the fundamental
mode, providing a straightforward mapping to tight-binding
models with a single electron per atomic site. However, real
condensed matter systems are far more intricate: atoms
may host multiple higher-energy orbitals (such as p- and d-
orbitals), whose angular structures allow electrons to carry
orbital angular momentum, which is a key ingredient of
many phenomena, starting with how an electron bonds with
other electrons to form a molecule.

Therefore, recent work in photonic simulators has
begun to explore the rich, underutilized modal struc-
ture available in multimode waveguides (see also [55]).
These higher-order spatial modes can be used to mimic
atomic orbitals or synthetic dimensions. Individual dielec-
tric waveguides can support multiple transverse eigen-
modes. The number of supported modes in a cylindrical
step-index waveguide is determined by its V-number - a
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function of core radius, wavelength, and refractive index
contrast. In analogy to quantum mechanical potential wells,
we can describe these modes in terms of their symme-
try, where the mode with the highest propagation constant
p (equivalent to highest effective refractive index) has a
Gaussian-like intensity profile. Modes subsequently lower
in g have an increasing number of nodes, i.e., they exhibit
m-changes in their phase-profile (Figure 1(a)). Within the
framework of Hamiltonian simulation, these modes are
frequently labeled using atomic orbital terminology: the
fundamental Hermite—Gauss mode HG,, is referred to as
the s-mode, while the first-order higher modes with nodal
planesare called p, and p,, corresponding to HG,, and HGy;,
respectively (Figure 1(b)). Note that the polarization of the
electric and magnetic field, which can be mapped to a spin
degree of freedom, is often neglected due to the very low
spin—orbit coupling in photonic systems with low refractive
index contrast [56], [57]. In radially symmetric waveguides,
an alternative basis to the HG modes can be formed by
modes carrying orbital angular momentum (OAM). These
are modes with an azimuthal phase term exp(il¢) exhibit-
ing a winding phase front (Figure 1(c)). Here, [ is the OAM
quantum number. By basis transformation, OAM modes can
be composed of superpositions of HG modes with complex
coefficients: for example, an OAM mode with [ = +1is given
by p, £ ip, [58], [59].

2.1 Inter-orbital coupling

Orbital modes form an orthogonal basis within a single
waveguide, and, due to their differing propagation con-
stants f, typically do not couple between neighboring
waveguides. However, just as the energy levels in a quan-
tum potential well can be tuned by altering its shape, the
modal propagation constants in a waveguide can be engi-
neered through modifications to the geometry and refrac-
tive index contrast of the structure. For instance, increas-
ing An (the index contrast between core and cladding)
raises the confinement of higher modes and can bring
the f-value of a p-mode closer to that of an s-mode in a
neighboring, unchanged, waveguide. This tuning enables
inter-orbital coupling across waveguides [29] (Figure 1(d)).
Notably, this coupling is not limited to static refrac-
tive index engineering. In Kerr-nonlinear waveguides,
intensity-dependent changes in the refractive index can
dynamically modify modal propagation constants. Due to
the distinct spatial field distributions of s- and p-modes, they
experience different degrees of nonlinear index shift
[60]. Nonlinear interactions can thus be harnessed to
enable intensity-tunable coupling between orbitals. This is
particularly exciting because it allows the system’s effective
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Hamiltonian to be reconfigured in real time, opening the
door to exploring nonlinear and mode-dependent phenom-
ena that are impossible in static structures.

Beyond refractive index tuning, the shape of the wave-
guide cross-section, such as its ellipticity, plays a crucial role
in defining the relative energy levels of supported modes.
By elongating the core along a particular axis, the propa-
gation constants of the corresponding eigenmodes can be
shifted. Furthermore, supersymmetry transformations in
photonic systems have also been applied to engineer mode-
conversion between paired optical modes [61]. The novelty
lies in designing synthetic structures where one mode can
be transformed into its supersymmetric partner, enabled by
refractive-index landscapes that map their propagation con-
stants, allowing controlled reshaping or routing of modes
within photonic lattices.

2.2 Orbitals can induce phases
in the coupling

One particularly intriguing consequence of inter-orbital
coupling is the induced phase in the coupling, which
depends on the direction along which waveguides are
arranged. For instance, coupling an s-mode in one wave-
guide to a p,-mode in another and back to an s-mode in a
third, where the three waveguides are arranged along the
x-axis, introduces a relative z-phase shift (i.e. a negative
sign) in the coupling amplitude (Figure 2(a)).

More broadly, the coupling phase between orbitals is
determined by the relative angle between waveguides. For
example, the coupling between two p,-modes is positive
when the orbitals are aligned along the x-axis but becomes
negative when aligned along the y-axis. The phase is thus
determined by the relative orientation of the waveguides
and can be tuned (Figure 2(b)) [63]. In particular, there are
specific relative orientations where the coupling amplitude
vanishes altogether. This property has been harnessed to
design flat bands and suppress nearest-neighbor hopping in
deformed photonic graphene lattices [63].

Even richer phenomena emerge when losses are intro-
duced into the system. In recent simulations, coupling
between OAM modes has been shown to exhibit non-
Hermitian behavior under carefully engineered configura-
tions [62]. The studied system consists of a single elliptical
multimode waveguide (with long axis pr and short axis
r/ p) coupled to a lossy single-mode waveguide (Figure 2(c)).
In the regime of large detuning 6 between their propa-
gation constants, the single-mode waveguide can be adi-
abatically eliminated, yielding an effective non-Hermitian
Hamiltonian. For a lossy single-mode waveguide with loss
y, such that 6 =iy, and for p =1, the system realizes



DE GRUYTER

J. Noh et al.: Orbital frontiers: Higher modes in photonic simulators == 5

J(6)
<}
a

6,

7

0.5 1.0 1.5

0, rad

Figure 2: Phases in the coupling amplitude appear depending on the orientation of the orbitals in the transverse plane. (a) The coupling amplitude /
of ans-to a p,- and back to an s-mode gains a z-phase flip, i.e. a negative sign (top). The coupling of s- and OAM-modes depends on the angle
between waveguides and the OAM quantum number (bottom). (b) The phase in the coupling between two p,-modes depends on the angle between
them. It can range from positive coupling, when two p,-modes are aligned along the x-axis (coupling J,), to a negative one for alignment along

the y-axis (coupling J,). At a certain “magic” angle 6, the coupling vanishes completely. (c) Coupling between a detuned and lossy s-mode waveguide
and an elliptical p-mode waveguide has been predicted to lead to non-Hermitian states [62]. (b) Adapted with permission from [63]. Copyright 2025
American Chemical Society. (c) Adapted with permission from [62] © Optica Publishing Group.

an anti-PT symmetric configuration, which suppresses
the symmetric superposition of OAM modes. A change
to p=1.02 and an angular orientation ¢ = x/4 instead
results in a PT-symmetry breaking transition, highlighting
the sensitivity of modal coupling to both geometry and
loss.

2.3 Synthetic gauge fields

Adding complex phase factors to the coupling between dif-
ferent orbitals presents a powerful method for generat-
ing synthetic flux within photonic waveguide arrays. Flux
is present when the phases accumulated in the hopping
along a closed path in the lattice do not amount to integer
multiples of 0 or 2z. Therefore, flux can be achieved by
carefully controlling the hybridization of different orbital
modes, such as s- and p-orbitals or s- and d-orbitals.
This method enables the realization of photonic bands
in various topological phases. Schulz et al. [45] demon-
strated experimentally a photonic quadrupole topological
insulator by using s- and p-orbital modes. These modes
were implemented as eigenmodes in waveguides fabri-
cated using direct laser writing in circular (for s-modes)
and elliptical (for p-orbitals) shapes to induce synthetic x
magnetic flux in a plaquette (Figure 3(a)). The non-trivial
topology via this approach was confirmed by observing
topologically-protected zero-dimensional corner states [64].
Extending this multiorbital approach, researchers have the-
oretically engineered photonic Mobius topological insula-
tors in waveguide arrays using inter-orbital coupling to
generate synthetic gauge flux. By coupling different orbital
modes — s and d (Figure 3(b)) [65] or s and p [66] — they
created a synthetic r flux, leading to a projective translation
symmetry. Breaking this symmetry transforms the system
into a topological insulator with Mobius twisted edge bands.

The 4x periodicity of these bands leads to two twisted edge
states for each transverse Bloch momentum which can be
selectively stimulated for opposite beam transport. Addi-
tionally, Liu et al. [66] showed that this technique can trans-
form a Dirac semimetal into a Weyl-like semimetal with flat
bands.

In rotationally symmetric waveguides, a natural modal
basis consists of OAM modes, which possess azimuthally
varying phase fronts and ring-shaped intensity, carrying an
integer topological charge [, encoding the quantized angular
momentum of the mode. This spatial phase structure makes
OAM an effective tool for inducing synthetic gauge fields in
photonic systems and mimicking the behavior of charged
particles in magnetic fields. The coupling between two OAM
modes of differing topological charge [, and [, introduces
a phase factor that scales as o exp(i(l; — ,)p) with the
azimuthal angle @ between waveguides (Figure 2(a)) [23],
[68]. In certain lattice geometries, such as a rhombic lat-
tice (also known as a diamond chain), this phase structure
enables the realization of synthetic magnetic fields.

In this context, Jorg et al. [23] experimentally demon-
strated synthetic gauge fields by injecting first-order OAM
modes (I = +1) into a diamond-chain lattice of direct laser-
written optical waveguides. They showed that the system
can effectively be decoupled into two sets with z-fluxes
threading the plaquettes of each [23]. The prevalence of
this z-flux was confirmed through Aharonov-Bohm (AB)
caging experiments (Figure 3(c)), where interference due to
the flux leads to a periodic return of the intensity to the
central waveguide (so-called caging). In contrast, injected
light without OAM disperses transversely. This highlights
that higher-order and OAM modes allow one to dynami-
cally and externally tune the properties of a given photonic
lattice, simply by changing the light input. This dynamic
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Figure 3: Gauge fields induced via higher orbitals or OAM in photonic waveguide lattices. (a) Elliptical waveguides in a 2D SSH lattice create fluxes
that lead to the formation of corner states in higher-order topological insulators [45]. (b) d-modes in a 2D lattice give rise to a topological M6bius
insulator [65]. (c) In a diamond chain, light with OAM of |/| = 1 creates a z-flux, leading to Aharonov-Bohm caging (a return of the intensity to the
excited waveguide after a certain propagation distance period), while light with vanishing OAM disperses [23]. (d) Similarly, p,-modes in a diamond
chain create a flux of z [67]. (b) Adapted with permission from [65]. © Optica Publishing Group. (d) Adapted with permission from [67]. Copyright

2022 by the American Physical Society.

control paves the way for scalable and reconfigurable topo-
logical photonic devices [23], [58]. The same caging effect
can also be achieved by replacing every second central site
with a p-mode waveguide instead of using OAM modes
(Figure 3(d)) [67].

Following this work, Wang et al. [58] and Jiang et al. [59]
theoretically explored complementary methods. Wang et al.
proposed an alternative method to generate synthetic gauge
fields using the hybridization of fundamental (I = 0) and
first-order OAM modes in a zigzag array. Jiang et al. also the-
oretically investigated topological bound modes with first-
order OAM modes in zigzag waveguide arrays, effectively
mimicking the Creutz ladder model [59]. Their research
highlighted that topological propagation can be uniquely
influenced by OAM, and they also presented the orientation
angle of elliptical waveguides as an extra degree of freedom,
providing an enhanced control method for these topological
bound modes. OAM modes on a zigzag chain with tunable
angle between waveguides have also been suggested to real-
ize arbitrary fluxes on a photonic diamond chain lattice,
which can be decorated with impurities. This leads to a
flux-mediated Su-Schrieffer—Heeger (SSH) model, demon-
strating how tuning impurity placement and flux enables
engineering topologically nontrivial band structures and
robust edge modes [69].

In addition to synthetic fluxes, the inherent anisotropy
of p-orbitals alone has allowed for the realization of a
variety of topological phenomena, first explored in polari-
ton lattices. While the anisotropy of p-orbital hopping has
been extensively studied in polariton systems, its potential
extensions in waveguide-based platforms remain largely
unexplored. Recent experiments have demonstrated the

utility of p-orbital modes in realizing higher-order topolog-
ical bands in laser-written optical waveguide arrays [48],
[70].

3 Higher modes in polariton
lattices

The orbital degree of freedom provides an additional
dimension in platforms where photon—-photon interactions
are non-negligible. For example, higher modes also play a
significant role in lattices of exciton—polariton condensates,
where the interaction of the excitonic component of the
polariton affects the photonic component.

An exciton-polariton is a quasiparticle that behaves
partly like a photon and partly like an electron-hole pair.
To investigate them, a microcavity consisting of a quantum
well (QW) surrounded by dielectric Bragg gratings (DBG)
on both sides, acting as cavity mirrors, is commonly used
(Figure 4(a)). The space between the cavity mirrors is so
small that only a single longitudinal light mode can be
excited in the quantum well. Therefore, the longitudinal
mode k, of the photons inside the cavity is fixed, and the
dispersion relation of the photon is that of a (very light)
massive particle. The rest mass of the photon — the bottom of
its dispersion relation — can be tuned via varying the cavity
length.

Inside these semiconductor quantum wells, excitons
can be excited. An exciton is an electron-hole pair in an
insulator or a semimetal that is bound together by the
Coulomb force. Due to the presence of a bandgap, excitons
emit photons when they decay. Since the mass of the exciton
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Figure 4: Higher modes in polariton lattices. (a) A zig-zag array of coupled polariton cavities with p-modes acts as a Su-Schrieffer-Heeger system.
The sketch on the side shows the different layers of an exciton-polariton cavity, a quantum well (QW) in an optical cavity consisting of two dielectric
Bragg gratings (DBR). The picture on the bottom shows the light emission of the spectrally isolated and localized topological edge mode [72].

(b) Dispersion relation: the dispersion relation of a photon in the cavity is parabolic, while that of an exciton is, in comparison, flat. Due to the coupling
between the two particles, the polariton dispersion relation splits into an upper and a lower polariton branch (UPD and LPB, respectively). (c) Sketch
of how a structured pump beam acts as a repulsive potential for polaritons. Lattices can be constructed such that polaritons populate vortex modes
on each lattice site [73]. (d) Measured emission (intensity right and phase left) of a polariton vortex lattice. The OAM of the vortex modes arrange
themselves in the same way as spins would do in an Ising lattice [73]. (a) Reprinted with permission from [72], Copyright © 2017 Springer Nature.

(c) and (d) Copyright © 2024, The American Association for the Advancement of Science.

is much larger than the effective mass of the photon, its dis-
persion relation is much flatter (Figure 4(b)). If the photon
energy and the exciton energy are close, strong light—-matter
interaction occurs, and polaritons — the superposition of
photons and excitons — are formed. Here, the polariton
dispersion relation splits into an upper and a lower branch
due to the strong coupling. Because of the excitonic fraction
of the polariton, polaritons can interact with each other via
the Coulomb force and exchange momentum and energy,
and thermalize into a ground state [71]. Also, due to the
excitonic fraction, polaritons react to a magnetic field, as
shown in [20]. Polaritons in a cavity can be excited either
optically or electrically.

In platforms supporting polaritons, lattice structures
can be implemented by structuring the cavity (often done by
etching parts of the upper mirror as seen in Figure 4(a)) or
by pumping the cavity with a structured pump beam. When
the cavity is structured, the diameter of the individual lattice
points can be chosen large enough so that higher modes,
such as p-modes and d-modes, can be excited [72], [74], [75].
In particular, the transformation from isotropic s-orbital
modes to anisotropic p-orbital modes further demonstrates
the versatility of polariton systems, enabling richer and
more complex band structures even without synthetic
gauge fields. Key discoveries include the emergence of Dirac
cones and a flathand in a honeycomb lattice [76], the demon-
stration of p-orbital Su—Schrieffer—Heeger (SSH) edge states
and their lasing behavior [72], [77] (see Figure 4(a)), and the
realization of p-orbital edge states in a 2D photonic honey-
comb lattice [78]. Significantly, photonic p-orbital graphene
was the platform for the first experimental observation of
critically tilted (Type-III) Dirac cones, in addition to semi-
Dirac and tilted Type-I Dirac cones [79].

In contrast to etched structures, if the potential land-
scape is created by the structure of the pump beam, the
potential can be adjusted dynamically. Tosi et al. showed
that the pump beam can be used, not solely as a particle
source, but also in order to define a potential [80]. This is
possible due to the repulsive interaction between polari-
tons that can be mathematically described in a mean-field
approximation as a repulsive density-dependent potential.
Where the cavity is pumped locally, a high polariton density
is created. This high polariton density acts as a repulsive
potential, which can cause the polaritons to settle in the
spaces between the pumped areas during thermalization
[80], [81]. Alyatkin et al. showed later that it depends on the
pump spot geometry whether polaritons condense at the
pump spots or in between, and created a lattice structure
that hosted p-orbital flat bands [82]. By selectively pumping
cavities and creating these repulsive potentials, polaritons
in stable vortex modes with OAM = +1 and/or circular
polarization were experimentally excited and manipulated
[83], [84]. The modes with OAM = +1 are stable since they
represent an attractor in these structured polariton systems.
The generation and precise manipulation of stable vortices
are important with respect to using polariton vortices in
information processing.

The excitation of modes with higher OAM has also been
investigated theoretically [85], [86]. However, even with sys-
tems that aim for OAM +1modes, it is possible to investigate
optically complex systems that cannot be replicated with s-
mode lattice systems. For example, it was demonstrated that
in lattices of coupled polariton vortex modes (Figure 4(c)
and (d)), the OAM modes orient themselves in the same way
as spins arrange in an Ising lattice. The authors also showed
that by varying the coupling between the vortex sites, they
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can choose to observe a ferromagnetic or antiferromagnetic
arrangement [73].

4 Perspective

Having reviewed current implementations of higher modes
in photonic simulators of quantum dynamics, we now
present our perspective on the emerging directions and
future opportunities in the field.

Looking ahead, orbital modes in photonic platforms
with many sites offer a promising route to explore concepts
from orbitronics — the study and control of orbital degrees
of freedom for information processing in solid-state sys-
tems. In electronic materials, orbital transport is often inter-
twined with spin and charge dynamics, making it difficult to
isolate and study the pure role of orbital motion. In contrast,
photonic waveguide lattices naturally support structured
light modes that resemble atomic orbitals, but are free from
spin-orbit coupling and Coulomb interactions. This makes
them ideal platforms to disentangle orbital-specific effects
from other degrees of freedom. Higher orbitals can enable
versatile device functionalities with topological protection,
especially when combined with synthetic dimensions [87]
and nonlinear effects [88]. Theoretical frameworks based
on symmetry indicators and band representations [89], [90]
have already categorized phases that are intimately related
to orbital degrees of freedom, leading to the realization of
multipolar and higher-order topological bands [91], [92].

By selectively exciting and coupling orbital modes, one
can emulate orbital currents, design lattices with orbital-
dependent hopping, and possibly realize analogs of orbital
Chern insulators — topological phases driven solely by
orbital motion. Recent theoretical work has also begun to
explore the interface between non-Hermitian and orbital
systems. This suggests that structured photonic lattices
could also be used to probe exotic effects like the orbital skin
effect [93], [94], where breaking time reversal and parity
symmetries could lead to orbital-dependent nonreciprocal
dynamics and boundary localization.

Orbital modes may also shape defect-bound states.
Topological defects carrying torsion or curvature singulari-
ties can confine modes at their core, typically stabilized by
a bulk gap [95]. Controlling the orbital character of these
modes could enforce a symmetry mismatch with bulk states,
enabling confinement even without a gap. This suggests a
new class of defect-bound states in the continuum [96], [97].
Breaking symmetries could then turn them into tunable res-
onances, providing a mechanism for controllable coupling.

Kerr nonlinearity provides another powerful route.
Recent advances in multimode nonlinear photonics may
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expand the degree of control over orbital modes. Reconfig-
urable platforms and nanofabricated structures could allow
dynamic tuning of orbital coupling and synthetic gauge
fields. Additionally, computational tools, such as physics-
informed machine learning and optimization algorithms
developed for multimode systems, can be adapted to design
orbital-specific couplings that lead to topological bands
with high precision. Recent work also links band topol-
ogy with solitons in the Gross—Pitaevskii equation, showing
that solitons can inherit the position and symmetry rep-
resentation of the Wannier orbital from which they bifur-
cate [98], [99]. This enables orbital-selective excitation of
soliton modes, offering new control of nonlinear dynam-
ics. At the same time, weak Kerr nonlinearities in fibers
reveal conserved thermodynamic properties of mode popu-
lations [100]-[103]. Extending these ideas to coupled arrays
could uncover collective effects such as mode-resolved ther-
malization, energy transport, and non-equilibrium steady
states, providing insights into many-body dynamics. These
advancements may broaden the scope of orbital-mode
research, leading to adaptable systems capable of exploring
intricate quantum phenomena.

Dynamic modulation offers yet another direction.
Time-periodic variations, such as shaping a waveguide
along the propagation axis, can couple onsite orbital modes
that would otherwise remain decoupled. This Floquet engi-
neering allows effective Hamiltonians with tailored band
structures, symmetry breaking, or synthetic gauge fields.
Dynamically driven orbital hybridization could simulate
exotic topological phases.

In conclusion, orbital degrees of freedom in photonic
simulators are only beginning to reveal their potential. They
open a rich landscape for devices with new functionalities
and to emulate quantum dynamics. From synthetic gauge
fields to orbital thermodynamics, these systems provide
new opportunities for Hamiltonian simulation — and much
remains to be discovered.
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