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Abstract: Photonic platformshave emerged as versatile and

powerful classical simulators of quantum dynamics, pro-

viding clean, controllable optical analogs of extended struc-

tured (i.e., crystalline) electronic systems. While most real-

izations to date have used only the fundamental mode at

each site, recent advances in structured light – particularly

the use of higher-order spatial modes, including those with

orbital angular momentum – are enabling richer dynamics

and new functionalities. These additional degrees of free-

dom facilitate the emulation of phenomena ranging from

topological band structures and synthetic gauge fields to

orbitronics. In this perspective, we discuss how exploiting

the internal structure of higher-order modes is reshaping

the scope and capabilities of photonic platforms for simu-

lating quantum phenomena.

Keywords:multimodes; polaritons; waveguide arrays;

orbitals; orbital angular momentum; photonic simulators

1 Introduction

Light has become an increasingly powerful medium for

exploring interference effects and transport phenomena in

extended structured systems (i.e., systems with extensive

degrees of freedom), making photonic platforms valuable

model systems for studying condensed matter physics. In
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solids, atoms formperiodic lattices, and the electrons bound

to them no longer behave as if they were isolated. Instead,

their energy levelsmerge into bands, and the resulting band

structure determines whether a material is a conductor, an

insulator, or something more exotic, such as a superconduc-

tor or a topological insulator. Studying these effects directly

in real materials is extremely difficult, since they contain

astronomically many atoms and parameters cannot easily

be tuned. To overcome this, physicists turn to simplified

lattice models – mathematical descriptions (Hamiltonians)

that capture the essential physics. Photonic systems provide

an ideal platform to implement such lattice Hamiltonians

that can be described by tight-binding models: by arrang-

ing “photonic atoms” such as waveguides or micropillars

into lattices, one can mimic the behavior of electrons in

crystals.

To build intuition, consider a one-dimensional sys-

tem where a single photonic site – such as a waveguide,

micropillar, or cavity – plays the role of a potential well.

Each site hosts one or more modes with well-defined eigen-

values. Depending on the platform, these eigenvalues may

correspond to a propagation constant (in waveguides) or

a resonance frequency/energy (in cavities and polariton

lattices). When two sites are brought close together, their

modes hybridize, as light in these structures can couple

between neighboring sites: the original states split into

symmetric and antisymmetric superpositions, analogous

to bonding and antibonding orbitals in quantum mechan-

ics [1]. Extending this principle to many sites arranged in

a lattice gives rise to photonic bands, whose structure is

set by the lattice geometry and coupling strengths, mir-

roring the formation of electronic bands in solids [2]. For

example, take the case of a simple one-dimensional chain

of five sites with one internal degree of freedom per site.

In position space, the Hamiltonian can then be written as a

5 × 5 matrix, where the entries on the diagonal represent

the on-site potentials, and the entries on the off-diagonals

represent the coupling amplitudes between different sites.

This mapping is possible because the equations that gov-

ern light evolution in structured media are mathematically

analogous to the Schrödinger equation [3]. Thus, by care-

fully engineering spatial, temporal, and internal degrees
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of freedom, optical platforms can emulate the behavior of

particles evolving under tailored Hamiltonians, providing

insight into phenomena such as quantum transport [3]–[5],

localization [6]–[10], topological phases [11]–[21] and syn-

thetic gauge fields [22]–[28]. These classical simulators of

quantum dynamics offer remarkable control, enabling the

study of quantum-inspired dynamics in clean and tunable

environments often inaccessible in traditional condensed

matter systems.

Early implementations focused on the fundamental

mode of light in each site, for example, in waveguide arrays

to emulate single-particle dynamics in crystals. However,

waveguides can host a rich internalmode structure. Beyond

the fundamental mode, higher-order modes, including

those carrying orbital angular momentum (OAM), provide

additional degrees of freedom. Higher-order spatial modes

such as Hermite–Gauss p
x
and p

y
modes and modes car-

rying orbital angular momentum, resemble atomic orbitals

in their shape and symmetry (Figure 1) and constitute new

degrees of freedom [29]. These structuredmodes can encode

internal states, mediate inter-orbital couplings, and gen-

erate synthetic gauge fields. In a parallel development,

structured light [30] has offered dynamic, reconfigurable

control. By shaping light with tools such as spatial light

modulators, one can tune modal content and distribution

in photonic lattices on demand. These capabilities enable

the exploitation of orbital degrees of freedom to manipu-

late and transport information, a field often referred to as

“orbitronics” [31], [32], in analogy to “spintronics” in con-

densedmatter systems [33]. Orbital degrees of freedom play

a crucial role in various topological phases in condensed

matter [34], [35]. Photonic orbitronics translates these ideas

by treating each higher-order mode as an orbital degree of

freedom in a lattice, enabling the study of orbital-dependent

transport and band-structure engineering in a fully tunable

platform.

In this perspective, we specifically focus on photonic

simulators that combine two essential ingredients: a spatial

structure of discrete sites, such as coupledwaveguide arrays

or polariton lattices, and the presence of multiple internal

modes within each site. Of course, multimode physics is not

restricted to spatially structured simulators. Optical fibers,

free-space cavities, and frequency-domain multimode plat-

forms have already enabled remarkable advances in non-

linear optics, multimode lasing, quantum optics, communi-

cations, and photonic computing (see e.g. Refs. [36], [37]).

There is a rapidly growing literature on multimode quan-

tum optics and computational approaches that harness the

large Hilbert spaces of multimode photonic systems. Yet, a

comprehensive discussion of these directions lies outside

the scope of this perspective.

Instead, we concentrate on two platforms that exem-

plify the potential of higher-order modes in each site of a

lattice: photonic waveguide arrays and exciton–polariton

microcavities. In waveguide lattices, light propagation in

the paraxial regime follows the paraxial wave equation

that closely resembles the time-dependent Schrödinger

equation. This analogy allows for simulating quantum

mechanical phenomena by studying the spatial propaga-

tion of light in classical optics. By carefully controlling the

refractive index profile and coupling strengths between

waveguides, various quantum phenomena have been stud-

ied, including Bloch oscillations [38]–[41], disordered sys-

tems and Anderson localization [6], [8], [10], and topological

(a) (b) (c) (d)

Figure 1: Orbital degrees of freedom in waveguide lattices. (a) In a quantum mechanical potential well, modes are classified according to their

symmetry. The same can be done in step-index waveguides, where the effective refractive index plays the role of negative energy (i.e., the well is

flipped). Due to this analogy, we can label different Hermite–Gauss (HG) modes according to the notation used for atomic orbitals (b). Blue and red

color stand for phases with a difference of 𝜋. (c) Modes carrying a winding phase front, so-called OAM-modes, are composed of superpositions of HG

modes with complex coefficients. (d) Coupling between different orbitals can be achieved when their propagation constants 𝛽 match. The propaga-

tion constants can be tuned via the refractive index differenceΔn between two waveguides, or the shape of the waveguides. (d) Adapted with
permission from [29]. Copyrighted by the American Physical Society.



J. Noh et al.: Orbital frontiers: Higher modes in photonic simulators — 3

effects [19], within the realm of classical optics. Exciton-

polariton microcavities, in contrast, rely on strong photon-

exciton coupling to create hybrid quasiparticles called

exciton–polaritons, which are governed by the driven-

dissipative Gross–Pitaevskii equation. These systems con-

sist of a quantumwell placed between dielectric Bragg grat-

ings, where excitons, which are bound electron-hole pairs,

interact with confined photons to form polaritons. Polari-

ton lattices allow to study many-body phenomena, such as

Bose–Einstein condensation and superfluidity, as well as

nonequilibrium topological phases such as polariton-based

topological insulators.

Both platforms offer a level of control and observ-

ability rare in traditional condensed matter experiments:

defects, geometry, coupling strength, and boundaries can

be engineered on demand, and temporal evolution can be

directly imaged through spatial propagation in waveguides

or optical emission in cavities. This enables the systematic

exploration of single-particle effects in fundamental models

and the dynamic tuning of system parameters to emulate

quantum dynamics in clean, versatile settings.

In this perspective, we examine how orbital degrees of

freedom and structured light enrich photonic platforms.We

begin with waveguide-based classical simulators of quan-

tum dynamics, where higher-order spatial modes provide

powerful routes to engineer coupling, symmetry, and syn-

thetic fields beyond the ground-state paradigm.

2 Orbitals in photonic waveguide

lattices

Photonic waveguide arrays provide an experimentally

accessible setting to emulate quantum dynamics [3], [4].

By tightly focusing femtosecond laser pulses into a back-

ground medium, optical waveguides can be inscribed along

arbitrary three-dimensional paths within a transparent

medium. This process produces closely spaced higher-

index dielectric cores that confine light yet allow evanes-

cent coupling into neighboring guides. In a conventional

direct laser writing technique in fused silica [3], multi-

photon absorption induces local densification and the sub-

sequent increase in local refractive index [42], [43]. Alter-

natively, two-photon polymerization in a photosensitive

polymer resist (e.g., Nanoscribe) can fabricate an inverse

scaffold for subsequent void infiltration [12], [44], [45] or

directly write a higher-index polymer core [23]. Also, pho-

torefractive crystals [46]–[48] have been used to create

waveguide lattices. In all these platforms, each high-index

waveguide core serves as an artificial lattice site, while the

coupling between adjacent waveguides mimics the quan-

tum tunneling of particles separated by a potential barrier.

The fundamental analogy underpinning this approach lies

in the mathematical correspondence between the paraxial

Helmholtz equation for light propagation in a weakly guid-

ing medium

i𝜕zEel(x, y, z) =
[
−

∇2
⊥

2n0k0
− k0Δn(x, y, z)

]
Eel(x, y, z),

and the time-dependent Schrödinger equation

i𝜕tΨ(x, y, t) =
[
−
∇2

⊥

2m
+ V(x, y, t)

]
Ψ(x, y, t).

Szameit et al. and Longhi [3], [4], with the bulk

refractive index n0, refractive index variation Δn(x, y, z) =
n(x, y, z)− n0, wave vector in vacuum k0, mass m, and we

have set ℏ = 1. In this analogy, the longitudinal propagation

direction z of the light takes the role of time,while variations

in the transverse refractive index n(x, y) take the role of

an effective potential V in the analogous Schrödinger-like

equation. Since light is guided in (or bound to) the material

with the higher refractive index, an increase in Δn acts

as a negative, i.e., an attractive potential V . In this regard,

arbitrary control of positions and refractive indices of each

waveguide allows for a controllability impossible to achieve

in solid-state systems.

This optical analogy enables the direct simulation of

dynamics over a range of physical systems. For example,

waveguide arrays have been used to model adiabatic state

transfer (e.g., STIRAP) [4], explore Dirac cones and edge

states in graphene-like lattices [49]–[52], and realize topo-

logical insulators [21], [44], [53], [54]. These experiments

are typically implemented using single-mode waveguides,

where each waveguide supports only the fundamental

mode, providing a straightforwardmapping to tight-binding

models with a single electron per atomic site. However, real

condensed matter systems are far more intricate: atoms

may host multiple higher-energy orbitals (such as p- and d-

orbitals), whose angular structures allow electrons to carry

orbital angular momentum, which is a key ingredient of

manyphenomena, startingwith howan electronbondswith

other electrons to form a molecule.

Therefore, recent work in photonic simulators has

begun to explore the rich, underutilized modal struc-

ture available in multimode waveguides (see also [55]).

These higher-order spatial modes can be used to mimic

atomic orbitals or synthetic dimensions. Individual dielec-

tric waveguides can support multiple transverse eigen-

modes. The number of supported modes in a cylindrical

step-index waveguide is determined by its V-number – a
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function of core radius, wavelength, and refractive index

contrast. In analogy to quantummechanical potential wells,

we can describe these modes in terms of their symme-

try, where the mode with the highest propagation constant

𝛽 (equivalent to highest effective refractive index) has a

Gaussian-like intensity profile. Modes subsequently lower

in 𝛽 have an increasing number of nodes, i.e., they exhibit

𝜋-changes in their phase-profile (Figure 1(a)). Within the

framework of Hamiltonian simulation, these modes are

frequently labeled using atomic orbital terminology: the

fundamental Hermite–Gauss mode HG00 is referred to as

the s-mode, while the first-order higher modes with nodal

planes are called p
x
and p

y
, corresponding toHG10 andHG01,

respectively (Figure 1(b)). Note that the polarization of the

electric and magnetic field, which can be mapped to a spin

degree of freedom, is often neglected due to the very low

spin–orbit coupling in photonic systemswith low refractive

index contrast [56], [57]. In radially symmetric waveguides,

an alternative basis to the HG modes can be formed by

modes carrying orbital angular momentum (OAM). These

are modes with an azimuthal phase term exp(il𝜙) exhibit-

ing a winding phase front (Figure 1(c)). Here, l is the OAM

quantum number. By basis transformation, OAMmodes can

be composed of superpositions of HG modes with complex

coefficients: for example, an OAMmodewith l = ±1 is given
by p

x
± ip

y
[58], [59].

2.1 Inter-orbital coupling

Orbital modes form an orthogonal basis within a single

waveguide, and, due to their differing propagation con-

stants 𝛽 , typically do not couple between neighboring

waveguides. However, just as the energy levels in a quan-

tum potential well can be tuned by altering its shape, the

modal propagation constants in a waveguide can be engi-

neered through modifications to the geometry and refrac-

tive index contrast of the structure. For instance, increas-

ing Δn (the index contrast between core and cladding)

raises the confinement of higher modes and can bring

the 𝛽-value of a p-mode closer to that of an s-mode in a

neighboring, unchanged, waveguide. This tuning enables

inter-orbital coupling across waveguides [29] (Figure 1(d)).

Notably, this coupling is not limited to static refrac-

tive index engineering. In Kerr-nonlinear waveguides,

intensity-dependent changes in the refractive index can

dynamically modify modal propagation constants. Due to

the distinct spatial field distributions of s- and p-modes, they

experience different degrees of nonlinear index shift

[60]. Nonlinear interactions can thus be harnessed to

enable intensity-tunable coupling between orbitals. This is

particularly exciting because it allows the system’s effective

Hamiltonian to be reconfigured in real time, opening the

door to exploring nonlinear and mode-dependent phenom-

ena that are impossible in static structures.

Beyond refractive index tuning, the shape of the wave-

guide cross-section, such as its ellipticity, plays a crucial role

in defining the relative energy levels of supported modes.

By elongating the core along a particular axis, the propa-

gation constants of the corresponding eigenmodes can be

shifted. Furthermore, supersymmetry transformations in

photonic systems have also been applied to engineer mode-

conversion between paired optical modes [61]. The novelty

lies in designing synthetic structures where one mode can

be transformed into its supersymmetric partner, enabled by

refractive-index landscapes thatmap their propagation con-

stants, allowing controlled reshaping or routing of modes

within photonic lattices.

2.2 Orbitals can induce phases
in the coupling

One particularly intriguing consequence of inter-orbital

coupling is the induced phase in the coupling, which

depends on the direction along which waveguides are

arranged. For instance, coupling an s-mode in one wave-

guide to a p
x
-mode in another and back to an s-mode in a

third, where the three waveguides are arranged along the

x-axis, introduces a relative 𝜋-phase shift (i.e. a negative

sign) in the coupling amplitude (Figure 2(a)).

More broadly, the coupling phase between orbitals is

determined by the relative angle between waveguides. For

example, the coupling between two p
y
-modes is positive

when the orbitals are aligned along the x-axis but becomes

negative when aligned along the y-axis. The phase is thus

determined by the relative orientation of the waveguides

and can be tuned (Figure 2(b)) [63]. In particular, there are

specific relative orientations where the coupling amplitude

vanishes altogether. This property has been harnessed to

design flat bands and suppress nearest-neighbor hopping in

deformed photonic graphene lattices [63].

Even richer phenomena emerge when losses are intro-

duced into the system. In recent simulations, coupling

between OAM modes has been shown to exhibit non-

Hermitian behavior under carefully engineered configura-

tions [62]. The studied system consists of a single elliptical

multimode waveguide (with long axis 𝜌r and short axis

r∕𝜌) coupled to a lossy single-modewaveguide (Figure 2(c)).
In the regime of large detuning 𝛿 between their propa-

gation constants, the single-mode waveguide can be adi-

abatically eliminated, yielding an effective non-Hermitian

Hamiltonian. For a lossy single-mode waveguide with loss

𝛾 , such that 𝛿 = i𝛾 , and for 𝜌 = 1, the system realizes
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Figure 2: Phases in the coupling amplitude appear depending on the orientation of the orbitals in the transverse plane. (a) The coupling amplitude J

of an s- to a py - and back to an s-mode gains a 𝜋-phase flip, i.e. a negative sign (top). The coupling of s- and OAM-modes depends on the angle

between waveguides and the OAM quantum number (bottom). (b) The phase in the coupling between two py -modes depends on the angle between

them. It can range from positive coupling, when two py -modes are aligned along the x-axis (coupling J𝜋 ), to a negative one for alignment along

the y-axis (coupling J𝜎 ). At a certain “magic” angle 𝜃m, the coupling vanishes completely. (c) Coupling between a detuned and lossy s-mode waveguide

and an elliptical p-mode waveguide has been predicted to lead to non-Hermitian states [62]. (b) Adapted with permission from [63]. Copyright 2025

American Chemical Society. (c) Adapted with permission from [62] © Optica Publishing Group.

an anti-PT symmetric configuration, which suppresses

the symmetric superposition of OAM modes. A change

to 𝜌 = 1.02 and an angular orientation 𝜑 = 𝜋∕4 instead

results in a PT-symmetry breaking transition, highlighting

the sensitivity of modal coupling to both geometry and

loss.

2.3 Synthetic gauge fields

Adding complex phase factors to the coupling between dif-

ferent orbitals presents a powerful method for generat-

ing synthetic flux within photonic waveguide arrays. Flux

is present when the phases accumulated in the hopping

along a closed path in the lattice do not amount to integer

multiples of 0 or 2𝜋. Therefore, flux can be achieved by

carefully controlling the hybridization of different orbital

modes, such as s- and p-orbitals or s- and d-orbitals.

This method enables the realization of photonic bands

in various topological phases. Schulz et al. [45] demon-

strated experimentally a photonic quadrupole topological

insulator by using s- and p-orbital modes. These modes

were implemented as eigenmodes in waveguides fabri-

cated using direct laser writing in circular (for s-modes)

and elliptical (for p-orbitals) shapes to induce synthetic 𝜋

magnetic flux in a plaquette (Figure 3(a)). The non-trivial

topology via this approach was confirmed by observing

topologically-protected zero-dimensional corner states [64].

Extending this multiorbital approach, researchers have the-

oretically engineered photonic Möbius topological insula-

tors in waveguide arrays using inter-orbital coupling to

generate synthetic gauge flux. By coupling different orbital

modes – s and d (Figure 3(b)) [65] or s and p [66] – they

created a synthetic𝜋 flux, leading to a projective translation

symmetry. Breaking this symmetry transforms the system

into a topological insulator withMöbius twisted edge bands.

The 4𝜋 periodicity of these bands leads to two twisted edge

states for each transverse Bloch momentum which can be

selectively stimulated for opposite beam transport. Addi-

tionally, Liu et al. [66] showed that this technique can trans-

form a Dirac semimetal into a Weyl-like semimetal with flat

bands.

In rotationally symmetric waveguides, a natural modal

basis consists of OAM modes, which possess azimuthally

varying phase fronts and ring-shaped intensity, carrying an

integer topological charge l, encoding the quantized angular

momentum of themode. This spatial phase structure makes

OAM an effective tool for inducing synthetic gauge fields in

photonic systems and mimicking the behavior of charged

particles inmagnetic fields. The coupling between two OAM

modes of differing topological charge l1 and l2 introduces

a phase factor that scales as ∝ exp(i(l1 − l2)𝜑) with the

azimuthal angle 𝜑 between waveguides (Figure 2(a)) [23],

[68]. In certain lattice geometries, such as a rhombic lat-

tice (also known as a diamond chain), this phase structure

enables the realization of synthetic magnetic fields.

In this context, Jörg et al. [23] experimentally demon-

strated synthetic gauge fields by injecting first-order OAM

modes (l = ±1) into a diamond-chain lattice of direct laser-
written optical waveguides. They showed that the system

can effectively be decoupled into two sets with 𝜋-fluxes

threading the plaquettes of each [23]. The prevalence of

this 𝜋-flux was confirmed through Aharonov–Bohm (AB)

caging experiments (Figure 3(c)), where interference due to

the flux leads to a periodic return of the intensity to the

central waveguide (so-called caging). In contrast, injected

light without OAM disperses transversely. This highlights

that higher-order and OAM modes allow one to dynami-

cally and externally tune the properties of a given photonic

lattice, simply by changing the light input. This dynamic
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Figure 3: Gauge fields induced via higher orbitals or OAM in photonic waveguide lattices. (a) Elliptical waveguides in a 2D SSH lattice create fluxes

that lead to the formation of corner states in higher-order topological insulators [45]. (b) d-modes in a 2D lattice give rise to a topological Möbius

insulator [65]. (c) In a diamond chain, light with OAM of |l| = 1 creates a 𝜋-flux, leading to Aharonov–Bohm caging (a return of the intensity to the

excited waveguide after a certain propagation distance period), while light with vanishing OAM disperses [23]. (d) Similarly, py -modes in a diamond

chain create a flux of 𝜋 [67]. (b) Adapted with permission from [65]. © Optica Publishing Group. (d) Adapted with permission from [67]. Copyright

2022 by the American Physical Society.

control paves the way for scalable and reconfigurable topo-

logical photonic devices [23], [58]. The same caging effect

can also be achieved by replacing every second central site

with a p-mode waveguide instead of using OAM modes

(Figure 3(d)) [67].

Following thiswork,Wang et al. [58] and Jiang et al. [59]

theoretically explored complementarymethods.Wang et al.

proposed an alternativemethod to generate synthetic gauge

fields using the hybridization of fundamental (l = 0) and

first-order OAMmodes in a zigzag array. Jiang et al. also the-

oretically investigated topological bound modes with first-

order OAM modes in zigzag waveguide arrays, effectively

mimicking the Creutz ladder model [59]. Their research

highlighted that topological propagation can be uniquely

influenced by OAM, and they also presented the orientation

angle of elliptical waveguides as an extra degree of freedom,

providing an enhanced controlmethod for these topological

bound modes. OAM modes on a zigzag chain with tunable

angle betweenwaveguides have also been suggested to real-

ize arbitrary fluxes on a photonic diamond chain lattice,

which can be decorated with impurities. This leads to a

flux-mediated Su–Schrieffer–Heeger (SSH) model, demon-

strating how tuning impurity placement and flux enables

engineering topologically nontrivial band structures and

robust edge modes [69].

In addition to synthetic fluxes, the inherent anisotropy

of p-orbitals alone has allowed for the realization of a

variety of topological phenomena, first explored in polari-

ton lattices. While the anisotropy of p-orbital hopping has

been extensively studied in polariton systems, its potential

extensions in waveguide-based platforms remain largely

unexplored. Recent experiments have demonstrated the

utility of p-orbital modes in realizing higher-order topolog-

ical bands in laser-written optical waveguide arrays [48],

[70].

3 Higher modes in polariton

lattices

The orbital degree of freedom provides an additional

dimension in platforms where photon–photon interactions

are non-negligible. For example, higher modes also play a

significant role in lattices of exciton–polariton condensates,

where the interaction of the excitonic component of the

polariton affects the photonic component.

An exciton–polariton is a quasiparticle that behaves

partly like a photon and partly like an electron–hole pair.

To investigate them, a microcavity consisting of a quantum

well (QW) surrounded by dielectric Bragg gratings (DBG)

on both sides, acting as cavity mirrors, is commonly used

(Figure 4(a)). The space between the cavity mirrors is so

small that only a single longitudinal light mode can be

excited in the quantum well. Therefore, the longitudinal

mode kz of the photons inside the cavity is fixed, and the

dispersion relation of the photon is that of a (very light)

massive particle. The restmass of the photon – the bottomof

its dispersion relation – can be tuned via varying the cavity

length.

Inside these semiconductor quantum wells, excitons

can be excited. An exciton is an electron–hole pair in an

insulator or a semimetal that is bound together by the

Coulomb force. Due to the presence of a bandgap, excitons

emit photons when they decay. Since themass of the exciton
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Figure 4: Higher modes in polariton lattices. (a) A zig-zag array of coupled polariton cavities with p-modes acts as a Su–Schrieffer–Heeger system.

The sketch on the side shows the different layers of an exciton–polariton cavity, a quantum well (QW) in an optical cavity consisting of two dielectric

Bragg gratings (DBR). The picture on the bottom shows the light emission of the spectrally isolated and localized topological edge mode [72].

(b) Dispersion relation: the dispersion relation of a photon in the cavity is parabolic, while that of an exciton is, in comparison, flat. Due to the coupling

between the two particles, the polariton dispersion relation splits into an upper and a lower polariton branch (UPD and LPB, respectively). (c) Sketch

of how a structured pump beam acts as a repulsive potential for polaritons. Lattices can be constructed such that polaritons populate vortex modes

on each lattice site [73]. (d) Measured emission (intensity right and phase left) of a polariton vortex lattice. The OAM of the vortex modes arrange

themselves in the same way as spins would do in an Ising lattice [73]. (a) Reprinted with permission from [72], Copyright © 2017 Springer Nature.

(c) and (d) Copyright © 2024, The American Association for the Advancement of Science.

is much larger than the effective mass of the photon, its dis-

persion relation is much flatter (Figure 4(b)). If the photon

energy and the exciton energy are close, strong light–matter

interaction occurs, and polaritons – the superposition of

photons and excitons – are formed. Here, the polariton

dispersion relation splits into an upper and a lower branch

due to the strong coupling. Because of the excitonic fraction

of the polariton, polaritons can interact with each other via

the Coulomb force and exchange momentum and energy,

and thermalize into a ground state [71]. Also, due to the

excitonic fraction, polaritons react to a magnetic field, as

shown in [20]. Polaritons in a cavity can be excited either

optically or electrically.

In platforms supporting polaritons, lattice structures

can be implemented by structuring the cavity (often done by

etching parts of the upper mirror as seen in Figure 4(a)) or

by pumping the cavity with a structured pump beam.When

the cavity is structured, the diameter of the individual lattice

points can be chosen large enough so that higher modes,

such as p-modes and d-modes, can be excited [72], [74], [75].

In particular, the transformation from isotropic s-orbital

modes to anisotropic p-orbital modes further demonstrates

the versatility of polariton systems, enabling richer and

more complex band structures even without synthetic

gauge fields. Key discoveries include the emergence of Dirac

cones and aflatband in a honeycomb lattice [76], the demon-

stration of p-orbital Su–Schrieffer–Heeger (SSH) edge states

and their lasing behavior [72], [77] (see Figure 4(a)), and the

realization of p-orbital edge states in a 2D photonic honey-

comb lattice [78]. Significantly, photonic p-orbital graphene

was the platform for the first experimental observation of

critically tilted (Type-III) Dirac cones, in addition to semi-

Dirac and tilted Type-I Dirac cones [79].

In contrast to etched structures, if the potential land-

scape is created by the structure of the pump beam, the

potential can be adjusted dynamically. Tosi et al. showed

that the pump beam can be used, not solely as a particle

source, but also in order to define a potential [80]. This is

possible due to the repulsive interaction between polari-

tons that can be mathematically described in a mean-field

approximation as a repulsive density-dependent potential.

Where the cavity is pumped locally, a high polariton density

is created. This high polariton density acts as a repulsive

potential, which can cause the polaritons to settle in the

spaces between the pumped areas during thermalization

[80], [81]. Alyatkin et al. showed later that it depends on the

pump spot geometry whether polaritons condense at the

pump spots or in between, and created a lattice structure

that hosted p-orbital flat bands [82]. By selectively pumping

cavities and creating these repulsive potentials, polaritons

in stable vortex modes with OAM = ±1 and/or circular

polarization were experimentally excited and manipulated

[83], [84]. The modes with OAM = ±1 are stable since they
represent an attractor in these structured polariton systems.

The generation and precise manipulation of stable vortices

are important with respect to using polariton vortices in

information processing.

The excitation of modes with higher OAMhas also been

investigated theoretically [85], [86]. However, even with sys-

tems that aim for OAM±1modes, it is possible to investigate
optically complex systems that cannot be replicated with s-

mode lattice systems. For example, it was demonstrated that

in lattices of coupled polariton vortex modes (Figure 4(c)

and (d)), the OAMmodes orient themselves in the same way

as spins arrange in an Ising lattice. The authors also showed

that by varying the coupling between the vortex sites, they
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can choose to observe a ferromagnetic or antiferromagnetic

arrangement [73].

4 Perspective

Having reviewed current implementations of higher modes

in photonic simulators of quantum dynamics, we now

present our perspective on the emerging directions and

future opportunities in the field.

Looking ahead, orbital modes in photonic platforms

with many sites offer a promising route to explore concepts

from orbitronics – the study and control of orbital degrees

of freedom for information processing in solid-state sys-

tems. In electronicmaterials, orbital transport is often inter-

twinedwith spin and charge dynamics, making it difficult to

isolate and study the pure role of orbitalmotion. In contrast,

photonic waveguide lattices naturally support structured

light modes that resemble atomic orbitals, but are free from

spin–orbit coupling and Coulomb interactions. This makes

them ideal platforms to disentangle orbital-specific effects

from other degrees of freedom. Higher orbitals can enable

versatile device functionalities with topological protection,

especially when combined with synthetic dimensions [87]

and nonlinear effects [88]. Theoretical frameworks based

on symmetry indicators and band representations [89], [90]

have already categorized phases that are intimately related

to orbital degrees of freedom, leading to the realization of

multipolar and higher-order topological bands [91], [92].

By selectively exciting and coupling orbital modes, one

can emulate orbital currents, design lattices with orbital-

dependent hopping, and possibly realize analogs of orbital

Chern insulators – topological phases driven solely by

orbital motion. Recent theoretical work has also begun to

explore the interface between non-Hermitian and orbital

systems. This suggests that structured photonic lattices

could also be used to probe exotic effects like the orbital skin

effect [93], [94], where breaking time reversal and parity

symmetries could lead to orbital-dependent nonreciprocal

dynamics and boundary localization.

Orbital modes may also shape defect-bound states.

Topological defects carrying torsion or curvature singulari-

ties can confine modes at their core, typically stabilized by

a bulk gap [95]. Controlling the orbital character of these

modes could enforce a symmetrymismatchwith bulk states,

enabling confinement even without a gap. This suggests a

new class of defect-bound states in the continuum [96], [97].

Breaking symmetries could then turn them into tunable res-

onances, providing a mechanism for controllable coupling.

Kerr nonlinearity provides another powerful route.

Recent advances in multimode nonlinear photonics may

expand the degree of control over orbital modes. Reconfig-

urable platforms and nanofabricated structures could allow

dynamic tuning of orbital coupling and synthetic gauge

fields. Additionally, computational tools, such as physics-

informed machine learning and optimization algorithms

developed for multimode systems, can be adapted to design

orbital-specific couplings that lead to topological bands

with high precision. Recent work also links band topol-

ogy with solitons in the Gross–Pitaevskii equation, showing

that solitons can inherit the position and symmetry rep-

resentation of the Wannier orbital from which they bifur-

cate [98], [99]. This enables orbital-selective excitation of

soliton modes, offering new control of nonlinear dynam-

ics. At the same time, weak Kerr nonlinearities in fibers

reveal conserved thermodynamic properties of mode popu-

lations [100]–[103]. Extending these ideas to coupled arrays

could uncover collective effects such asmode-resolved ther-

malization, energy transport, and non-equilibrium steady

states, providing insights into many-body dynamics. These

advancements may broaden the scope of orbital-mode

research, leading to adaptable systems capable of exploring

intricate quantum phenomena.

Dynamic modulation offers yet another direction.

Time-periodic variations, such as shaping a waveguide

along the propagation axis, can couple onsite orbital modes

that would otherwise remain decoupled. This Floquet engi-

neering allows effective Hamiltonians with tailored band

structures, symmetry breaking, or synthetic gauge fields.

Dynamically driven orbital hybridization could simulate

exotic topological phases.

In conclusion, orbital degrees of freedom in photonic

simulators are only beginning to reveal their potential. They

open a rich landscape for devices with new functionalities

and to emulate quantum dynamics. From synthetic gauge

fields to orbital thermodynamics, these systems provide

new opportunities for Hamiltonian simulation – and much

remains to be discovered.
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