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Abstract: Features of complex vector light become impor-

tant in any interference effects, including scattering, diffrac-

tion, andnonlinear processes. Here,we are investigating the

role of polarization-structured light in atomic state inter-

ferometers. Unlike optical or atomic path interferometers,

these facilitate local interference between atomic transi-

tion amplitudes and hence the orthogonal optical polariza-

tion components driving these transitions. We develop a

fully analytical description for the interaction of generalized

structured light with an atomic four state system, that is,

multiply connected via optical as well as magnetic transi-

tions. Our model allows us to identify spatially dependent

dark states, associated with spatially structured absorption

coefficients, which are defined by the geometry of the polar-

ization state and the magnetic field direction. We illustrate

this for a range of optical beams including polarization

vortices, optical skyrmions, and polarization lattices. This

results in a new interpretation and an enhanced under-

standing of atomic state interferometry, and a versatile

mechanism to modify and control optical absorption as a

function of polarization and magnetic field alignment.

Keywords: atom interferometry; structured light; quantum

optics; light–matter interaction; optical skyrmions

1 Introduction

Atomic coherence and quantum interference lie at the heart

of many surprising and technically valuable effects arising

from light–matter interactions. This is maybe most clearly

evidenced in atomic state interferometers, where the
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coherent excitation of alternative transition amplitudes

allows us to design and control the dielectric response.

The idea of atomic state interferometers, or phaseonium,

has been recognized as a resource early on [1]–[3] and

led to effects including Electromagnetically Induced Trans-

parency (EIT) [4], Coherent Population Trapping (CPT) [5],

lasing without inversion [6], [7], enhanced and suppressed

spontaneous emission [8], reduction and cancellation of

absorption [9], and phase sensitive atom localization [10],

[11]. Various works have investigated phase-sensitive popu-

lation dynamics theoretically [12]–[16] and through experi-

mental observations [17], [18].

In atomic path interferometers (often referred to sim-

ply as atom interferometers), it is the recombination of

coherent matter waves that have traveled along differ-

ent paths that results in fringes of the atomic densities

and coherences [19]–[21]. Phase shifts induced by inertial

forces, or through the interaction of gravitational fields,

thus become measurable, making atom interferometers an

ultra-precise tool for modern quantum metrology [22], [23].

In contrast, atomic state interferometers rely on the

interference of transition amplitudes in the atomic state

space within an individual atom, which is sensitive to the

relative laser phase inmultiphoton excitations. Atomic state

interferometers can be realized, for example, via multi-

ply connected optical transitions, such as double Λ or dia-

mond systems, but alternatively, states may also be cou-

pled via microwave transitions or magnetically. In recent

years, atomic state interferometers have received consid-

erable interest in order to manipulate and control light in

atomic media and making it applicable to the realization of

electromagnetically induced gratings [24] and atomic based

microwave interferometry [25].

Almost all investigations of atomic state interferome-

ters involve homogeneously polarized laser light. The incor-

poration of vector light beams with spatially varying polar-

ization structures [26]–[29] naturally open up new avenues

for atomic state interferometers. The atomic transition

amplitudes are typically realized via atomic dipole transi-

tions, which are sensitive to the alignment between the opti-

cal polarization and the electric dipole moment [30]–[33].

Recent experiments based on atomic state interferometers
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driven by complex vector light have demonstrated their

potential application for detecting the alignment of 3Dmag-

netic fields [34]–[36], and theoretical work has suggested

sensitivity to AC magnetic fields [37].

Previous theoretical descriptions have been based

either on solving Liouville/Bloch equations numerically

[37]–[40] or on analyzing the interactions for very specific

configurations [35], [41]–[43]. Here, our goal is to provide

a general analytical framework for atomic state interfer-

ometers driven by complex vector light, and to analyze the

interplay between the external magnetic field, the optical

polarization, and the atomic spin alignment.

Specifically, we will consider an atomic state interfer-

ometer consisting of four atomic states, with two nearly

degenerate ground states coupled optically via an excited

state, as well as magnetically via an intermediate ground

state. We will derive an analytical model for the interaction

of such phaseonium with vector light to describe and ana-

lyze its dielectric properties. We achieve this by converting

the closed-loop transition into a ladder system operating

on partially dressed states (which is discussed in the con-

text of Figure 1). For the former, the dynamics is contained

in the interplay between alternative transition amplitudes,

whereas for the latter, it is reduced to a product of transi-

tion rates, which can be easily evaluated in perturbation

theory.

(a)

(c)(b)

Figure 1: Schematic level scheme of the atomic state interferometer.

Inset: geometry of light propagation (along ẑ) and the magnetic field

direction, defined by the azimuthal angle 𝜙B and the inclination angle 𝜃B.

(a) Atomic state interferometer with optical and magnetic transitions.

(b) Intermediate partially dressed states. (c) Partially dressed state

systems, with optical coupling between the excited state and |𝜓 c⟩,
with magnetic coupling driving transitions to the gray state |𝜓 g⟩
and from there to the dark state |𝜓d⟩.

With this method, we obtain spatially dependent dark

states that no longer interactwith the light andhence render

the phaseonium transparent. The shapes of these dark states

depend on the local polarization state of the light and its

orientationwith respect to the externalmagnetic field direc-

tion. This provides a direct link between the polarization

states (as specified by its coordinates on a Poincaré sphere)

and atomic transition rates. We illustrate our ideas for a

range of complex vector light, ranging from vector vor-

tex beams, to optical skyrmions [44]–[46], to polarization

lattices.

Our study enhances the understanding of vectorial

light–atom interaction, and may pave the way for encoding

polarization profiles into atomic dark states, which offer

protection from decoherence and noise, and for designing

devices for spatially enhanced quantummagnetometry and

metrology.

The paper is organized as follows: In Section 2,we intro-

duce the Hamiltonian describing the interaction of an opti-

cal field with arbitrary polarization with our phaseonium

in the presence of a uniform magnetic field. We rewrite

the atomic dynamics in terms of partially dressed states,

which allow us to unwrap the atomic state interferometer

into a ladder system. The various atomic transition rates

then become functions of the polarization state and the

magnetic field direction, from which we can identify the

overall absorption based on perturbation theory.

Section 3 illustrates our theoretical description for var-

ious kinds of vector light beams composed of orthogonally

polarized Laguerre–Gaussian modes or Hermite–Gaussian

modes, including optical skyrmions. We finally offer our

conclusions in Section 4.

2 An atomic state interferometer

for complex vector light

In this paper, we investigate the interaction of vector light

with an atomic state interferometer, with the aim to relate

the emerging internal atomic dynamics and the associ-

ated absorption and dispersion features to the properties

of the vector light. As an example atomic state interfer-

ometer, we choose the optical dipole transition F = 1→

F′ = 0, driven by a quasi-resonant vectorial light field E⃗ in

the presence of a static uniform magnetic field B⃗. Specifi-

cally, we consider the electronic ground states F = 1 with

mF ∈ {0,±1}, and the excited state with F = 0 and mF =
0, which we denote as |g0⟩ and |g±⟩ and |e⟩, respec-
tively, as indicated in Figure 1(a). Such dynamics may be

realized, e.g., by driving the |5S1/2,F = 1⟩ → |5P3/2,F′ = 0⟩
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transition in the Rb87 F = 1 to F′ = 0 hyperfine state

transition, so that interactions are restricted between the

three ground states |g0⟩ (mF = 0) and |g±⟩ (mF = ±1) and
the excited state |e⟩ ( mF

′ = 0), but our model is applicable

to any similar atomic system.

Our starting point will be the lab-frame Hamiltonian

describing the atom–light interactions. Optical dipole inter-

action in the presence of a homogeneous external magnetic

field B⃗ is given by

Ĥ lab = ℏ𝜔0|e⟩⟨e|+ ĤD + ĤZ

= ℏ𝜔0|e⟩⟨e|− d⃗ ⋅ E⃗( r⃗A )− 𝜇 ⋅ B⃗( r⃗A ), (1)

where 𝜔0 is the atomic resonance frequency, and d⃗ and 𝜇

are the induced atomic electric dipole moment and atomic

magnetic dipole moment, respectively. The electromagnetic

fields are evaluated at the position of the atom r⃗A, which

in the following we will omit for notational simplicity. We

assume that the light is propagating along the z-axis, which

we also choose as quantization axis. We restrict ourselves to

a uniform static magnetic field B⃗, but consider the interac-

tion with a paraxial light beam whose phase, intensity, and

polarization may vary across its beam profile.

Any paraxial light beam E⃗ may be described by a two-

dimensional vector

E⃗( r⃗⊥ ) = E0( r⃗⊥ )e
i𝜔t

[
u+( r⃗⊥ )𝜎̂+ + u−( r⃗⊥ )𝜎̂−

]
+ c.c. (2)

which varies as a function of the spatial coordinate r⃗⊥ =
(x, y) within the beam profile. As atom transitions are

expressed in terms of 𝜎± transitions, we have, however,

decomposed the light field into its left and right polarization

components 𝜎̂± =
(
x̂ ± iŷ

)
∕
√
2, driving these transitions.

The circular polarization components are associated with

spatially varying complex amplitudes u±, with |u+( r⃗⊥ )|2 +|u−( r⃗⊥ )|2 = 1. Without restriction of generality, we may

decompose the electric field into a common total complex

amplitude, E0( r⃗⊥ ), and a polarization state, by expanding

the complex amplitudes as

u− = cos 𝜒 e−i𝜓 , u+ = sin 𝜒 ei𝜓 , (3)

so that the electric field becomes

E⃗( r⃗⊥ ) = E0( r⃗⊥ )e
i𝜔t

[
sin 𝜒 ( r⃗⊥ ) e

i𝜓 ( r⃗⊥ )𝜎̂+ (4)

+ cos 𝜒 ( r⃗⊥ ) e
−i𝜓 ( r⃗⊥ )𝜎̂−

]
+ c.c.

In this notation, the polarization state is parametrized

by the parameters 2𝜒 and 2𝜓 describing the degree of

ellipticity and orientation of the polarization ellipse, respec-

tively. They can be understood as the spherical coordinates

of a unique point on the Poincaré sphere, as illustrated in

Figure 2: Definition of the optical polarization in terms of the Poincaré

sphere and the associated polarization color map. The spherical

coordinates 𝜒 and 𝜓 uniquely define the polarization ellipse.

Figure 2, where 2𝜒 denotes the polar angle as measured

from the North pole, while 2𝜓 represents the azimuthal

angle. This definition relates the polarization state to the

(local) reduced Stokes parameters

S⃗ =
⎛⎜⎜⎜⎝

S1

S2

S3

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

sin 2𝜒 cos 2𝜓

sin 2𝜒 sin 2𝜓

cos 2𝜒

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

2Re(u∗+u− )

−2Im
(
u∗+u−

)
|u−|2 − |u+|2

⎞⎟⎟⎟⎠
. (5)

We note that our definition is equivalent to the more

common definition in terms of an imbalance of horizontal

to vertical, diagonal to antidiagonal, and right to left circular

polarization components.

We then express the homogeneous magnetic field in

polar coordinates as

B⃗ = B0
(
cos 𝜃Bẑ+ sin 𝜃B cos𝜙Bx̂ − sin 𝜃B sin𝜙Bŷ

)

= B0

(
cos 𝜃Bẑ+ sin 𝜃B

[
e−i𝜙B 𝜎̂− + ei𝜙B 𝜎̂+

]
√
2

)
, (6)

where 𝜃B is the tilt angle between the magnetic field and

the propagation axis ẑ, and 𝜙B is the azimuthal angle, mea-

sured in clockwise direction from the vertical, as indicated

in the inset of Figure 1. The second equality is in terms of

cylindrical coordinates. The magnetic dipole moment then

becomes

𝜇 = −gF𝜇B
[
ẑ
(|g+⟩ ⟨ g+|− |g−⟩ ⟨ g−|)

−
(
𝜎̂−|g+⟩ ⟨ g0|+ 𝜎̂+|g−⟩ ⟨ g0|+ H.c.

)]
,

where the terms gF and 𝜇B are the Landé g-factor

and Bohr magneton, respectively. Introducing the Larmor

frequency asΩL = gF𝜇BB0∕ℏ, wewrite themagnetic dipole
interaction as
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ĤZ = −𝜇 ⋅ B⃗ (7)

= ℏΩL

[
cos 𝜃B

(|g+⟩ ⟨ g+|− |g−⟩ ⟨ g−|)

− sin 𝜃B
(
ei𝜙B |g+⟩ ⟨ g0|+ e−i𝜙B |g−⟩ ⟨ g0|)∕

√
2
]
,

which includes the Zeeman-shift due to the magnetic field

component along the quantization axis as well as magnetic

coupling due to its transverse components.

We assume that the light is paraxial, so that any com-

ponent of the optical field along the propagation direction

is negligible, and we can ignore any excitation of the 𝜋-

transition from |g0⟩ to |e⟩. The only relevant parts of the
electric dipole moment are, therefore,

̂⃗
d = d

[
𝜎̂+|e⟩ ⟨ g+|+ 𝜎̂−|e⟩ ⟨ g−|]∕2

√
3+ H.c., (8)

yielding the optical dipole Hamiltonian

ĤD = − ̂⃗d ⋅ E⃗ (9)

= −ℏΩR

2
√
3

[
ei𝜓

(
cos 𝜒 e−i𝜔t + sin 𝜒 ei𝜔t

)|g+⟩ ⟨ e|
+ e−i𝜓

(
sin 𝜒 e−i𝜔t + cos 𝜒 ei𝜔t

)|g−⟩ ⟨ e|]+ H.c.,

whereΩR = dE0 denotes the Rabi frequency and the factor

1∕
√
3 originates from theWigner–Eckart coefficients. In the

frame co-rotating1 with the electric field, the Hamiltonian

becomes

Ĥ∕ℏ = −𝛿|e⟩ ⟨ e|+ΩL cos 𝜃B
(|g+⟩ ⟨ g+|− |g−⟩ ⟨ g−|)

− ΩR

2
√
3

[
sin 𝜒 ei𝜓 |g+⟩ ⟨ e|+ cos 𝜒 e−i𝜓 |g−⟩ ⟨ e|+ H.c.

]

− ΩL√
2
sin 𝜃B

[
ei𝜙B |g+⟩ ⟨ g0|+ e−i𝜙B |g−⟩ ⟨ g0|+ H.c.

]
,

(10)

for the detuning 𝛿 = 𝜔−𝜔0. This is the complete Hamil-

tonian in the rotating wave approximation, expressed in

terms of the atomic states |g−⟩, |g0⟩, |g+⟩ and |e⟩. Its first
line denotes the energies, including the Zeeman shift, the

second line describes Rabi oscillations due to optical cou-

pling, and the third Larmor precession due to magnetic

coupling. The action of the Hamiltonian is schematically

indicated in Figure 1(a). Any two states within this atomic

state interferometer are coupled via two alternative elec-

tric and/ormagnetic transition amplitudes, which can inter-

fere. The resulting dynamics, and specifically the absorption

and dispersion, therefore, should depend on the differential

1 This is done by the unitary transform, ĤI = ÛĤÛ† + i
𝜕U

𝜕t
Û†, where

Û = exp[i𝜔t|e⟩ ⟨ e|] = |g+⟩ ⟨ g+|+ |g0⟩ ⟨ g0|+ |g−⟩ ⟨ g−|+ |e⟩ ⟨ e|ei𝜔t .

phase between the optical transitions and on the alignment

of the magnetic field. The dynamics can be determined

numerically by solving the corresponding Liouville or Bloch

equation, including decay and relaxation rates. The evalua-

tion of the Liouville or Bloch equation is, however, compu-

tationally intensive, prohibiting a comprehensive investiga-

tion of the parameter space of arbitrary magnetic fields and

polarizations, and its evaluation does not lead to an intuitive

understanding of the system geometries.

2.1 Hamiltonian in terms of partially
dressed states

In this work, we pursue a different approach, leading to a

fully analytical solution of populations and transition rates.

The aim is to transform the interfering transition ampli-

tudes, i.e., coherences, of the 𝜎̂±-transitions into popula-

tion dynamics of a ladder-like system. The interference is

then captured in the form of partially dressed states and

the emergent hopping rates. To achieve this, we will apply

unitary transforms in such away that the atomic state inter-

ferometer is unwrapped into a ladder system, as indicated

in Figure 1(c). The partially dressed states will comprise a

single coupling state |𝜓 c⟩, connected by optical transitions
to the excited state, as well as two other partially dressed

states, which we will term gray state |𝜓 g⟩ and dark state

|𝜓d⟩ (note that the latter is not a true dark state, but for

certain geometries can become one). The form of the optical

coupling suggests the introduction of a coupling state |𝜓 c⟩
and its orthogonal noncoupling state |𝜓nc⟩:

|𝜓c⟩ = sin 𝜒 ei𝜓 |g+⟩+ cos 𝜒 e−i𝜓 |g−⟩, (11)

|𝜓nc⟩ = cos 𝜒 ei𝜓 |g+⟩− sin 𝜒 e−i𝜓 |g−⟩. (12)

The Hamiltonian can then be rewritten as

Ĥ

ℏ
= −𝛿|e⟩ ⟨ e|+ΩL cos 𝜃B

[
− cos 2𝜒

(|𝜓c⟩ ⟨𝜓c|− |𝜓nc⟩ ⟨𝜓nc|)

+
(
sin 2𝜒 |𝜓c⟩ ⟨𝜓nc|+ H.c.

)]

− ΩL√
2
sin 𝜃B

[
e−i(𝜓−𝜙B ) sin 𝜒 |𝜓c⟩ ⟨ g0|

+ cos 𝜒 e−i(𝜓−𝜙B )|𝜓nc⟩ ⟨ g0|
+ ei(𝜓−𝜙B ) cos 𝜒 |𝜓c⟩ ⟨ g0|− sin 𝜒 ei(𝜓−𝜙B )|𝜓nc⟩ ⟨ g0|+ H.c.

]

− ΩR

2
√
3

(|𝜓c⟩ ⟨ e|+ H.c.
)
. (13)

In this expression, we recognize the factors S3 = cos2𝜒

and
√
S2
1
+ S2

2
= sin 2𝜒 from the definition of the Stokes

vectors Eq. (5). We note that in Eq. (13), the azimuthal

angle 𝜓 and the azimuthal angle of the magnetic field 𝜙B

always appear in combination with each other. This is not
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surprising, as the interaction is set by the geometry of the

system, i.e., the angle of the local polarization direction

against themagnetic field direction. In the following,wewill

denote their difference as

𝜓 ′ = 𝜓 − 𝜙B. (14)

For notational simplicity, let us introduce two complex

parameters, J and J̄, as

J = 1√
2

[
ei𝜓

′
cos 𝜒 + e−i𝜓

′
sin 𝜒

]
,

J̄ = 1√
2

[
−ei𝜓 ′

cos 𝜒 + e−i𝜓
′
sin 𝜒

]
.

(15)

The Hamiltonian now takes the form

Ĥ

ℏ
= −𝛿|e⟩ ⟨ e|−ΩL cos 𝜃B cos 2𝜒

(|𝜓c⟩ ⟨𝜓c|− |𝜓nc⟩ ⟨𝜓nc|)

+ΩL

[
cos 𝜃B sin 2𝜒 |𝜓c⟩ ⟨𝜓nc|− sin 𝜃B J|𝜓c⟩ ⟨ g0|

+ sin 𝜃BJ̄|g0⟩ ⟨𝜓nc|+ H.c.
]

−ΩR

(|𝜓c⟩ ⟨ e|+ H.c.
)
∕2

√
3. (16)

While this form allows only one state (|𝜓 c⟩) to couple
to the light, it nonetheless contains also two magnetically

driven transitions from the coupling state, as depicted in

Figure 1(b), effectively forming an atomic state interfer-

ometer within the ground states. Moreover, the hopping

rates between |g0⟩ and |𝜓 c⟩ and between |g0⟩ and |𝜓nc⟩
are generally complex (unless the polarization is exactly

aligned or perpendicular with the transverse magnetic field

(when 𝜓 ′ = 𝜓 − 𝜙B = 0)), indicating a directional transi-

tion direction between the ground states.

We can remove this feature by, oncemore, rewriting the

Hamiltonian in terms of new system states generated from

superpositions of the noncoupling state (|𝜓nc⟩) and |g0⟩. As
we shall see, these states have physical significance when

considering the atomic dynamics, in other words: we now

reach the aforementioned gray state |𝜓 g⟩ and dark state

|𝜓d⟩.
These together with the previously defined coupling

state |𝜓 c⟩ from Eq. (11) give our final orthonormal basis set

of partially dressed ground states:

|𝜓c⟩ = sin 𝜒 ei𝜓 |g+⟩+ cos 𝜒 e−i𝜓 |g−⟩,
|𝜓g⟩ = 1

M

(
cos 𝜃B sin 2𝜒 |𝜓nc⟩− sin 𝜃B J

∗|g0⟩), (17)

|𝜓d⟩ = 1

M

(
sin 𝜃B J|𝜓nc⟩+ cos 𝜃B sin 2𝜒 |g0⟩),

whereM is a normalization constant defined by

M2 =
(
1− cos2 𝜃B cos 4𝜒 + cos 2𝜓 ′ sin2 𝜃B sin 2𝜒

)
∕2.
(18)

Note that the value of M depends on the inclination

of the magnetic field with respect to the propagation direc-

tion, and on the polarization state, while the parameters J

and J̄ depend solely on the optical polarization. Expressed

in terms of the states in Eq. (17), the desired Hamiltonian,

represented in Figure 1(c), becomes:

Ĥ = Ec|𝜓c⟩⟨𝜓c|+ Eg|𝜓g⟩⟨𝜓g|+ Ed|𝜓d⟩⟨𝜓d|− ℏ𝛿|e⟩⟨ e|
+ ec|e⟩ ⟨𝜓c|+ cg|𝜓c⟩ ⟨𝜓g|+ gd|𝜓g⟩ ⟨𝜓d|+ H.c.

(19)

The first line of this Hamiltonian contains the energies

of the coupling, gray, dark, and excited states, where we

have defined

Ec = −ℏΩL cos 𝜃B cos 2𝜒, (20)

Eg = −ℏΩL

cos 𝜃B sin 4𝜒

2M2

(
cos2 𝜃B sin 2𝜒

+ sin2 𝜃B cos 2𝜓
′
)
,

Ed = −ℏΩL

cos 𝜃B sin
2 𝜃B

2M2
cos 2𝜒

(
1− sin 2𝜒 cos 2𝜓 ′).

The dependence of these energies on optical polariza-

tion and magnetic field orientations is depicted in Figure 3.

As the composition of our system states Eq. (17) is set by

the configuration of electric and magnetic field, their Zee-

man shifts are no longer just defined by the longitudinal

magnetic field component, but also the ellipticity of the

incident light field and the alignment between the trans-

verse magnetic field and the orientation of the polarization

ellipse.

The second line of Eq. (19) describes transitions

between the states, where the hopping rates are given by

ec = −ℏΩR∕2
√
3,

cg = ℏMΩL∕2, (21)

gd = −ℏΩL
J̄

M2
sin 𝜃B

(
sin 2𝜒 cos2 𝜃B + sin2 𝜃B J

2
)
.

Here, ec and cg are real, while gd is generally com-

plex but becomes real for 𝜓 ′ = 0.

We have thus reached a ladder-form, depicted in

Figure 1(c), where each state couples only with one other

state: excited to coupling state, coupling to gray state, and

finally gray to dark state. Both cg and gd depend on the

geometry between themagnetic field direction and the local

polarization states.
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Figure 3: Energies of the partially dressed ground states |𝜓 c⟩, |𝜓 g⟩, and |𝜓 d⟩ as a function of the optical polarization and magnetic field orientations.
The polarization states show the energies for a magnetic field that tilted with respect to the propagation direction by an angle 𝜃B between 0 and 𝜋∕2.

If the coupling vanishes for any configuration of electric

and magnetic fields, |𝜓d⟩ becomes a dark state, which will
be filled rapidly by spontaneous decay from the excited

state. Similarly, for any configuration with 𝜃B = n𝜋, cg

vanishes, making both |𝜓 g⟩ and |𝜓d⟩ into dark states. For
these parameters, light will no longer be absorbed but can

pass unhindered through the atomic sample.

For uniformly polarized light fields, the atomic inter-

action will (up to saturation effects) be uniform across the

beam profile but vary as a function of the alignment of the

magnetic field and the chosen polarization state. For vector

light, with spatially varying polarization profiles, instead,

absorption (and also dispersion) will be modulated across

the beam profile, resulting in spatially dependent EIT. Such

vector light provides intriguing possibilities to explore the

relationship between the various energy and hopping rates

and the geometries of the optical polarization and the mag-

netic field direction, specified by the Stokes parameters and

the magnetic field angles 𝜃B and 𝜙B.

2.2 The absorption rate

We are interested in calculating the probability for an elec-

tron to move from the dark to the excited state,

Pd→e = || ⟨ e||𝜓d(t)⟩||2, (22)

as this is a measure of the electric field absorption [39], [41].

Following a perturbative approach outlined in Appendix A,

we find the transition probability

Pd→e ≃
1

36Γ6

|||eccggd
|||
2

= Ω2

R

432ℏ4Γ6

|||cggd
|||
2

= Ω2

R
Ω2

L

1728ℏ2Γ6
M2|||gd

|||
2
, (23)

where we have used the expressions for ec and cg from

Eq. (21). This is the central result of thismanuscript.Wehave

here introduced the lifetime of the excited stateΓ, whichwe
assume to be sufficiently large as compared toΩR andΩL as

to ensure that the physics is well-captured by the short time

dynamics.

It is worth noting that |𝜓d⟩ is truly dark only for spe-
cific parameters determined by the local Stokes angles of

the polarization and the magnetic field alignment. For an

atom to undergo a transition from the dark state |𝜓d⟩ to
the excited state |e⟩, it must progress along the transition
ladder via the gray state |𝜓 g⟩ to the coupling state |𝜓 c⟩
before it can be optically excited. As the optical transition

rate |gd|2 is spatially homogeneous, the geometry of the

transition rate Pd→e is, therefore, determined by the product

of the transition ratesPd→g andPg→c. Alternatively, given the

simple form of cg in Eq. (21), the geometrical factors can be

found fromM2|||gd
|||
2
.

The absorption rate as a function of 𝜒 and 𝜓 ′ is illus-

trated in Figure 4. The transition rates depend only on the

alignment of the optical polarization with respect to the

magnetic field, not on its orientation, which is defined with

respect to some external reference frame; hence, we show

only magnetic fields for 0 ≤ 𝜃B ≤ 𝜋∕2. For the same rea-

son, we restrict ourselves to presenting polarizations cor-

responding to the “northern hemisphere” of the Poincaré

sphere (i.e., light with an angular momentum along the z

direction), which acts identical to its counterpart on the

“southern hemisphere” (with an angular momentum along

negative z). Zero absorption, i.e., true dark states corre-

spond to polarization states for which Pg→d ∝ gd vanishes.

This happens where the major or minor axis of the polar-

ization ellipse is aligned with the magnetic field direction,

i.e., for𝜓 − 𝜙B = n𝜋∕2 for n ∈ ℕ. In a way, the system now

acts like a higher order polarizer, selecting orthogonal polar-

ization states but not their superpositions. The absorption

patterns can be determined by multiplying the transition

amplitude with the intensity profile of the corresponding

beam as illustrated with a few examples in the following

section.
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Figure 4: Absorption rate, proportional to the probability for an atom to transition between the dark and excited state as a function of the optical

polarization and magnetic field inclination. The first row shows Pd→e, which is a product of the probabilities Pg→c (second row), Pd→g (third row), and Pc→e

(independent of polarization and magnetic field angle, not shown). All transition rates are peak normalized for Pd→e. Here, we assumeΩL ≪ Γ.

3 Examples

In this section, we will illustrate our theoretical model

by evaluating the dynamics for different configurations of

external magnetic fields and vector light fields and present

the predicted absorption patterns from Eq. (23). Where

instructive, we also provide the equations for the energies

Eq. (20) and hopping rates Eq. (21).

3.1 Polarization vortices with varying
ellipticity

Let us start by exploring the interaction of polarization

vortices as a function of their degree of ellipticity and

the inclination of the magnetic field 𝜃B. Here, we consider

a family of beams with azimuthally varying orientation

(i.e., azimuthally varying 𝜓 values), parametrized by their

degree of ellipticity (i.e., the 𝜒 value). The electric field is

given by

E⃗𝜒 = E0(r)
[
sin 𝜒 e−i𝜑𝜎̂+ + cos 𝜒 ei𝜑𝜎̂−

]
+ c.c. (24)

∝ sin 𝜒 LG−1
0
𝜎̂+ + cos 𝜒 LG+1

0
𝜎̂− + c.c.,

where 𝜑 denotes the azimuthal phase. The second line

specifies a potential realization of such light in terms of

different Laguerre–Gauss modes imprinted onto the oppo-

site circular polarization components. The 𝜎̂± component

of the light is associated with a helical phase structure

e∓i𝜑, which denotes an orbital angular momentum (OAM)

of ∓ℏ per photon, and the amplitude between the opposite
circular light components is controlled by the parameter 𝜒 .

Modifying 𝜒 from 0 to 𝜋∕4 changes the beam profile from

homogeneous right hand circularly polarized light to radial,

with the Poynting vector rotating twice around a circle of

equal latitude as a function of 𝜑 within the beam profile,

as shown in the first two columns of Figure 5 for 2𝜒 =
0, 𝜋∕6, 𝜋∕4, and 𝜋∕2. The associated absorption patterns

can be calculated from Eq. (23) and are shown for varying

values of 𝜃B in the following 5 columns of this figure. The

energies of the partial dressed states simplify to

Ec = −ℏΩL cos 𝜃B cos 2𝜒,

Eg = −ℏΩL

cos 𝜃B sin 4𝜒

2M2

(
cos2 𝜃B sin 2𝜒 (25)

+ sin2 𝜃B cos 2𝜑
′
)
,

Ed = −ℏΩL

cos 𝜃B sin
2 𝜃B

2M2
cos 2𝜒

(
1− sin 2𝜒 cos 2𝜑′).

The transition rate between dark and gray state

becomes

gd = −ℏΩL

M2
sin 𝜃B

[
J̄ sin 2𝜒 cos2 𝜃B (26)

− J sin2 𝜃B
(
cos 2𝜑′ cos 2𝜒 + i sin 2𝜑′)∕2],

whereM2 =
(
1− cos2 𝜃B cos 4𝜒 + cos 2𝜑′ sin2 𝜃B sin 2𝜒

)
∕2, and we have once again introduced 𝜑′ = (𝜑− 𝜙B), as



8 — K. Samanta et al.: Atomic state interferometry for complex vector light

(a)

(b)

(c)

(d)

Figure 5: Absorption patterns for light with a variety of polarization profiles with varying ellipticity ranging from homogeneous right polarization

in row (a) to radial polarization in row (d) for various magnetic field inclinations 𝜃B (for 𝜙B = 0 so that the magnetic field rotates in the x–z plane).

Each row shows from left to right the polarizations on the Poincaré sphere with the arrow indicating 𝜑 = 0, the corresponding beam profile, followed

by the absorption patterns for 𝜃B ≈ 0, 𝜃B = 𝜋∕8, 𝜃B = 𝜋∕4, 𝜃B = 3𝜋∕8, and 𝜃B = 𝜋∕2, respectively. White indicates maximum absorption.

the difference between the azimuthal angle of the beam

profile 𝜑 and the azimuthal angle of the magnetic field

𝜙B. And, as mentioned earlier, the total transition rates

between the dark and excited state can be calculated from

Eq. (23), which becomes a function of |gd|2M2.

We note that, generally, the visibility of the absorption

pattern increases with the ellipticity angle 𝜒 .

In the following, we will analyze two specific cases of

the beams described by Eq. (24), which have been investi-

gated experimentally in Refs. [35], [39].

By setting 𝜒 = 𝜋∕4, corresponding to radially polar-

ized light, we recover the results of Ref. [35]. In this case,

all energies vanish (Ec = Eg = Ed = 0), and thehopping rate

between gray and dark state is

gd =
iℏΩL

4M2
sin 𝜃B sin𝜑

′
[
cos2 𝜃B + sin2 𝜃B cos

2 𝜑′
]
, (27)

whereM2 =
(
1+ cos2 𝜃B + cos 2𝜑′ sin2 𝜃B

)
∕2.

While here we use slightly different definitions for the

coupling, gray and dark states than in Ref. [35], the phys-

ical predictions are identical. Our analysis here confirms

the previous experimental demonstration that themagnetic

field direction can be inferred from the absorption pattern:

a tilt 𝜃B of the magnetic field changes the petal structure of

the absorption pattern, and rotating the magnetic field by

𝜙B results in a rotation of the petal pattern as𝜙B = 𝜓 − 𝜓 ′.

On the other hand, if we let 𝜒 vary and instead assume

that the magnetic field is uniform and orthogonal to the

propagation axis (e.g., by setting 𝜃B = 𝜋∕2 and 𝜙B = 0,

which correspond to a magnetic field B⃗ = B0x̂), then we

recover the results of Ref. [39], corresponding to the final

column of Figure 5. In this geometry, all Zeeman splitting

disappears so that Ec = Eg = Ed = 0, and furthermore by

definition𝜓 ′ = 𝜓 . The hopping rate between gray and dark
state is then

gd =
ℏΩL

2M2
J(cos 2𝜒 cos 2𝜓 + i sin 2𝜓 ), (28)

where M2 = (1+ cos2𝜓 sin2𝜒 )∕2. The degree of ellipticity
cos2𝜒 determines whether gd has a real component or

not. The fringe visibility of the absorption pattern allows

us to determine the correlations in the polarization struc-

ture, i.e., the concurrence, as was experimentally confirmed

in Ref. [39]. We note, however, that this simple correspon-

dence breaks down for magnetic fields with 𝜃B ≠ 𝜋∕2,
showing that the relation between absorption patterns and
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optical concurrence is affected by the magnetic field

direction – maybe not surprising given that the latter deter-

mines magnetic couplings and energy shifts within the

atomic state interferometer.

3.2 Hybrid vector beams along different
grand circles

In this section, we investigate the influence of polarization

alignment, determined by 𝜒 , on the absorption behavior of

our atomic state interferometer. We can obtain differently

structured hybrid-polarized beams from Eq. (4) bymapping

𝜒 to the azimuthal angle𝜑 and varying 2𝜓 from 0 to 𝜋∕2 on
the Poincaré sphere in Figure 2. We choose an electric field

of the form

E⃗hyb( r⃗⊥ ) = E0( r⃗⊥ )e
i𝜔t (29)

×
[
sin (𝓁𝜑) ei𝜓 𝜎̂+ + cos (𝓁𝜑) e−i𝜓 𝜎̂−

]
+ c.c.,

where as before 𝓁 ∈ Z are associated with an OAM of ±𝓁ℏ
per photon. Such beams can be experimentally generated

by transmitting radially polarized light through a quar-

ter wave plate [47]. We note that these light beams, just

like radially polarized light featured in Figure 5(d), have

maximal concurrence; however, their interaction with our

atomic state interferometer differs. The interaction of atoms

with hybrid polarized light can be interpreted as a cou-

pling of sinusoidally varying light amplitudes with differ-

ent magnetic sublevels |g±⟩→ |e⟩. This can be useful for a

polarization-dependent measurement in an atomic system

[31], [48]. Here we show the results for |𝓁| = 1 light beams,

although the core results hold for higher |𝓁| values also. The
beam structures and corresponding absorption patterns for

a selection of such hybrid vector vortex beams are shown

in Figure 6. Note that for Figure 6(a), light along the x and y

axis of the beam is parallel and perpendicular to the mag-

netic field, respectively, allowing the development of dark

states, whereas for (c), the linear polarization is at an angle

of ±45◦ to B⃗, with intermediate values taken in (b).
Not surprisingly, the Zeeman shifts of the partial

dressed states vary across the beam profile in response to

the alternation between right and left circular polarized

beam areas,

Ec = −ℏΩL cos 𝜃B cos 2𝜑,

Eg = −ℏΩL

cos 𝜃B sin 4𝜑

2M2

(
cos2 𝜃B sin 2𝜑 (30)

+ sin2 𝜃B cos 2𝜓
′
)
,

Ed = −ℏΩL

cos 𝜃B sin
2 𝜃B

2M2
cos 2𝜑

(
1− sin 2𝜑 cos 2𝜓 ′).

The correspondinghopping rate between gray anddark

state is

gd = −ℏΩL

M2
sin 𝜃B

[
J̄ sin 2𝜑 cos2 𝜃B (31)

− sin2 𝜃B(cos 2𝜑 cos 2𝜓 ′ + i sin 2𝜓 ′ ) J∕2
]
,

(a)

(b)

(c)

Figure 6: Absorption patterns for hybrid polarized light beams along differently oriented grand circles on the Poincaré sphere, for the same magnetic

field parameters as in Figure 5, i.e., B⃗ = B0 x̂. The absorption patterns display a variety of symmetries, including twofold, fourfold, sixfold,

and cylindrical (note that the angles of 𝜃B do not progress linearly in order to incorporate the value of 𝜃B = 𝜋∕3), which shows the clearest 6-fold
symmetry.



10 — K. Samanta et al.: Atomic state interferometry for complex vector light

with

M2 =
(
1− cos2 𝜃B cos 4𝜑+ cos 2𝜓 ′ sin2 𝜃B sin 2𝜑

)
∕2.

In order to investigate the various different rotational

symmetries exhibited by this system, we investigate the

angular dependence of the transition rate Eq. (23) for a cou-

ple of cases,where the analytical form simplifies. For𝜙B = 0

and 𝜓 = 0 (corresponding to Figure 6(a)), we find

P
hyb

d→e
∝

[ (
−1+ sin 2𝜑

)
−1+ cos2 𝜃B cos 4𝜑− sin2 𝜃B sin 2𝜑

]
(32)

×
(
4 sin3 𝜃B + (5 sin 𝜃B + sin 3𝜃B ) sin 2𝜑

)2
.

The symmetry of the absorption pattern depends on the

magnetic field inclination 𝜃B. At 𝜃B = 𝜋∕2, for instance, we
find P

hyb

d→e
∝ cos2 2𝜑, indicating a 4-fold symmetry. At 𝜃B =

𝜋∕3, however, the expression becomes

P
hyb

d→e
∝

(
−1+ sin 2𝜑

)(
3+ 5 sin 2𝜑

)2
−4+ cos 4𝜑− 3 sin 2𝜑

, (33)

corresponding to a 6-fold symmetry in the absorption pro-

file – features that could be investigated more generally

by analyzing the angular Fourier series of the absorption

patterns.

We also note that, as the transverse component of

the magnetic field increases, the visibility of the interfer-

ence fringes also increases. For a radially hybrid polarized

beam (2𝜓 = 0), the visibility of interference fringes is maxi-

mum. As 2𝜓 increases, the beam becomes a “swirly” hybrid

polarized beam, showing reduction in the fringe visibility.

At 2𝜓 = 𝜋∕2, the absorption fringes disappear completely

when the magnetic field is completely transverse. Under

these circumstances, the system remains no longer spatially

phase sensitive.

Finally, we turn our attention to a rotation of the mag-

netic field around the propagation axis, i.e., a variation of

its azimuthal angle 𝜙B. We have noted early on in Eq. (14),

that the atomic dynamics are determined by the difference

between the orientation of the polarization ellipse 𝜓 with

respect to the magnetic field 𝜙B. For the rotationally sym-

metric light profiles considered in Figure 5, a rotation of the

magnetic field around 𝜙B results in a proportional rotation

of the absorption pattern. For the hybrid polarization vor-

tices considered here, however, this is no longer true, as

shown in Figure 7, where amagnetic field rotation relates to

a modification of the symmetry of the absorption pattern.

3.3 Optical skyrmions

In this section, we investigate atom state interferometers

driven by optical skyrmions, or Poincaré beams. These con-

stitute a special class of vector light beams with spatially

varying polarization distributions, which cover the entire

Poincaré sphere.

Recently, optical skyrmions have been investigated in

the context of their topology as well as various applica-

tions in optical manipulation and optical communication

[49]–[52]. Very recently, optical skyrmions have also been

investigated with respect to applications in atomic magne-

tometers both theoretically [40] in first experiments [53],

[54]. In the context of this paper, they allow us to test light

matter interaction for all possible polarization states simul-

taneously, recovering the full dynamics as illustrated in

Figure 4.

The simplest optical skyrmions (with skyrmion number

1) can be generated as a superposition of two LG modes

having topological charges of 0 and 1 encoded onto their left

and right circular polarization,

E⃗S( r⃗⊥ ) ∝ LG0
0
𝜎̂− + LG1

0
𝜎̂+. (34)

In a similar way, a polarization texture with skyrmion

number 2 can be obtained as weighted superimposition:

E⃗S2( r⃗⊥ ) ∝ 2LG0
0
𝜎̂− + LG2

0
𝜎̂+ where the weighting factor

was chosen to ensure a more balanced coverage of the

Poincaré sphere.

While the transition probabilities are readily calcula-

ble, their analytical form is sufficiently complicated tonot be

directly illuminating, and we will omit it here. Nonetheless,

we note that the polarization structure in the beam profile

is entirely asymmetric. It is, therefore, not surprising that

Figure 7: Absorption patterns for the hybrid vortex beam of Figure 6 for a fixed magnetic field inclination 𝜃B = 𝜋∕3, with 𝜙B rotating from 0 to 𝜋∕2.
Due to the asymmetry of the polarization profile, a rotation of the magnetic field no longer corresponds to a rotation of the absorption pattern.
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(a)

(b)

Figure 8: Asymmetric absorption patterns for skyrmionic beams with skyrmion numbers 1 (a) and 2 (b) generated according to Eq. (34) and Eq. (35),

respectively. Note that figure a) shows the central part of the beam where intensities are sufficiently high. The magnetic field direction is changing in

the xz plane with 𝜃B increasing from 0 to 𝜋∕2. In the presence of a purely transverse magnetic field, the transition rates for diagonally
and antidiagonally components are maximized, whereas horizontal and vertical polarized light exhibit negligible interaction.

the subsequent absorption patterns also show some asym-

metric behaviors, as illustrated in Figure 8 a). We note that,

while the polarization profile of the light given in Eq. (34)

contains all polarizations, its (right hand polarized) center

is much brighter than the (left hand polarized) outer areas.

In our figure, we have “zoomed” in on the brighter inner

region. The beam displayed in Figure 8 b) was chosen to dis-

play all polarization directions at reasonable light intensi-

ties, hence allowing us to test the interaction of generic vec-

tor light with the atomic state interferometer. As explained

earlier, for a magnetic field along the propagation direction

(𝜃B = 0), the absorption vanishes. Tilting the beam in any

direction results in increased absorption along the tilt direc-

tion, which changes in structure as the tilt increases. Once

the magnetic field is purely transverse to the propagation

direction, dark states develop where minor or major axis of

the polarization ellipse is aligned with the magnetic field,

resulting in twofold absorption patterns at 𝜃B = 𝜋∕2. These
geometric considerations explain, why optical skyrmions

may be particularly beneficial for atom magnetometry. We

finally note, that our results agree qualitatively with predic-

tions in Ref. [40] based on numerical evaluation via Liou-

ville equations.

3.4 HG beam

We have, so far, considered only rotationally symmetric

vector light, which can be encoded in LG modes and cir-

cular polarization states, making such light particularly

suited to polar coordinate systems. Our formalism, how-

ever, holds for generic beams, and in this final section, we

illustrate this by investigating optical vector beams created

by superpositions of higher order Hermite–Gaussian (HG)

modes. The symmetry of these is best understood in linear

polarizations, and a Cartesian coordinate system.We define

the electric field as

E⃗n( r⃗⊥ ) ∝ HG0nx̂ + HGn0ŷ, (35)

where n ∈ ℤ+. This superposition of modes was chosen

to once again form a radial beam at n = 1 as a reference

point; however, higher order modes have a spatial intensity

structure in addition to their polarization distribution.

Figure 9: Absorption patterns for various polarization lattices, all

containing solely polarizations along the equator of the Poincaré sphere.

The middle column shows beam profile superposed with different HG

modes (Eq. (35)) with n = 1, 2, 3, 4 from top to bottom,

the corresponding absorption patterns in a magnetic field B⃗ = B0 x̂ are

displayed in the right column.
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Figure 10: Absorption pattern for the higher order HG mode E⃗2 in Eq. (35), when the transverse magnetic field is rotated from 𝜙B = 0 to 𝜋/2.

For simplicity, we consider a uniform magnetic field

aligned solely in the plane transverse to the optical prop-

agation, i.e., 𝜃B = 𝜋∕2 and 𝜙B = 0. As with the Poincaré

beam, we here omit the transition rate for the same reason.

Figure 9 shows beam profiles (n = 1, 2, 3, and 4) and the

corresponding absorption pattern. When n = 1, it is a radial

beam shows the similar absorption pattern as the extreme

right of the Figure 5(d). Also for higher order modes, hori-

zontal and vertical polarizations lead again to the formation

of dark states; hence, the light can only be absorbed in the

regions where the two component beams overlap, and we

find an absorption profile with a square-lattice structure. It

is possible that the resulting optical forces may be used as

an additional parameter to tune novel optical lattices.

Importantly, a rotation of the magnetic field does not

result in a simple rotation of the absorption profile for these

kinds of beams (as it would for the azimuthally symmet-

ric beams displayed in Figure 5). Instead, a rotation of the

magnetic field around the propagation axis manifests in

a change to the absorption patterns. For the beam shown

in Figure 10, we see that the central absorption varies as

a function of the magnetic field alignment. Furthermore,

absorption appears prohibited along elliptical trajectories,

whose eccentricity changes with magnetic field angle 𝜙B.

4 Conclusions

In this work, we have developed an analytical framework to

describe atomic state interferometers driven by vector light

with a generic spatial polarization structure. This extends

the work of Refs. [35], [39] and others and allows us to inves-

tigate the full parameter space of vectorial light–matter

interaction for arbitrary complex vector beams without the

need for lengthy numerical analysis. Specifically, we have

shown that the interaction between the different excitation

paths with an atomic state interferometer can be mapped

to partially dressed states, including the spatial profile of

dark states. We have demonstrated our approach for a wide

range of vector beam structures, including radial polarized

beams, hybrid vector beams, skyrmion beams, and higher

order HG beams. The main benefit of our analytical method

is that it allowsus to obtain an intuitive understanding of the

interplay between the polarization and the magnetic field,

which can be hard to reach when relying on numerical sim-

ulations of optical Bloch equations or similar. Furthermore,

these analytical results can be used to explore a wide range

of quantummetrology applications and identify vector light

structures that optimize specific metrological tasks in, e.g.,

magnetometry applications.

Naturally, our method comes with some limitations.

Most importantly, we work in the regime where the natural

decay of the excited state ismuchquicker thanother dynam-

ics, making long time dynamics inaccessible. We have not

considered any Doppler broadening effects, making our

results applicable for cold atomic samples, but with appro-

priate averagingmethods also the behavior of warm atomic

gasses could be described.

Lastly, we have restricted our discussion to the calcu-

lation of spatially dependent absorption coefficients, with

the aim of understanding the interplay between atomic

transparency, the magnetic field, and the structure of the

vector light. Interestingly, the formation of spatially depen-

dent dark states should also be associated with spatial dis-

persion patterns after propagation, which are worthy of

investigation by themselves. We would like to investigate it

along with the propagation of the light beam in an extended

atomic cloud, to a future work.
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Appendix A: Transition

probabilities and polarizabilities

through perturbation theory

Given a Hamiltonian of the form Eq. (19), we are interested

in calculating the transition probability, at some order in

perturbation theory, of going from state |𝜓d⟩ to |e⟩. For
notational simplicity, we will work in units of ℏ = 1 in this

appendix. It is useful to note that we are in a rotating frame

given by Û = exp(i𝜔t|e⟩ ⟨ e|), though this will not change

anything for this particular calculation (but will if we cal-

culate the atomic polarization). We are here interested in

calculating

Pe→d = | ⟨ e||𝜓 (t)⟩|2.
To compute this, we first expand |𝜓 (t)⟩ as

|𝜓 (t)⟩ = ae(t)|e⟩+ ac(t)|𝜓c⟩+ ag(t)|𝜓g⟩+ ad(t)|𝜓d⟩.
The Schrödinger equation i𝜕t|𝜓 (t)⟩ = Ĥ|𝜓 (t)⟩ now

simply yields the coupled equations

dae
dt

= −i
[
𝛿ae(t)+ ecac(t)

]
,

dac
dt

= −i
[
Ecac(t)+ cgag(t)+ ecae(t)

]
,

dag

dt
= −i

[
Egag(t)+ gdad(t)+ cgac(t)

]
,

dad
dt

= −i
[
Edad(t)+ 

∗
gd
ag(t)

]
.

The formal solution to any one of these is

ak(t) = ak(0)e
−iEkt − ie−iEkt

∫

t

−∞
dt′eiEkt

′
Jk ja j(t

′ ), (A1)

where there can be multiple terms of the second kind. We

are, however, interested in the situation where the dark

states are populated, i.e., when ae(0) = 0 = ac(0) = ag(0)

but ad(0) = 1. To lowest order in perturbation theory, the

contribution to ae(t) (which we need to calculate Pd→e) is

given by

a(3)
e
(t) =ie−i𝛿t

∫

t

0

dt′ei𝛿t
′
ec

[
−ie−iEct′

∫

t′

0

dt′′eiEct
′′

×cg

(
−ie−iEgt′′

∫

t′′

0

dt′′′eiEgt
′′′
gd

{
e−iEdt

′′′
})]

,

(A2)

wherewe shouldnote that only the short timebehavior (t≪

1∕max(𝛿, Ec, Eg , Ed)) can faithfully be computed this way.

Thus, after some algebra and expanding to lowest order in

the time t, we find

Pd→e = ||ae(t)||2
= t6

36

|||eccggd
|||
2
. (A3)

It is noteworthy that the transition rate, Pd→e∕t ∼ t5,

grows quickly in time, ensuring that the transition happens

quickly. A more realistic model would include the lifetime

of the states. However, the quickest timescale is governed

by the natural lifetime (Γ) of the excited state. The corre-

sponding decay frequency is typically significantly larger

than the Rabi and Larmor frequencies, ΩR and ΩL, respec-

tively, and therefore also the energies Ec, Ee, and Ed and

the hopping rates ec, cg , and gd. Physically, this means

that we only need to consider the short time dynamics of

transitioning between the dark state and the excited state,

as once the atom is in the excited state, it very quickly and

incoherently decays and repopulates the ground states. In

other words, we only need to capture times t ≤ 1∕Γ, which
is done sufficiently well by perturbation theory. The maxi-

mum transition probability is, therefore, given by t = 1∕Γ,
yielding

Pd→e ≃
1

36Γ6

|||eccggd
|||
2
= Ω2

R

432Γ6

|||cggd
|||
2
, (A4)

as stated in the main text (after factors of ℏ have been

reintroduced).



14 — K. Samanta et al.: Atomic state interferometry for complex vector light

References
[1] S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg,

“Atomic interferometers,” J. Mod. Opt., vol. 33, no. 9, p. 1129, 1986..

[2] M. Scully, “From lasers and masers to phaseonium and phasers,”

Phys. Rep., vol. 219, nos. 3−6, pp. 191−201, 1992..
[3] D. V. Kosachiov, B. G. Matisov, and Y. V. Rozhdestvensky, “Coherent

phenomena in multilevel systems with closed interaction contour,”

J. Phys. B: At., Mol. Opt. Phys., vol. 25, no. 11, pp. 2473−2488, 1992..
[4] K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of

electromagnetically induced transparency,” Phys. Rev. Lett., vol. 66,

no. 20, pp. 2593−2596, 1991..
[5] W. Maichen, F. Renzoni, I. Mazets, E. Korsunsky, and L. Windholz,

“Transient coherent population trapping in a closed loop interac-

tion scheme,” Phys. Rev. A, vol. 53, no. 5, pp. 3444−3448, 1996..
[6] S. E. Harris, “Lasers without inversion: interference of

lifetime-broadened resonances,” Phys. Rev. Lett., vol. 62, no. 9,

pp. 1033−1036, 1989..
[7] O. Kocharovskaya and P. Mandel, “Amplification without inversion:

the double-Λ scheme,” Phys. Rev. A, vol. 42, no. 1, pp. 523−535,
1990..

[8] S.-Y. Zhu and M. O. Scully, “Spectral line elimination and

spontaneous emission cancellation via quantum interference,”

Phys. Rev. Lett., vol. 76, no. 3, pp. 388−391, 1996..
[9] M. O. Scully, S.-Y. Zhu, and A. Gavrielides, “Degenerate

quantum-beat laser: lasing without inversion and inversion

without lasing,” Phys. Rev. Lett., vol. 62, no. 24, p. 2813, 1989..

[10] D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Phase-sensitive

laser cooling of double-Λ atoms,” Europhys. Lett., vol. 22, no. 1,

pp. 11−16, 1993..
[11] C. Liu, S. Gong, T. Nakajima, and Z. Xu, “Phase-sensitive atom

localization in a loopΛ-system,” J. Mod. Opt., vol. 53, no. 12,
pp. 1791−1802, 2006..

[12] M. Shahriar and P. Hemmer, “Direct excitation of microwave-spin

dressed states using a laser-excited resonance Raman

interaction,” Phys. Rev. Lett., vol. 65, no. 15, pp. 1865−1868, 1990..
[13] N. P. Georgiades, E. S. Polzik, and H. J. Kimble, “Frequency

metrology by use of quantum interference,” Opt. Lett., vol. 21,

no. 20, p. 1688, 1996..

[14] E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear

optics with double-Λ atoms,” Phys. Rev. A, vol. 60, no. 6,

pp. 4996−5009, 1999.
[15] M. Lukin, P. Hemmer, and M. Scully, “Resonant nonlinear optics in

phase-coherent media,” in Advances In Atomic, Molecular, and

Optical Physics, London, UK, Elsevier, 2000, pp. 347−386.
[16] G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent

interaction in a four-level atomic configuration,” Phys. Rev. A, vol.

66, no. 5, p. 053409, 2002,.

[17] A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and

S. E. Harris, “Efficient nonlinear frequency conversion in an

all-resonant double-Λ system,” Phys. Rev. Lett., vol. 84, no. 23,

pp. 5308−5311, 2000.
[18] A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of

electromagnetically induced transparency in a double-Λ system,”

J. Mod. Opt., vol. 49, nos. 1−2, pp. 141−155, 2002..
[19] D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard,

“Diffraction of atoms by a transmission grating,” Phys. Rev. Lett.,

vol. 61, no. 14, pp. 1580−1583, 1988..

[20] M. Kasevich and S. Chu, “Atomic interferometry using stimulated

Raman transitions,” Phys. Rev. Lett., vol. 67, no. 2, pp. 181−184,
1991..

[21] C. Adams, O. Carnal, and J. Mlynek, “Atom interferometry,” in

Advances in Atomic, Molecular, and Optical Physics, Cambridge,

Academic Press, 1994, pp. 1−33.
[22] K. Bongs et al., “Taking atom interferometric quantum sensors

from the laboratory to real-world applications,” Nat. Rev. Phys., vol.

1, no. 12, pp. 731−739, 2019..
[23] A. HosseiniArani et al., “Advances in atom interferometry and their

impacts on the performance of quantum accelerometers on-board

future satellite gravity missions,” Adv. Space Res., vol. 74, no. 7, pp.

3186−3200, 2024..
[24] F. Badshah, M. Abbas, S. Asghar, J. Xie, and Rahmatullah,

“Electromagnetically induced grating realization in phaseonium,”

Commun. Theor. Phys., vol. 75, no. 8, p. 085501, 2023..

[25] D. Shylla, E. O. Nyakang’o, and K. Pandey, “Highly sensitive atomic

based MW interferometry,” Sci. Rep., vol. 8, no. 1, p. 8692, 2018,.

[26] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to

applications,” Adv. Opt. Photonics, vol. 1, no. 1, p. 1, 2009..

[27] E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto,

“Poincaré-beam patterns produced by nonseparable

superpositions of Laguerre−Gauss and polarization modes of
light,” Appl. Opt., vol. 51, no. 15, p. 2925, 2012..

[28] C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of

complex vector light fields and their applications,” J. Opt., vol. 20,

no. 12, p. 123001, 2018..

[29] H. Rubinsztein-Dunlop et al., “Roadmap on structured light,” J.

Opt., vol. 19, no. 1, p. 013001, 2016..

[30] J. Wang, F. Castellucci, and S. Franke-Arnold, “Vectorial

light−matter interaction: exploring spatially structured complex
light fields,” AVS Quant. Sci., vol. 2, no. 3, p. 031702, 2020,.

[31] F. K. Fatemi, “Cylindrical vector beams for rapid

polarization-dependent measurements in atomic systems,” Opt.

Express, vol. 19, no. 25, p. 25143, 2011..

[32] R. Kumar, D. Manchaiah, and R. K. Easwaran, “Interaction of four

level closed loop atomic systems in the presence of two vector

beams,” Phys. Scr., vol. 98, no. 7, p. 075101, 2023..

[33] S. Bougouffa and M. Babiker, “Optical forces on atoms subject to

higher-order Poincaré vortex modes,” Phys. Rev. A, vol. 111, no. 1,

p. 013520, 2025,.

[34] T. Wang, W. Lee, M. Limes, T. Kornack, E. Foley, and M. Romalis,

“Pulsed vector atomic magnetometer using an alternating

fast-rotating field,” Nat. Commun., vol. 16, no. 1, p. 1374,

2025..

[35] F. Castellucci, T. W. Clark, A. Selyem, J. Wang, and S. Franke-Arnold,

“Atomic compass: detecting 3D magnetic field alignment with

vector vortex light,” Phys. Rev. Lett., vol. 127, no. 23, p. 233202, 2021,.

[36] S. Qiu et al., “Visualization of magnetic fields with cylindrical vector

beams in a warm atomic vapor,” Photonics Res., vol. 9, no. 12, p.

2325, 2021..

[37] S. Ramakrishna, R. P. Schmidt, A. A. Peshkov, S. Franke-Arnold, A.

Surzhykov, and S. Fritzsche, “Interaction of vector light beams with

atoms exposed to a time-dependent magnetic field,” Phys. Rev. A,

vol. 110, no. 4, p. 043101, 2024,.

[38] S. Sharma and T. N. Dey, “Phase-induced transparency-mediated

structured-beam generation in a closed-loop tripod

configuration,” Phys. Rev. A, vol. 96, no. 3, p. 033811, 2017,.



K. Samanta et al.: Atomic state interferometry for complex vector light — 15

[39] J. Wang et al., “Measuring the optical concurrence of vector beams

with an atomic-state interferometer,” Phys. Rev. Lett., vol. 132, no.

19, p. 193803, 2024,.

[40] S. Ramakrishna and S. Fritzsche, “Interaction of a Poincaré beam

with optically polarized atoms in the presence of a constant

magnetic field,” Phys. Rev. A, vol. 111, no. 6, p. 063110, 2025..

[41] N. Radwell, T. Clark, B. Piccirillo, S. Barnett, and S. Franke-Arnold,

“Spatially dependent electromagnetically induced transparency,”

Phys. Rev. Lett., vol. 114, no. 12, p. 123603, 2015,.

[42] P. Das and T. N. Dey, “Linear and nonlinear propagation of

cylindrical vector beams through a nondegenerate four-level

atomic system,” Phys. Rev. A, vol. 110, no. 6, p. 063720, 2024..

[43] V. Kudriasov et al., “Propagation of optical vector and scalar

vortices in an atomic medium with closed-loop tripod configu-

ration,” Opt. Express, vol. 33, no. 19, pp. 40931−40947, 2025..
[44] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and

G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic

fields,” Science, vol. 361, no. 6406, pp. 993−996, 2018..
[45] S. Gao, F. C. Speirits, F. Castellucci, S. Franke-Arnold, S. M. Barnett,

and J. B. Götte, “Paraxial skyrmionic beams,” Phys. Rev. A, vol. 102,

no. 5, p. 053513, 2020,.

[46] Z. Ye et al., “Theory of paraxial optical skyrmions,” Proc. R. Soc. A

Math. Phys. Eng. Sci., vol. 480, no. 2297, 2024, https://doi.org/10

.1098/rspa.2024.0109.

[47] G. M. Lerman, L. Stern, and U. Levy, “Generation and tight

focusing of hybridly polarized vector beams,” Opt. Express, vol. 18,

no. 26, p. 27650, 2010..

[48] D. Luo et al., “Nonlinear control of polarization rotation of

hybrid-order vector vortex beams,” J. Opt., vol. 22, no. 11, p. 115612,

2020..

[49] A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré

beams,” in Frontiers in Optics 2010/Laser Science XXVI, Rochester,

USA, Optica Publishing Group, 2010, p. FWC3.

[50] Y. Xue et al., “Focus shaping and optical manipulation using highly

focused second-order full Poincaré beam,” J. Opt. Soc. Am. A, vol.

35, no. 6, p. 953, 2018..

[51] E. J. Galvez, B. Khajavi, and B. M. Holmes, “Poincaré beams for

optical communications,” in Structured Light for Optical

Communication, London, UK, Elsevier, 2021, pp. 95−106.
[52] A. McWilliam et al., “Topological approach of characterizing optical

skyrmions and multi-skyrmions,” Laser Photonics Rev., vol. 17, no. 9,

p. 2300155, 2023,.

[53] Z. Zhou, Z. Zhao, Y. Wang, P. Guo, H. Liu, and P. P. Shum, “Poincaré

beams for magnetic field sensing,” J. Lightwave Technol., vol. 41,

no. 13, p. 4496, 2023..

[54] K. Tian, W. Ding, and Z. Wang, “Dead-zone-free atomic

magnetometer based on hybrid Poincaré beams,” Photonics Res.,

vol. 12, no. 5, p. 1093, 2024..

https://doi.org/10.1098/rspa.2024.0109
https://doi.org/10.1098/rspa.2024.0109

	1 Introduction
	2  An atomic state interferometer fortnqxa0;complex vector light
	2.1  Hamiltonian intnqxa0;terms oftnqxa0;partially dressed states
	2.2 The absorption rate

	3 Examples
	3.1  Polarization vortices withtnqxa0;varying ellipticity
	3.2 Hybrid vector beams along different grand circles
	3.3 Optical skyrmions
	3.4 HG beam

	4 Conclusions
	Appendix A: Transition probabilities and polarizabilities through perturbation theory


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


