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Abstract: Optical skyrmions, as structured light fields
endowed with discrete topological numbers, open new
opportunities for high-density encoding, robust information
transport, and quantum light-matter interactions. How-
ever, most existing skyrmion generators rely on complex or
bulky systems, hindering their application in scalable on-
chip quantum technologies. Here, we propose a nanopho-
tonic scheme based on semiconductor cavity quantum elec-
trodynamics, whereby a circularly polarized quantum emit-
ter is coupled to a concentric bullseye resonator. This con-
figuration enables the efficient generation of single-photon
Stokes vector skyrmions at subwavelength scales, as well
as their high-order extensions. By exciting single-photon
sources at different positions, the skyrmion number can be
continuously switched between +2 and —2, while higher-
order states are accessible by tuning the radius of cavity’s
center disc. This strategy couples the topological dimen-
sion of skyrmions with quantum states, laying the ground-
work for quantum skyrmions in on-chip topological key-
ing and quantum readout. Our work provides a practical
device architecture for integrated nanophotonic quantum
topological state platforms, offering a new paradigm for
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1 Introduction

Topological photonics has garnered increasingly interest
in optical skyrmions, whose discrete integer-valued topo-
logical invariants and robustness against smooth pertur-
bations endow them with particle-like stability [1]-[3].
Optical skyrmions can be realized across diverse three-
dimensional (3D) vector fields, encompassing electric and
magnetic fields [4]-[6], spin angular momentum [7]-[10],
polarization Stokes vectors [11]-[16] and so on. Such vector
structured light, with its rich topological textures, provides
new degrees of freedom beyond amplitude and phase for
light manipulation and information encoding [3], [17]. Early
pioneering work established feasibility and nanoscale vec-
torial features for skyrmionic lattices in evanescent elec-
tromagnetic waves of surface plasmon polaritons [4] and
deep-subwavelength spin skyrmions formed by spin—orbit
coupling in confined vortex fields [7]. These breakthroughs
paved the way for the field to expand into other regimes,
including Stokes-vector skyrmions in paraxial vector beams
[13] and spatiotemporal electromagnetic skyrmions in
supertoroidal pulses [6], further broadening the methods
for manipulating the topological properties of light.
However, most current skyrmion generation meth-
ods rely on bulk optics [6], [14], [15], [18]-[23], such as
interferometric superpositions and spatial light modula-
tors [14], [19], [23], to synthesize orthogonally polarized
modes with tailored orbital angular momentum (OAM),
which inherently restricts system stability and scalability.
While some progress has been made toward integration,
including skyrmions in microcavity through spin-orbit
interaction [16], [24], [25], compact waveplates [26], [27],
and meta-platforms [28]-[31], the overall development of
scalable and practical devices remains limited. Moreover,
a significant quantum milestone was achieved with the

8 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/nanoph-2025-0488
mailto:chenb255@mail.sysu.edu.cn
https://orcid.org/0000-0002-5039-0663
https://orcid.org/0000-0002-6712-6770

2 = | Maetal.:Single-photon skyrmions in bullseye cavities

creation of non-local skyrmions as entangled states of light
[32], [33], unveiling profound connections between topol-
ogy and quantum entanglement and opening avenues for
topology-enhanced quantum information. Further advanc-
ing into the integrated quantum realm, a semiconduc-
tor cavity quantum electrodynamics (cQED) platform has
directly generated single-photon skyrmions [34], marking
a critical transition from bulk optics to nanophotonics and
from classical to quantum system. However, the Gaussian
microcavity supports only low-order skyrmions and does
not offer a straightforward method for on-chip tuning of the
topological texture. The single-photon generation rate and
extraction efficiency also remain far from optimal.

Despite these promising advances, a platform that
simultaneously offers high efficiency and full compatibil-
ity with quantum operations has yet to be developed. To
address this gap, we propose an integrated nanophotonic
scheme that couples a circularly polarized single-photon
emitter to a concentric bullseye resonator. This designed
microcavity structure, comprising a circular Bragg grat-
ing (CBG), a dielectric spacer and a metallic mirror, pro-
vides strong lateral confinement and highly efficient verti-
cal out-coupling [35], [36]. By placing a circular dipole at the
cavity’s center, the right- and left-handed circularly polar-
ized (RCP and LCP) components of the excited cavity mode
carry distinct OAM orders, whose superposition generates
a skyrmionic vector polarization field with a quantized
skyrmion number. Leveraging cavity-enhanced spin—orbit
coupling and mode engineering, this system synthesizes
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Stokes vector skyrmions and thus enables the emission of
single-photon skyrmions at subwavelength scales. Our opti-
mization at 925 nm achieves a Purcell factor of approx-
imately 32 with an extraction efficiency exceeding 98 %,
ensuring bright single-photon operation and high-fidelity
Stokes-vector textures. Besides, the emitter’s chirality and
slight displacement enable polarity reversal and continuous
switching of the skyrmion number between +2 and —2.
Furthermore, by tuning the radius of the cavity’s center
disc to access higher-order radial modes, the same device
architecture can generate more complex skyrmions [37],
[38], such as higher-order 7z and 11z skyrmions. This capa-
bility bridges fundamental and higher-order topologies on a
single, unified platform, paving the way for robust quantum
topological photonics [39]-[42].

2 Results and discussion

The proposed device for generating single-photon
skyrmions is schematically illustrated in Figure 1(a). A
circularly polarized quantum emitter is positioned at the
center of a bullseye resonator. Through its interaction with
the bullseye cavity, the photons emitted by the quantum
emitter are efficiently funneled into free space while
acquiring skyrmionic polarization texture. The bullseye
resonator consists of a CBG with thickness of 160 nm, a
250 nm SiO, spacer, and a 100 nm high-reflectivity Au layer.
The CBG, formed by a series of concentric trenches with
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Figure 1: Single-photon skyrmions emitted from a quantum emitter coupled to a bullseye resonator. (a) Schematics of the device for single-photon
skyrmions generation. The single photons emitted from the quantum emitter are coupled to the cavity modes of the bullseye resonator and radiated
to free space with skyrmionic texture. Inset: Mapping from the polarization vector field to a unit Poincaré sphere. (b) Numerical simulations

of the purcell factor and the extraction efficiency of the single-photon source. By optimizing the structure of the resonator, a Purcell factor of ~32
and collection efficiency over 98 % are obtained at the emitting wavelength near 925 nm. The parameters of the optimized bullseye resonator are:
central disc radius Rc = 360 nm, circular grating period T = 360 nm, trench width w = 110 nm. The thickness of GaAs layer is 160 nm and the thickness
of the SiO, layer is 250 nm. In Figure 1(a) and throughout this paper, the orientation of the vector arrows represents different in-plane spin azimuths
of the Stokes vectors, and the color of the vector arrows corresponds to out-of-plane components of the Stokes vectors.



DE GRUYTER

increasing diameters, confines the in-plane propagating
photons toward the cavity center. The SiO, spacer and
Au layer together serve as a bottom mirroy, reflecting
downward-emitted photons back into the cavity and
thereby enabling highly efficient vertical emission. To
maximize the device performance, we optimize the
bullseye structure for a quantum emitter operating
at a wavelength of 925nm. Using the finite-difference
time-domain (FDTD) method, we determined the optimal
parameters to be a central disc radius (Rc) of 360 nm, a
circular grating period (7) of 360 nm, and a trench width
(w) of 110 nm. To maximize the Purcell enhancement, the
single-photon emitter is positioned at the vertical center
of the 160 nm GaAs layer. As shown in Figure 1(b), this
optimized subwavelength cavity achieves a Purcell factor
of ~32 at the 925nm emission wavelength, signifying a
strong enhancement of the spontaneous emission rate.
Furthermore, with a photon extraction efficiency exceeding
98 %, the device holds great potential for use as a bright
single-photon source.

To achieve efficient emission of single-photon
skyrmions from the bullseye cavity, a circularly polarized
dipole serves as the quantum emitter to excite the
skyrmionic mode. In the concentric bullseye resonator,
the central disk can be approximately described by the
Helmholtz equation [43]. The Stokes vector S = (S, S,,S3)
can represent an arbitrary state of polarization as points on
the surface of the unit-radius sphere known as the Poincare
sphere [14], [44]. When a circularly polarized single-photon
emitter is located at the center of the concentric bullseye
resonator, it excites the transverse zeroth- and second-order
Bessel modes. The coupling coefficients for this excitation
are proportional to the local field overlap and polarization
matching.

We first examine the case of a LCP dipole placed
at the center of the cavity. The resulting RCP and
LCP components of the emitted photons are shown
in Figure 2(a)-(d). The simulation results reveal
that the RCP component exhibits a doughnut-like
intensity profiles with a helical phase, corresponding
to an OAM mode with a topological charge of 1= +2,
whereas the LCP component displays a Gaussian-like mode
without OAM. This simulation results further indicate
that the central lobes of the zeroth- and second-order
Bessel modes form the effective regions. The coexistence
of these two components, each with a different OAM order,
enables the formation of a vector polarization field with
a skyrmionic texture. To confirm the skyrmionic texture,
we calculated the normalized Stokes vector, § = (S5, S,, S3),
shown in Figure 2(e), and visualized the corresponding
vector field with an arrow plot. Arbitrary polarization states
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can be represented by the normalized Stokes vector, with
the in-plane spin azimuth arctan (S, /S,) (and out-of-plane
component S;) mapped to the in-plane orientation (and
color) of the vector arrow. As seen in Figure 2(f), the arrows
flip upward (from the center to the periphery) along the
radial direction while simultaneously completing two
full rotations azimuthally. To characterize the topological
properties of the single-photon skyrmion sources, we
calculate the skyrmion number of the quantum skyrmions,
which is defined as [45], [46]

Ny = 4”// (asxas>dxdy )

where S(x,y) represents the vector field to construct a
skyrmion and U denotes the region to confine the skyrmion.
By integrating over the vector field within the skyrmion
region (marked by the black dashed line in Figure 2(a)), we
calculate a topological invariant with skyrmion numbers of
+2. The distinct vectorial winding and the skyrmion num-
ber confirms the generation of single-photon skyrmions. To
analyze the far-field characteristics of the emitted single-
photon skyrmions, it is essential that the topology is
preserved during propagation from the near-field to the
far-field.

In contrast, placing an RCP dipole at the cavity cen-
ter generates single-photon skyrmions with the opposite
polarity. In this configuration, the LCP component carries
an OAM of | = —2 (Figure 2(g) and (1)), while the RCP com-
ponent has no OAM (Figure 2(h) and (j)). This inverts the
polarity of the resulting skyrmion, which is confirmed by
the sign reversal of the Stokes parameter S; (Figure 2(k)).
Along the radial direction, the arrows flip from pointing
up at the center to down at the edge (Figure 2(1)). This full
inversion corresponds to a skyrmion number of Ny = —2.
These results demonstrate that single-photon skyrmions can
be realized in a bullseye cavity coupled to a circularly
polarized quantum emitter. Moreover, the polarity of the
generated quantum skyrmions can be deterministically con-
trolled by switching the handedness of the quantum emitter.

In practical fabrication of quantum-emitter-cavity
devices, the emitter often deviates from the bullseye cav-
ity center due to unavoidable placement and fabrication
errors, making it essential to assess the impact of displace-
ment. We therefore examine how the skyrmion number
of the emitted photons varies with dipole offset along the
x direction. For an LCP dipole placed at successive off-
center positions, we extract the Stokes vector field and
compute the corresponding skyrmion number in each case.
The integration region is fixed to that of the centered
reference (identical to Figure 2(a)). As shown in Figure 3(a),
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Figure 2: Simulated skyrmionic polarization textures when a circularly polarized quantum emitter located in the center of the bullseye resonator.
(a-f) Simulations of a LCP quantum emitter in cavity. The intensity profiles (a, b) and the phase distributions (c, d) indicate that the RCP and LCP
component of the emitted photons carry OAM with order / = —2 and 0, respectively. According to the extracted Stokes parameters (e), the normalized
Stokes vectors distribution with skyrmion number Ny = 42.00 is obtained (f). (g-1) Simulations of a RCP quantum emitter in cavity. The intensity
profiles (g, h) and the phase distributions (i, j) indicate that the RCP and LCP component of the emitted photons carry OAM with order / = 0 and +2.
According to the extracted Stokes parameters (k), the normalized Stokes vectors distribution with skyrmion number Ny, = —2.00 is obtained (I).

The skyrmion areas are enclosed within the dashed black lines in (a) and (h).

the skyrmion number evolves continuously from +2 to —2
as the dipole is moved outward radially. This evolution
arises from the superposition of the skyrmion states cor-
responding to Ny = +2 and Ny = —2, with their relative
contributions varying with the emitter’s displacement.
Three representative cases are illustrated in Figure
3(b)-(g), corresponding to emitter displacements of 60 nm,
90 nm, and 120 nm, respectively. From the results in

Figure 2(f) and (1), it can be seen that within the skyrmion
vector field itself, the local polarization state deviates from
perfect circular polarization when moving slightly away
from the skyrmion center. Consequently, when an LCP
dipole is displaced to such a position (e.g., 60 nm), it still
predominantly excites an LCP-centered skyrmion state (N,
= +2), but also weakly excites an RCP-centered skyrmion
(Ng = —2). This mixing of states reduces the total skyrmion
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Figure 3: Simulations of the single-photon emissions when a LCP quantum emitter located away from the center of the bullseye resonator.

(a) The skyrmion number of the emitted single-photon as a function of the displacement of the LCP quantum emitter along the x direction.

(b, d, f) The extracted Stokes parameters of the emitted photons when the quantum emitter is displaced by 60 nm, 90 nm and 120 nm, respectively.
(c, e, g) The normalized Stokes vectors distributions when the quantum emitter is displaced by 60 nm, 90 nm and 120 nm, respectively. By locating
the quantum emitter at the center and the edge of the skyrmion area of the cavity mode, single-photon skyrmions with opposite polarity can be

obtained.

number from its ideal integer value (Nyg = +1.74), as
shown in Figure 3(b) and (c). As the radial displacement
increases, the local polarization of the excited field evolves
from circular to elliptical and, eventually, to linear, accom-
panied by a corresponding decrease in skyrmion number.
Figure 3(d) and (e) show the case of a 90 nm displacement,
the vector field polarization is nearly linear (Figure 3(d) and
(e)). Here, the LCP dipole excites both Ny = +2 and —2
skyrmion states almost equally, causing the S; parameter
to approach zero within the skyrmion region. The resulting
linear vector field has a skyrmion number near zero. With
further displacement, the handedness of the vector field
reverses, and its polarization evolves back from linear to

elliptical and finally to circular. At a 120 nm displacement,
the LCP-dipole predominantly radiates photons with an
RCP-centered skyrmionic texture with Ny = —2 (Figure 3(f)
and (g)). These findings systematically illustrate how the
emitted photons’ skyrmionic topology evolves with the
quantum emitter’s radial position. Notably, the skyrmion
number remains highly stable even when the emitter is
shifted from the center of the bullseye cavity by up to
40 nm in the x-direction, indicating its robustness against
positional perturbations. This robustness is consistent with
recent findings on the topological protection of optical
skyrmions [47], [48]. This provides theoretical guidance on
fabrication tolerances and introduces a practical method



6 = ] Maetal.:Single-photon skyrmions in bullseye cavities

for controlling single-photon skyrmion polarity by precisely
positioning the emitter.

While the previous results only demonstrate skyrmions
with topological charges of +2, our design can be readily
extended to generate higher-order skyrmions with more
complex topologies by simply increasing the radius of
the cavity’s central disk. By adjusting the bullseye cav-
ity design, we further explore the generation of more
complex topological single-photon states in the quantum-
emitter-coupled bullseye cavity, such as skyrmionium or
krn skyrmion. Unlike a conventional skyrmion, which has
a single radial vector reversal, a skyrmionium is a nested
texture with an additional flip, creating a 2z radial twist
and a net skyrmion number of zero. An extension of this,
the kz-skyrmion (or target skyrmion), incorporates mul-
tiple z-twists, enabling fine control over the topological
charge.

To create these states, the cavity needs to support
higher-order radial modes that have multiple concentric
intensity rings. We achieved this by increasing the radius of
the central disc and tuning the cavity resonance to match
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the quantum emitter wavelength of 925 nm. Two cavity
geometries with central disk radii of 660 nm and 1,120 nm
were designed, yielding the results shown in Figure 4(a)-(d)
and (e)-(h), respectively. In both cases, the RCP and LCP
components of the emitted field feature additional concen-
tric rings, which confirms the excitation of higher-order
radial cavity modes (Figure 4(a), (b), (), (f)). The Stokes
parameters S; and S, remain similar to those of a funda-
mental skyrmion, preserving the azimuthal vector—vortex
structure (Figure 4(c) and (g)). However, the S; parameter
undergoes multiple sign reversals along the radial direc-
tion, corresponding to repeated upward-downward flips of
the vector field arrows in Figure 4(d) and (h). This confirms
the formation of higher-order photonic skyrmion states,
specifically 7z skyrmions and 11z skyrmions, respectively.
This result demonstrates that by engineering the cavity
geometry, we can systematically control the radial complex-
ity of emitted single-photon skyrmions, opening a promising
route toward high-capacity topological encoding for quan-
tum information processing.
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Figure 4: The generation of kz-skyrmions (target skyrmions) by increasing the radius of the central disk in the bullseye resonator.
(a-d) Characteristics of simulated 7z skyrmions emissions when a LCP quantum emitter located at the center of the bullseye resonator with
Rc =660 nm. (e-f) Characteristics of simulated 11 skyrmions emissions when a LCP quantum emitter located at the center of the bullseye

resonator with Rc = 1,120 nm.
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3 Conclusions

In conclusion, we have proposed and numerically demon-
strated an integrated nanophotonic platform for the deter-
ministic generation of single-photon skyrmions. By cou-
pling a circularly polarized quantum emitter to a specially
designed bullseye resonator, our scheme achieves bright,
efficient single-photon emission with engineered topolog-
ical properties. Our results show that the chirality of the
quantum emitter can deterministically control the polar-
ity of the generated Stokes vector skyrmions, producing
integer skyrmion numbers of +2 or —2. Furthermore, we
demonstrated that continuous tuning of the skyrmion num-
ber between +2 and —2 can be achieved by radially dis-
placing the emitter from the cavity center. This finding not
only provides insight into fabrication tolerances but also
offers a practical method for manipulating the topological
charge. Finally, we have shown that by engineering the cav-
ity geometry to support higher-order radial modes, the same
device architecture can be extended to generate more com-
plex topological states, such as 7z and 11z skyrmions. As
a new paradigm for photonic quantum information, single-
photon skyrmions are merging the fields of topological pho-
tonics and quantum technologies. Their unique properties
open up several promising application avenues. The single-
photon skyrmions, characterized by a topological number; is
resilient to smooth perturbations and environmental noise.
Moreover, the rich, non-trivial spin texture of a single-
photon skyrmion inherently encodes a high-dimensional
state. Furthermore, the ability to generate and control var-
ious skyrmionic states, including higher-order topologies
like skyrmioniums or kz skyrmions, offers multiple degrees
of freedom for encoding information [49]. This work bridges
the gap between fundamental and higher-order topological
photonics on a unified, integrated platform, opening a path-
way toward advanced quantum information processing and
high-capacity quantum communications using topological
single photons.
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