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Abstract: The multimode ultrastrong coupling (USC)
regime has emerged as a novel platform for accessing
previously inaccessible phenomena in cavity quantum
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electrodynamics. Of particular interest are cavity-mediated
correlations between local and nonlocal excitations, or
equivalently, between modes at zero and finite in-plane
momentum, which offer new opportunities for controlling
light-matter interactions across space. However, direct
experimental evidence of such interactions has remained
elusive. Here, we demonstrate nonlocal multimode coupling
in a Landau polariton system, where cavity photons
simultaneously interact with the zero-momentum cyclotron
resonance and finite-momentum magnetoplasmons of
GaAs two-dimensional electron gas. Our slot cavities,
with their subwavelength mode volumes, supply in-plane
momentum components that enable the excitation of
finite-momentum matter modes. Terahertz time-domain
magnetospectroscopy measurements reveal a clear splitting
of the upper-polariton branch, arising from hybridization
between magnetoplasmon modes and the cavity-
cyclotron-resonance hybrids. Extracted coupling strengths
confirm USC of the cyclotron resonance and strong
coupling of the magnetoplasmon modes to the cavity field,
respectively. The experimental results are well captured
by the multimode Hopfield model and finite-element
simulations. These findings establish a pathway for
engineering multimode light—matter interactions involving
zero- and finite-momentum matter modes in the USC
regime.

Keywords: multimode coupling; magnetoplasmons; Lan-
dau polaritons

1 Introduction

Vacuum-matter interactions in cavities are currently
explored in diverse systems both for controlling material
properties without any external driving field and for appli-
cations in quantum information technologies. The ultra-
strong coupling (USC) of vacuum-matter arises when the
vacuum Rabi frequency becomes a significant fraction of
the bare frequencies of vacuum and matter at zero detun-
ing (@), i.e., g/w, > 0.1, where g is the coupling strength

This work is licensed under the Creative Commons Attribution 4.0 International License.
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[1], [2]. This regime gives rise to exotic phenomena via the
non-negligible contribution of the counter-rotating terms
in the Hamiltonian, such as quantum squeezing in the
ground state [3], [4], the vacuum Bloch-Siegert shift [5],
the Dicke superradiant phase transition [6], [7], cavity-
mediated superconductivity [8], and modifications of the
quantum Hall effect [9], [10]. The USC regime has been
realized in Landau polaritons [5], [11]-[21], phonon polari-
tons [22]-[25], and magnon polaritons [7], [26], [27]. Among
these systems, Landau polaritons offer exceptional tunabil-
ity through externally applied magnetic fields.

Recently, attention has expanded toward the multi-
mode USC regime, where a matter excitation ultrastrongly
couples simultaneously with multiple cavity modes, or con-
versely, a single cavity mode interacts with multiple mat-
ter excitations. This regime is not only a natural exten-
sion of single-mode USC but also introduces fundamen-
tally new physics due to the nontrivial interplay between
cavity modes or between matter excitations [20], [25],
[28]-[31]. For example, correlations between bare excita-
tions emerge due to the significant contribution of the
counter-rotating terms, which do not exist in the absence
of ultrastrong light—matter interactions. Very recently, mat-
ter—-mediated photon-photon correlations [31] and cavity-
mediated superthermal phonon-phonon correlations [25]
have been realized by leveraging the large dipole moment of
Landau-level transitions and the subwavelength light con-
finement of metamaterial cavities, respectively.

Furthermore, nonlocal, i.e., k # 0 aspects of USC are
also drawing increasing interest [32], where k is the in-plane
wave vector of matter excitation. In particular, the possibil-
ity of mediating long-range nonlocal correlations through
the vacuum field opens a new direction in controlling col-
lective matter excitations across space. Therefore, it would
be particularly interesting to explore hybrid quantum states
that bridge local and nonlocal matter excitations — coupling
between k =0 and finite kK modes mediated by a cavity
mode. While recent studies have explored multimode USC
involving finite k excitations [19], [30], [32], [33], direct obser-
vation of mode-resolved anticrossings between individual
modes has so far remained elusive. To further deepen our
understanding of multimode USC, it is desirable to investi-
gate systems where such interactions can be more clearly
resolved.

Here, we report spectroscopic evidence for coupling
between a local mode and a nonlocal mode, through simul-
taneous USC and strong coupling (SC) with a single cavity
mode, in a Landau polariton system. We fabricated an array
of slot cavities on a two-dimensional electron gas (2DEG),
and its microstructure allowed cavity photons to couple
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with finite-k plasmon modes of the 2DEG by providing
in-plane momentum. In a magnetic field, we experimentally
observed SC of magnetoplasmon (MP) modes and the cavity
mode, as well as USC between the cyclotron resonance (CR)
of the 2DEG and the cavity mode. This multimode hybridiza-
tion resulted in a clear splitting of the upper-polariton (UP)
branch, which can be described by the multimode Hop-
field model. Simulated transmission spectra using the finite-
element method exhibited similar behavior, confirming the
effect of finite-k MP modes. Our findings highlight a new
platform where local and finite-k matter excitations can
be coupled through a cavity mode, offering a perspective
on momentum-resolved multimode interactions in the USC
regime.

2 Results

Providing in-plane momentum for light-matter interac-
tions has long been achieved using periodic lattice struc-
tures [34]-[39], via patterning 2DEGs [17], [19], [33], [40]-[45]
or by confining light in a small mode volume [32], [46]. To
implement this mechanism, we fabricated an array of slot
cavities on a GaAs 2DEG using standard photolithography
and lift-off techniques. The 2DEG was present about 45 nm
below the slot, ensuring strong overlap with the electromag-
netic fields of the cavity mode; see Figure 1(a). The electron
density and mobility were n, = 3.6 X 10 cm=2 and u, =
1.2 x 105 cm?/(V s), respectively, obtained through van der
Pauw measurements. The electron cyclotron mass was
found to be m* = 0.076m, through terahertz (THz) magne-
tospectroscopy measurements, where m, is the free electron
mass in vacuum. The loop length of slots was tuned to have a
resonance frequency in the THz frequency range. The bare
cavity frequency, w,, was at 0.925 THz. The width of the slot,
d, was 4 pm to confine light inside the cavity, providing cav-
ity photons with finite in-plane momentum. Although the
periodic structure also provided finite in-plane momentum,
its frequency was too low compared with the cavity mode.
Therefore, we consider only the k components generated by
the individual slots.

As a finite-k matter excitation, we had the plasma oscil-
lations of the 2DEG. The 2D plasma frequency in the long-
wavelength limit is given by [47]

| ken,
%0 =\ amreye,”

where €, £, and e are the vacuum permittivity, the effective
dielectric constant of the surrounding medium (e, = 6.98),
and the elementary charge, respectively; see Figure 1(b)
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Figure 1: A multimode coupled system involving local and nonlocal matter excitations, and a cavity mode. (a) Schematic of the GaAs 2DEG-slot
system. 2DEG: two-dimensional electron gas. (b) Dispersion relations of plasmons at 0 T (black) and magnetoplasmons at 1.25 T (red), 2.18 T (blue),
and 2.51 T (green), corresponding to zero-detuning magnetic fields of MP,, MP5, and CR to @,. @,: bare cavity frequency. (c), (d) Illustration
of the multimode coupling of CR, MP;, and MP; to the cavity mode. (c) Uncoupled case. (d) Coupled case. The multimode coupling leads
to the formation of one lower polariton (LP) and three upper polaritons (UP,, UP,, and UP;).
(black solid line). The slot can provide the in-plane momen- MPs, whose dispersion is given by [48], [49]
tum k = nz/d, where n is restricted to odd integers due to
the symmetry of the electric field [19], [41]. While higher- (k) = @ (K) + 0. )

order terms are possible, they are typically weaker and
more difficult to observe. Based on our experimental results,
we focus on the lowest two components, corresponding to
the n =1 and 3 modes. However, even these modes alone
do not provide sufficient momentum to match the plasma
resonance to the cavity frequency w,, resulting in finite
detuning, i.e., there is no intersection between the cavity
mode and the n = 1and 3 MP modes at k < 3z /d.

Another matter excitation in our system was the CR of
the 2DEG, arising from transitions between adjacent Landau
levels at k = 0, which can be tuned by a perpendicular mag-
netic field, B, through the cyclotron frequency w, = eB/m*.
In the presence of B, the 2D plasma excitations evolve into

As shown in Figure 1(b) (colored lines), the entire dis-
persion curve blue-shifts as the magnetic field increases.
The colored curves represent the MP dispersion at vari-
ous magnetic field strengths, with the red (at 1.25 T), blue
(at 2.18 T), and green lines (at 2.51T) indicating the zero-
detuning conditions to the cavity mode. These field-tuned
resonances can satisfy the momentum matching condition
for n =3 mode (MP;), n =1 mode (MP,), and CR, respec-
tively, enabling the exploration of hybridization of k = 0
and k # 0 matter excitations through the cavity mode.

Figure 1(c) plots the bare matter excitation frequen-
cies and the cavity frequency as a function of B. In this
uncoupled situation, the CR and MP modes cross the
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cavity mode, showing three zero-detuning points, as
expected from Figure 1(b). However, when the CR and MP
modes are coupled with the cavity mode, they are expected
to exhibit an anticrossing behavior at each zero-detuning
point; see Figure 1(d). The multimode coupling gives rise
to one lower polariton (LP) and three upper polariton
branches (UP,, UP,, and UP,).

To confirm our model, we performed THz time-domain
magnetospectroscopy measurements on the coupled sys-
tem. THz pulses were generated and detected using InGaAs
photoconductive antennas fiber-coupled to an Er-doped
fiber laser with a center wavelength of 1,550 nm and rep-
etition rate of 80 MHz. The electric field strength was suf-
ficiently low to prevent any nonlinear effects. Measure-
ments were conducted at 1.6 Kin a magneto-optical cryostat
operating in the Faraday geometry. Time-domain signals of
the samples and reference (bare GaAs 2DEG) were Fourier
transformed to obtain transmission spectra from 0.2 THz
to 1.6 THz. Further details of the experimental setup are
provided in the Supplementary Materials. Figure 2(a) shows
a color map of transmittance as a function of frequency and
magnetic field. At around 2.50 T, an anticrossing hehavior
is observed, arising from the USC between the cavity mode
and the CR of the 2DEG at k = 0. At around 1.25 T, an addi-
tional splitting of the UP branch is clearly observed. This
is evidence of SC of the MP; with the cavity mode having
k = 3z /d, induced by the confinement in the 4 pm slot. The
split upper polaritons can be interpreted as UP, and UP; in
Figure 1(d). UP, is absent in the experimental data due to
the THz spectra reflecting the cavity-like components of the

0.8

—_
(6)]

0.7
0.6
0.5
0.4

Ve

g

P, 03

0.2

Frequency (THz) =
o
o —

0.1

0

0 1 2 3
Magnetic Field (T)

DE GRUYTER

polaritons, as well as the proximity of UP, to the CR at finite
fields.

To theoretically explain the coupling between a cavity
mode, CR, and MP modes, we introduce a multimode Hop-
field model. By adding the MP modes to the full Hamiltonian
of Landau polaritons presented in ref. [5] while considering
only a single cavity mode, the multimode Hamiltonian can
be written as

+D(a_+a1)(a++a*_), ®)
where 7 is the reduced Planck constant, &' (@) in the first
term is the creation (annihilation) operator for the cavity
photons of CR-active (£ = +) and CR-inactive (¢ = —) cir-
cularly polarized modes, the second term represents the
energy of the collective CR excitation of the 2DEG, bt (B)
being its creation (annihilation) operator, MP modes of dif-
ferent orders n =1,3 are introduced in the third term,
where éjl (¢;) and wyp are the corresponding creation
(annihilation) operator and resonance angular frequency,
and the fourth term is the light-matter interaction term
considering the coupling of CR and all MP modes with the
single cavity mode.
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Figure 2: Spectroscopic evidence for the multimode coupling. (a) Experimental color map of transmittance as a function of frequency and magnetic
field. The upper polariton is split into two parts, corresponding to UP, and UP; in Figure 1(d). (b) Theoretical color map of transmittance based on

the multimode Hopfield model.
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Here, g and g, are the coupling strengths of CR and
the n-th MP mode with the cavity mode, respectively. Using
the zero-detuning coupling strengths, g and g,,, which are
independent of the external B, g and g, can be written as

— w,
=,/=< 4
g . g @
— Oy,
&n = w0, &n: ©)
The coefficient D of the diamagnetic term is
2 2
) o2 g + Zgn
p=8 4y & - ®)
W . Omp, Wy

The coupling strengths appear in the relative permittivity as

?)
elw) = Epg — I L —
a)(a) —w.+ i)

_ Z pl,
N s
1
n CO(CU a)MP" + Z)

™

where the plasma frequencies of CR and n-th MP mode, wy,
and w,, , have relations with the B-independent coupling

Pl
strengths as
2
gz = M ®)
EbgLeff
2
2 _ wPIndQW )
R
bgHeff

Here, €, = €, is the background relative permittivity, =
(7,) is the lifetime of CR (MP,), dQW is the thickness of the
quantum well, and L. is the effective cavity length. Using
the above relative permittivity, the transmission spectra can
be obtained through the transfer-matrix method.

On the other hand, the polariton dispersion can be
calculated from the B-dependent coupling strengths. The
Heisenberg equations for the operators a,, @', b, and
¢, form a closed set describing the CR-active polariton
modes, while those of a_, &i, b, and CZ describe the CR-
inactive modes. The CR-active polariton annihilation opera-
tor is given by the Bogoliubov transformation, p, = wa, +
yat +xb + ¥, x,6,. In the same manner as performed by
Ciuti et al. [3], the polariton frequencies and the coefficients
are determined by solving the eigenvalue problem of the
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following matrix:
—ig g o 0 (10)
—ig ig 0 wyp,

Theoretical transmission spectra for the multimode
Landau polariton system, calculated using the transfer-
matrix method with the relative permittivity e(w) derived
in Eq. (7), are shown in Figure 2(b). The resonator structure
is simplified to a Fabry-Pérot cavity; details of the calcu-
lation setup are provided in the Supplementary Materials.
The splitting in the UP branch is observed and captures the
key feature of the experimental data. We emphasize that the
MP; interacts with the cavity—cyclotron-resonance hybrids
at only high frequencies and cannot account for the split-
ting of the upper polariton at around 1 THz without includ-
ing the MP; in the model; see Supplementary Materials.
The discrepancy in linewidth compared to the experi-
mental spectra is associated with the difference in cav-
ity geometry, with the slots having a reduced Q-factor
compared to an ideal Fabry—Pérot cavity. From fitting to
the experimental peak frequencies, we obtained the nor-
malized coupling strengths of g/w, = 0.18 and g,/w, =
g5/, = 0.084, confirming the USC of the CR and the SC
of MP modes with the cavity mode. Figure 3 shows the
calculated polariton frequencies (black solid lines) overlaid
with the peak frequencies extracted from the experiments
(red dots). Theoretical predictions match the experimental
results well. We note that the assumption g; = g, is gen-
erally not valid but is enough to explain the experimental
behavior.

We further validated our experimental observation
and theoretical model using three-dimensional finite-
element simulations in COMSOL. Figure 4 shows a color
map of transmittance simulated with m* = 0.070m, and
€, =9.77. Compared with the experimental transmittance
in Figure 2(a), the UP branch is split into three parts, sepa-
rated not only by MP, but also by MPs, resulting in UP,. Such
influence of the MP; could not be observed experimentally
due to the weak magnitude. Incorporating the MP; contribu-
tion to the multimode Hopfield model, theoretical fits to the
polariton frequencies are calculated, shown in black dashed
lines in Figure 4; see Supplementary Materials for more
detail. The obtained coupling strengths are g/w, = 0.13
and g,/wy = g5/wy = &s/w, = 0.062. The slight deviation
from the experimentally extracted values likely originates
from uncertainties in the sample parameters and the strong
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Figure 3: Theoretical analysis of the multimode coupled system.

Theoretical polariton frequencies based on the multimode Hopfield
model. Red dots are extracted peak frequencies from experiment.
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Figure 4: Finite-element simulation of the multimode coupled system.
Simulated color map of transmittance as a function of frequency

and magnetic field using COMSOL. The black dashed lines are theoretical
fits to the polariton frequencies based on the multimode Hopfield model.
An additional upper polariton mode, denoted UP,, appears due to

the influence of the MP; mode.

effect of the MP; mode. Overall, the simulation is consistent
with both the experimental and theoretical analysis of the
multimode coupling.

3 Discussion

In conclusion, we experimentally explored the coupling
between two distinct matter modes mediated by a cavity
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mode in an ultrastrongly coupled Landau polariton sys-
tem. Owing to the small-mode-volume slots, cavity photons
could interact with both the CR at k =0 and MP modes
at finite k. Such coexistence of CR and MP excitations has
been discussed in previous studies using 2DEG stripes and
periodic metasurfaces [20], [30], [33]. However, the multi-
mode interaction demonstrated here could not be accessed
due to the excitation geometry and frequency mismatch.
In this work, the MP modes affected the Landau polari-
ton through multimode hybridization and led to a split-
ting of the UP branch. From fitting, we obtained a normal-
ized coupling strength of g/w, = 0.18 for CR, and g, /@, =
g5/ @, = 0.084 for MP modes with an in-plane wave vector
of k= /d and k = 37 /d, showing the USC of CR and SC
of MP modes to the cavity mode. The experimental results
were well explained by the extended multimode Hopfield
model and three-dimensional finite-element simulations.
Our work establishes a foundation for controlling cavity-
mediated nonlocal correlations between matter excitations
in the USC regime, unlocking new possibilities for tailoring
light—matter interactions.
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