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Abstract: Light exhibits both spin and orbital angular
momentum (SAM and OAM). These two forms of angu-
lar momentum remain independent in paraxial fields, but
become coupled in confined fields through spin—orbit inter-
actions (SOI). The SOI mechanism allows for the manip-
ulation of SAM to generate structured light fields featur-
ing nontrivial topological characteristics, such as optical
skyrmions. Conventional OAM beams, nonetheless, carry
discrete integer topological charges (TCs), leading to discrete
SAM states. This discrete property poses a persistent chal-
lenge for achieving continuous control of SAM. To tackle this
fundamental issue, we explored fractional orbital angular
momentum (FOAM) beams, whose TCs are extended from
integers to fractions, to realize continuous and precise con-
trol of SAM. A direct mathematical relationship between the
fractional effective TCs of FOAM beams and the orientation
distributions of the SAM vector has been derived. This the-
oretical prediction has been experimentally verified using
our home-built near-field mapping system, by which the
distinct SAM distributions of surface cosine waves regulated
by FOAM beams were mapped out. As a potential applica-
tion, we also devised an inverse detection method to accu-
rately measure the fractional effective TCs of FOAM, which
achieved theoretical and experimental accuracies of 10~>
and 1072, respectively. These advancements may enhance
our fundamental understanding of the SOI mechanism, and
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hence could create novel opportunities for light field manip-
ulation, optical communication, and other related areas.

Keywords: spin angular momentum; spin—-orbital interac-
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1 Introduction

Since the groundbreaking work by ]. H. Poynting, light
has been recognized as carrying momentum and angu-
lar momentum [1]. Subsequently, the discovery of orbital
angular momentum (OAM) in photon wavefunctions has
established a new paradigm in modern photonics [2]-[7].
Beams who carry OAM are characterized by their helical
phase fronts e¢, where I represents the discrete topological
charge (TC), and each photon is endowed with [/ (where 7
is the reduced Planck’s constant) of OAM [8]. Beyond OAM,
light inherently possesses spin angular momentum (SAM),
which is fundamentally associated with the helicity of polar-
ization [1], [9]-[12]. SAM is typically manifested through
circular polarizations. Specifically, right-handed and left-
handed circularly polarized (RCP and LCP) light carry +7
and —7 of SAM per photon, respectively [13]. Generally, OAM
and SAM are independent in paraxial conditions. However,
this independent conservation can be violated in tightly
focused beams [14], [15], evanescent waves [12] and scat-
tering configurations [16]. In these cases, SAM and OAM
of photons are no longer conserved separately. Instead,
they can undergo mutual conversion through spin-orbit
interactions (SOI) [17]-[20]. Notably, this SOI mechanism
enables sophisticated manipulation of the SAM character-
istics. For instance, the manipulation of transverse spin [21],
[22] can generate intricate photonic spin textures, including
skyrmions [23]-[26], merons [27]-[29], hopfions [30], torons
[31], as well as other topologically nontrivial structures [32],
[33].

Although SOI allows for the manipulation of SAM
through the modulation of OAM, the discrete property of
angular momentum intrinsically restricts SAM to discrete
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states [23], [29], [34]. As a result, attaining continuous and
arbitrary control over the SAM vector remains a funda-
mental challenge in the field of photonics. Recent advances
in OAM have transcended the integer limitations through
fractional effective TCs, defining fractional orbital angular
momentum (FOAM) beams as structured light fields that
carry OAM with fractional effective TCs [35]-[39]. The frac-
tional vortex phase term is typically expressed as a super-
position of integer vortex phase basis states [40]. Therefore,
FOAM beams do not violate the quantum nature of angular
momentum, but rather achieve phase modulation through
superposition of multiple angular momentum states. Signif-
icantly, this configuration simultaneously creates opportu-
nities for continuous manipulation of the SAM vectors.

In this paper, we demonstrate the continuous manip-
ulation of spin textures within surface Cosine beams by
making use of FOAM beams. By extending TCs [ from dis-
crete integers to continuous fractions, smooth and arbi-
trarily precise control of SAM distribution is achieved.
Theoretically, we have established a direct mathematical
connection between the fractional effective TCs of FOAM
beams and SAM vector orientation distributions of sur-
face waves. This fundamental relationship provides the the-
oretical basis for achieving continuous SAM modulation
via FOAM beams. Meanwhile, experimental validation was
accomplished through precise measurements of SAM dis-
tributions by our home-built near-field scanning system.
Finally, an approach for accurate OAM detection through
SAM measurements in SOI systems was developed, with
theoretical identification accuracy reaching 10~5 and exper-
imental realization attaining 10~2, The proposed method
offers new opportunities for the development of advanced
optical systems, especially in the fields of light field manip-
ulation, optical communications, and beyond.

2 Results and discussions

Suppose a vortex heam with radial polarization is blocked
by an intensity mask, and is divided into two parts by
the two slits of the mask, as depicted in Figure 1(a). The
azimuthal angle between these two slits is set at 90° (w/2).
Following the tight focusing process using a high numerical
aperture (NA) objective lens, two surface plasmon polari-
ton waves with optical vortices (SPP-OVs) propagating at
perpendicular propagation directions are generated at the
metal—dielectric interface. Given that the shape of the inter-
ference fringes is a cosine stripe, we term it a cosine beam.

This process can be mathematically described by an
interferometric Hertz vector potential formulation in a
source-free, homogeneous medium as [41]
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Figure 1: Continuous modulation of SAM by fractional OAM beam.

(a) Schematic diagram of the proposed setup for generating the surface
cosine beam. The intensity mask divides an OAM beam into two parts
propagating by an azimuthal angle of 90°. When focused onto the metal
film, their interference generates cosine-type surface waves. Through
spin-orbit interaction, these surface waves subsequently induce periodic
spin textures. (b) The spatial distributions of the energy flow density

for the surface cosine beam. The arrows indicate the direction of energy
flow. (c) The distribution of the out-of-plane SAM components (S,).

(d-e) The variations of the SAM vector at a given point [marked by

green cross in ()] evolves as the topological charge varies from /=1to 5
(x-axis), when TCs are integers (d) or fractions (e), respectively.

(f) Coherence phase spectrum by coherence phase is decomposed.
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where A, =A,=1 @, =3x/4, ¢,=5x/4
(cos @y, sin @, ), €, = (cos @y, sin @, ), r = (x, y) is in-plane
coordinate. Symbols k, and ik, denote the transverse and
longitudinal wavevector components, respectively, and
satisfy k? — k* = k* with k denoting the free-space wave
vector. The symbol [is the topological charge of the SPP-OV.
The time averaging Poynting vector P =Re (E* x H)/2
representing a directional energy flux can be calculated
through the Hertz potential as [28]:

e =

P wek?

Im (™ VY¥) 2

where w is the angular frequency of the wave and ¢ is
the absolute permittivity of the medium. The generalized



DE GRUYTER

spin-momentum relation between the Poynting vector and
SAM gives rise to [21], [42]:

1 _ €k’ .
§=5,VXP= EIm(V‘P x V)
0
_ ekle 22| \fok, (1 + cos(l;[ - \/Ekry>) 3
2w

k. sin<l;r - \/Ekry>

where the TC I can be either an integer or a fraction.

The energy flow distribution calculated by Eq. (2) is
presented in Figure 1(b). This distribution determines the
transverse SAM via Eqg. (3), thereby constructing a three-
dimensional spin vector distribution illustrated on the right
side of Figure 1(a). For integer TCs (I = 1, 2, 3, 4...), the
SAM vector cyclically experiences four discrete orientations
and resets when [ = 5, indicating a modulo-4 periodicity.
This periodic law stems from the fact the propagation direc-
tion between the two SPP wave is 90° [also determines %"
in Eq. (3)], which are analogous to the determination law
of four-fold symmetry for square spin meron lattice [28],
[29]. In addition, this angle also determines that the spatial
frequency of SAM distribution is \/Ekr at the same time.
To visualize this behavior, Figure 1(c) presents the S, dis-
tribution of the SPP-OV for [ = 1, while Figure 1(d) tracks
the spin-vector evolution at a fixed point [marked by green
cross in Figure 1(c)] when I ranges from 1 to 5.
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Furthermore, if the TC lis extended from integer to frac-
tion, that is, when the incident light is FOAM beam, Eq. (3)
still holds. In this case, continuously varying SAM vectors
states can be generated between the discrete states that
result from integer TCs. It should be mentioned that FOAM
do not violate the quantum nature of angular momen-
tum and can be understood by a superposition of multi-
ple integer OAM modes, with their phase profile described
by [36]:

ing
€ @)

eil¢ _ elr! sin(zl) i
T = l—n

where n is an integer that denotes the topological charge in
the OAM spectrum. The coherent superposition of multiple
TC states as expressed in Eq. (4) produces smooth phase
gradients, generating FOAM modes with continuously vari-
able “effective” TC values [e.g., I = 1.3 in Figure 1(f)]. This
continuous phase modulation fundamentally modifies the
transverse Poynting vector distribution, enabling smooth
rotation of the SAM vector [Figure 1(e)] instead of the dis-
crete transitions characteristic as shown in Figure 1(d).
Through this mechanism, the FOAM achieves analog control
of SAM orientation (similar to the continuous movement
of an analog clock as opposed to the discrete steps of a
digital clock) by establishing continuously tunable SOI. This
approach provides precise control of photonic spin states
that surpasses the fundamental limitations of integer OAM
systems.

Figure 2: Key elements for the experiments. (a) The diagram of the experimental setup for characterizing the spin distribution in a surface plasmon
vortex. (b) Back focal plane image of the reflected beam from the oil-immersion objective lens, where the dark-line indicates the excitation of SPPs

at the air-gold interface. (c) Dark field image of the isolated PS nanospheres immobilized on the gold film. The scale bar represents 1 pm. SLM: Spatial
light modulator, 4/2 WP: Half-wave plate, VWP: vortex wave plate, RM: reflect mirror, BS: beam splitter (non-polarizing), PMT: photo-multiplier tube.
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A schematic diagram of the experimental setup
employed to demonstrate the spin distribution is presented
in Figure 2(a). The setup commences with a 633 nm laser
source, followed by a telescope system and a half-wave
plate. The beam then shines on a spatial light modulator
(SLM, UPO: HDSLMS80OR Plus) and reflects a beam with
phase vortices. After using another half-wave plate and a
vortex wave plate to generate a radially polarized vortex
beam with optical phase vortices (RPOV), the beam then
encounters an intensity mask (angular aperture less than
10°) and thus splits into two parts with a relative angle of
90°. Finally, the beam is tightly focused by an oil-immersion
objective lens (Olympus, 100X, NA = 1.49) onto the SPP
waveguide, which is a 50 nm-thick gold film on a silica
substrate. This process excites SPP waves at the air-gold
interface, and the image captured from the back focal
plane is shown in Figure 2(b), where the dark lines indicate
the excitation of SPP waves at the interface. A polystyrene
(PS) nanoparticle of a diameter of ~320 nm is immobilized
onto the gold surface to scatter the SPPs into far field for
detection. The image of the nanoparticle in the dark-field
mode of the system is shown in Figure 2(c). The scattered
light carrying the local spin information is collected by
another objective lens (Olympus, 50X, NA = 0.7), and is split
into two arms, each equipped an LCP and an RCP polarizer,
respectively, to selectively filter out LCP and RCP light.
Ultimately, the intensity of the LCP and RCP components
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is collected by photo-multipliers (PMT). Note that both
the dipole moment of the 320 nm PS nanoparticle and its
directional radiation, along with the collection objective
lens, results in the precise near field measurement, which
our previous work discussed in detail [43].

The SAM of an arbitrary SPP wave can be calculated by
S = {eE* X E + uH* X H}/4w, where the asterisk (*) stands
for the complex conjugate, and p is permeability of the
medium. Consequently, the z-component of SAM is related
to the in-plane circularly polarized components described
in [44]:

j— 6 k
27 4wi k2

k
48 kz (IRCP ILCP)

(E*E ~EE ) = 5)
where Iy and I ¢, indicates the intensity of RCP and LCP
components, respectively. In a word, the out-of-plane SAM
(S,) of SPP field can be uncovered by simply measuring the
intensity of the LCP and RCP components obtained from
the in-plane electric field. Figure 3(a) and (b) depict the
measured LCP and RCP intensity distribution, when [ = 0.5.
Figure 3(c) shows the S, distribution which is proportional
to the subtraction of the former two distributions, as per
Eq. (4). Meanwhile, Figure 3 presents the S, distributions
when incident beam carries FOAM with variable TCs, rang-
ing from [ = 0.5 to 2 (from top to bottom). Evidently, by vary-
ing the frctional TCs, the displacement of the cosine-shaped
S, distribution can be continuously adjusted. In another
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Figure 3: The experimental results for the SPPs that are excited by RPOV beam with (a-c) 0.5-order vortex phase, (d-f) 1-order vortex phase,
(g-i) 1.5-order vortex phase, and (j-1) 2-order vortex phase, respectively. The left and middle panels show the measured intensity of LCP and RCP
component of SPPs, and the right panel shows the resultant z-component of SAM (S,).
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perspective, a fixed point experiences a continuous evolu-
tion of the spin vector, as well. These results are consistent
and have validated the theoretical predictions put forward
above.

Finally, as a potential application of our theory, we put
forward an approach for accurately discriminating OAM
modes in vortex beams via SAM measurements in the
SOI system. The configuration is derived from the setup
described in Figure 2. Nevertheless, in the collection part,
the scattered radiation from the PS nanoparticle was col-
lected using an objective lens (Olympus, 50X, NA = 0.8). Sub-
sequently, it was analyzed through a polarization measure-
ment system composed of a fixed quarter-wave plate and
a linear polarizer mounted on a rotation stage (Thorlabs:
DDR25) to measure the elliptical polarization state of the
scattered light [Figure 4(a)]. A characteristic intensity mod-
ulation curve is observed when rotating the linear polar-
izer [Figure 4(b)], exhibiting a distinct intensity dip (e.g., in
the highlighted yellow region). The angle corresponding to
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the dip increases with the TC value increases. Figure 4(c)
illustrates this theoretical linear relationship between the
angular position of the intensity minimum and the TC value.
For each increment of 1 in the TC, a polarization rotation
of 45° is induced. Consequently, the high-precision rotation
stage (minimum incremental rotation of 0.00036°) yields
a theoretical resolution limit of Aly,, ~#1 X 10~ for TC
detection. In the experiment, we carried out comprehensive
measurements of TC variations. Initially, we increased TC
in integer steps from 1 to 4 [Figure 4(d)]. Subsequently, we
performed scans with a finer 0.1-step interval between [ =1
to 2 [Figure 4(e)]. Finally, we achieved high-precision char-
acterization through 0.01-step measurements within the TC
range of 1-1.1 [Figure 4(f)]. This TC detection precision of
Algyp, ~ 0.01 was essentially constrained by the phase mod-
ulation precision of the employed SLM. In Figure 4(d-f),
the red dots represent the measured data, while the red
lines denote the fitting curves with 95 % confidence bands
and prediction bands. The slopes of these fitted lines are all
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Figure 4: A proof-of-concept experiment for detecting discrimination of OAM modes. (a) Schematic of the setup showing the collection part, while
the excitation part is shown in Figure 2(a). QWP: quarter wave plate, LP: linear polarizer, PMT: photo-multiplier tube. (b) The polarizer-rotation-
dependent intensity profile at a given point in the SPP field demonstrates an angular displacement as the TC of the OAM transitions from 1to 2.

(c) Theorical relationship between the polarizer orientation angles for intensity minima and the fractional effective TCs of FOAM, who lie in the
yellow-shaded region in (b). (d-f) Measured angular values as a function of TC/, ranging from 1 to 4 with (d) 1-step increment, (e) 0.1-step increment,
and (f) 0.01-step increment, respectively. Experimental data with linear regression fit, along with 95 % confidence and prediction bands are also

presented.
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approximately 45° per TC, demonstrating good agreement
with theoretical predictions. Notably, there are relatively
large errors in some of the data in Figure 4(f). These errors
mainly stem from system vibrations, which hindered the
stable fixation of the measurement position. Nevertheless,
considering that the theoretical TC detection precision can
reach 1 X 105, we believe that this inverse method based
on SAM measurement has the potential to outperform the
conventional OAM spectral characterization methods [40],
[45]-[47] with the system stability and the generated phase
modulation resolution are improved.

3 Conclusions

In conclusion, we have established a fundamental frame-
work for continuous manipulation of the SAM by leverag-
ing the unique properties of FOAM beams. As a proof-of-
concept, we investigated surface cosine beams to demon-
strate the proposed spin-momentum locking effect. This
effect creates a deterministic relationship between the frac-
tional effective TCs of the FOAM and the vector charac-
teristics of the SAM. By using FOAM beams, we achieved
smooth and arbitrarily precise manipulation of the orienta-
tion of the SAM, thereby overcoming the discrete constraint
inherent in conventional integer OAM beams. Subsequently,
we experimentally validated our findings through precise
measurements of the SAM distributions using our home-
built near-field scanning system. Furthermore, we develop
a derived metrological approach for FOAM detection via
SAM measurements in the SOI system. Due to the ultrasen-
sitive nature of the SOI occurs in near fields, theoretical and
experimental resolutions of 10~ and 10~% were achieved,
respectively. These advancements may enhance our com-
prehension of the angular momentum of photonics and may
also unlock transformative applications in optical manipu-
lation, quantum state encoding, and topological photonics,
where FOAM beams enable arbitrary spin control and com-
plex singularity engineering.
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