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Abstract: Spectroscopy underpins a wide range of appli-

cations, including biomedical diagnostics, precision agri-

culture, remote sensing, and industrial process control.

Recent advances in silicon and microwave photonic inte-

gration have facilitated theminiaturization of spectroscopic

systems, enabling portable, real-time analysis. However,

the realization of a chip-scale platform that simultane-

ously achieves broadband coverage, high resolution, and

scalable low-cost fabrication – particularly in the near-

infrared (NIR) regime – remains a significant challenge.

Here, we present a compact and cost-effective NIR spectro-

scopic sensing chip that monolithically integrates a plas-

monic bandpass filter array with InGaAs photodetectors.

The device is fabricated via single-step lithography and

features a nanohole array with geometrically tunable nar-

rowband transmission spanning 900–1,700 nm, exhibiting

a full width at half maximum (FWHM) of 5.0 nm and a

peak Q-factor of ∼284. The plasmonic filters are directly

integrated with the detectors through a SiNx spacer layer,

eliminating post-fabrication alignment and enhancing scal-

ability. A 16-channel super-pixel layout, combinedwith com-

putational spectral reconstruction, enables ∼1 nm resolu-

tion near 1,550 nm and supports high-fidelity spectral imag-

ing. This work demonstrates a scalable, detector-compatible

approach to on-chip NIR spectroscopy, offering a promising
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route toward deployable, compact spectral sensing plat-

forms.
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1 Introduction

Spectroscopic sensing technologies offer high precision, low

latency, imaging capability, and multidimensional detec-

tion, making them indispensable in critical fields such as

remote sensing, geological exploration, petrochemical pro-

cessing, industrial inspection, and biomedical diagnostics

[1]–[4]. Near-infrared (NIR) spectroscopy has garnered sig-

nificant attention in biomedical applications due to its rich

biochemical fingerprint features [5]–[8]. Since the 1990s,

NIR spectroscopy has evolved into a core analytical tool

across agriculture, medicine, environmental monitoring,

and food safety, valued for its non-destructive, rapid, and

highly sensitive detection capabilities [9]–[11]. The advance-

ment of micro/nanophotonics and information technology,

coupled with the growing demand for compact, lightweight

platforms – such as unmanned aerial vehicles and wear-

able devices – has accelerated theminiaturization and inte-

gration of optical sensors [12], [13]. However, current spec-

trometers are largely based on bulky and expensive bench-

top systems, such as Fourier-transform infrared (FTIR) and

grating-based NIR spectrometers, which are poorly suited

for in-field or mobile applications. This limitation has hin-

dered the widespread adoption of NIR spectroscopy in prac-

tical scenarios [1].

Recent developments in nanophotonic and micro-

fabrication technologies have opened new avenues for

chip-scale spectroscopic sensing. These structures enable

precise subwavelength light manipulation and enhanced

light–matter interaction, promising high sensitivity and res-

olution in a significantly reduced footprint [14]. Neverthe-

less, manyminiaturized designs primarily focus on physical
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downscaling without fundamentally rethinking the optical

architecture, often resulting in compromised performance.

For instance, miniaturized diffraction gratings typically suf-

fer from reduced spectral dispersion efficiency and signal-

to-noise ratio, exposing a key challenge: achieving high

resolution and sensitivity in space-constrained systems.

Computational spectrometers-on-chip have emerged as a

promising solution, harnessing algorithmic reconstruction

to decouple system performance from physical constraints

[15]–[25]. These devices leverage advanced materials and

micro/nanostructures, along with machine learning and

signal processing, to enable integrated and reconfigurable

spectroscopic functionality. Research in this area broadly

falls into two directions: advanced materials and advanced

nano-optical structure.

In the realm of materials innovation, bandgap-tunable

nanomaterials offer powerful routes to spectral selectivity.

Techniques such as compositional tuning [26], [27], bias-

induced modulation [28], [29], phase-change materials [30],

and organic semiconductors [31] have enabled tunable spec-

tral responses. For instance, Bao et al. developed a minia-

turized spectrometer using 195 types of colloidal quan-

tum dots (CQDs) integrated with CCDs, achieving tunable

bandgaps over a 300 nm range [26]. Yang et al. synthesized

CdSxSe1−x nanowires with a spatially varying bandgap from

1.74 to 2.42 eV, enabling 10 nm resolution across 500–630 nm

[27]. Sun et al. demonstrated bias-controlled perovskite pho-

todetectors for spectral tuning via ion migration, achiev-

ing ∼5 nm resolution [27]. In the mid-infrared, Kim et al.

employed Ge2Sb2Te5 (GST) phase-change materials within

plasmonic nanohole arrays to realize broadband spectral

tuning across 2.91–3.41 μm [30]. Other approaches include

exploiting van der Waals heterostructures [28], [29], heavy-

metal atom doping [32], and organic narrowband absorbers

[31]. However, many of these materials face challenges in

stability, scalability, or fabrication complexity.

In advanced nano-optical structure, innovative pho-

tonic designs have demonstrated high-performance on-chip

spectral filtering. For example, Cao et al. used helical waveg-

uides in multimode planar waveguides to enhance opti-

cal path length, achieving 10 pm resolution within a 20 nm

band [33]. CMOS-compatible dielectric metasurfaces have

also shown great potential. Altug et al. integratedmultispec-

tral resonant metasurfaces with CMOS platforms, enabling

high-resolution biosensing without mechanical scanning

[34], [35]. Disordered nanohole arrays etched on SOI sub-

strates have yielded 0.75 nm resolution at 1,550 nm via light

scattering in photonic crystals, although their coupling effi-

ciency remains limited [36]. Yu et al. employed photonic

crystal slab arrays to couple incident light into in-plane

propagation modes, forming random spectral fingerprints

for compressed sensing, achieving 1 nm resolution with

improved efficiency [37], [38]. Despite these advances, high-

precision nanostructures typically demand strict control

over geometric parameters, such as nanopillar diameter

and periodicity, which poses scalability challenges. More-

over, compared to the visible range, progress in integrated

infrared spectroscopy has been slower due to the high

cost of focal plane arrays and the complexity of integrat-

ing IR-compatible spectral filters on-chip [3], [7], [19], [39].

These factors limit practical deployment in cost-sensitive or

mobile environments.

With the rapid evolution of machine learning and com-

putational optics, highly customized, low-channel-count

spectrometers are becoming increasingly practical and eco-

nomically viable. In this study, we report the development

of a wafer-scale, low-noise plasmonic bandpass filter array

operable from 900 to 1,700 nm. Fabricated via a single litho-

graphic step, the array providesmultiple passbands for inte-

grated spectral sampling (Figure 1). We further direct inte-

grate the filters with InGaAs photodetector arrays to form

a compact 16-channel spectroscopic sensor with ∼1 nm res-

olution around 1,550 nm. Finally, we demonstrate compu-

tational spectral reconstruction and multispectral imaging,

showcasing its potential as a scalable and multifunctional

platform for near-infrared spectroscopic sensing.

2 Results

2.1 Narrowband near – infrared plasmonic
bandpass transmission filter

For on-chip spectroscopy, a high-efficiency narrowband

bandpass filter operating across a broad wavelength range

with low background has long been pursued as a pivotal

component. We developed a novel plasmonic bandpass fil-

ter with simple architecture and direct detector integra-

bility, comprising a dielectric nanohole array perforated

in a thin metal film (Figure 2a). The resonant response

arises from surface plasmon polariton excitation by the

periodic nanohole array at the metal–dielectric interface

[30], [40]. Shallow nanoholes (H < 80 nm) suppress out-

of-plane radiative leakage, yielding a narrow transmission

linewidth (FWHM < 10 nm). The optical response is pri-

marily governed by three structural parameters: (i) Etch-

ing depth (H), which influences mode confinement and

propagation loss; (ii) Au film thickness (tAu), which affects

coupling efficiency and Ohmic dissipation; and (iii) Filling

factor (FF = d/P, where d is the nanohole diameter and P is

the period), which regulates inter-hole coupling and lattice

diffraction. As quantitatively shown in Figures S1–3, these
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Figure 1: Conceptual diagram of the proposed broadband on-chip spectral sensing system. The spectral-spatial information of an object (L(x, y, 𝜆),

e.g., a tree scene) is converted to a 2D photocurrent map I (x, y) through a monolithically integrated chip fi(𝜆). This system features a vertically

integrated architecture: Top: period-tunable plasmonic narrowband filter array implementing pixel-specific spectral encoding. Bottom: InGaAs

photodetector array directly converting filtered light into electrical intensity signals.

parameters collectively modulate the balance between res-

onant enhancement and intrinsic losses in the Au/SiNx het-

erostructure, enabling wavelength-specific narrowband fil-

tering across 900–1,700 nm. As shown in Figure 2b, a trans-

mittance exceeding 55 % can bemaintainedwhile achieving

an FWHM as narrow as 5 nm. Furthermore, the central

wavelength of the bandpass filter can be precisely tuned by

varying the nanohole periodicity, enabling wafer-scale fab-

rication of filter arrays through a single lithographic step.

Building upon the optimized geometric parameters (H

= 70 nm, tAu = 25 nm, FF = 0.7, P = 1,500 nm), we numer-

ically validated the plasmonic resonance filter via full-

field electromagnetic simulations. Figure 2b demonstrates

exceptional narrowband filtering across a 900–1,700 nm

operational window: >55 % peak transmittance at res-

onance Ultra-narrow bandwidth (FWHM ≈ 5 nm, Q ≈
130) Strong out-of-band rejection (<10 % transmittance

at off-resonance wavelengths) Field confinement analysis

reveals the physical origin: at resonance (1,310 nm), sur-

face plasmon polaritons (SPPs) couple to Au-dielectric inter-

faces within the nanoholes, generating intense near-field

enhancement (|E|/|E0| > 5.8). Conversely, off-resonance

fields (1,500 nm) exhibit suppressed transmission (<10 %),

confirming effective bandpass functionality. To extend spec-

tral coverage, we engineered nanohole arrays with lin-

early scaled periods (P = 1.05–1.95 μm), achieving 16 dis-
crete channels that quasi-continuously cover 900–1,700 nm

(Figure 2c). This design enables computational spectrom-

etry by constructing a high-dimensional spectral transfer

matrix. Crucially, we evaluate the matrix quality through

cross-correlation [2] analysis:

Cij =
∫ fi(𝜆) f j(𝜆)d𝜆√

∫ fi(𝜆)
2d𝜆 ∫ f j(𝜆)

2d𝜆
, (1)

where fi(𝜆) denotes the transmission spectrum of the i-th

(or j-th) filter, and Cij quantifies the spectral orthogonality

between channels, which forms the basis for high-accuracy

spectral reconstruction. As quantified by the correlation

matrix in Figure 3d, the filters exhibit ultra-lowmutual cor-

relation with a mean cross-correlation coefficient of 0.25.

Infrared spectroscopy provides critical molecular fin-

gerprint identification for portable precision matter anal-

ysis. While rich in chemical information, conventional

infrared spectrometers suffer from bulkiness, complexity,

and high cost. Emerging Computational Spectroscopy chip-

scale alternatives offer compelling advantages: ultracom-

pact footprint, simplified optics, and high accuracy. Cru-

cially, spectrometer performance hinges on two parame-

ters: operational bandwidth and spectral resolution, both

fundamentally governed by the filtering subsystem. Here,

we introduce a plasmonic nanohole array serving as an inte-

grated tunable filter that simultaneously delivers: Narrow

linewidth (FWHM≈ 5 nm,Qmax ≈ 284), broadband coverage
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(a) (b)

(c) (d)

Figure 2: Period tunable narrowband near – infrared plasmonic bandpass transmission filters. (a) Schematic cross-section of the Au/SiNx nanohole

array structure. (b) Simulated transmission spectra for the device structure in (a). The nanohole period P= 1,500 nm, the depth H = 70 nm, the Au film

thickness tAu = 25 nm, and the fill factor FF = 0.7. Electric field distributions of device at characteristic wavelengths, I. xy-plane field intensity

at 1,305 nm resonance wavelength (aperture center plane); II. xz-plane cross-section at 1,305 nm, illustrating the SPP resonance at the Au/SiNx

boundary within the nanohole array; III. xy-plane distribution at 1,500 nm off-resonance wavelength (>80 % intensity reduction); IV. xz-plane profile

at 1,500 nm, showing the absence of boundary electric field enhancement under off-resonance conditions. (c) Calculated transmission spectra of filter

arrays at H = 70 nm, tAu = 30 nm and FF = 0.7. Chip is a 16-unit array with P = 1,050, 1,106, . . . , 1,950 nm. (d) The transmission spectra of the 16-period

nanohole of the coefficient correlation matrix.

(900–1,700 nm), high out-of-band rejection (>90 % suppres-

sion), enabling miniaturized computational spectrometers

(Figure 2c).

Conventional grating spectrometers rely on spatially

separated dispersive elements and long optical paths, with

their resolution fundamentally constrained by detector

pixel density. In contrast, our design integrates a period-

ically tunable transmission filter directly with the pho-

todetector, thereby overcoming this limitation. This integra-

tion significantly reduces system complexity and footprint

by eliminating bulky optical components. When paired

with computational reconstruction, the architecture over-

comes conventional resolution limits imposed by detector

geometry.

Spectral reconstruction methodology:

For N = 16 filter channels spanning 900–1,700 nm

(Figure 2c), the detector response is modeled as:

Ii =
𝜆max

∫
𝜆min

L(𝜆) fi(𝜆)d𝜆, (i = 1, 2,… , 16) (2)
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Spectral reconstruction comparisons to the reference spectrum. (a) Reconstructed target narrowband spectra (dotted lines, FWHM= 5 nm)

using calculated filter responses as shown in Figure 3c. The black lines are the reference spectra. (b) Reconstructed single Gaussian peak target

spectra (dotted lines, FWHM= 260 nm); (c) reconstructed two different half-width combinations target spectra (dotted lines, FWHM= 107/132 nm);

(d) reconstructed target broadband spectra. (e) Transmission spectra generated by sixteen filter units with lattice periods ranging from 1.76

to 1.81 μm, covering the spectral range of 1,520–1,560 nm. (f) Reconstruction of a dual-peak signal centered at 1,550 nm with a 1 nm wavelength

separation. The dashed box highlights the magnified view of the dual-peak region.

Here, L(𝜆) represents the target spectrum within the

900–1,700 nm range, while fi(𝜆) denotes the transmission

response of the i-th plasmonic filter. The output signal

from each detector corresponds to the convolution of L(𝜆)

with its respective filter response. To construct the full

sensing matrix, we precisely characterized fi(𝜆) using a

wavelength-swept supercontinuum laser, scanning from

900 to 1,700 nm in 1-nm increments and recording each

filter’s photoresponse. Recovering L(𝜆) from this under

sampled dataset constitutes an ill-posed inverse problem,

requiring advanced reconstruction techniques. To miti-

gate the influence of noise measurement, we apply L2-

norm Tikhonov regularization for robust spectral recon-

struction from undersampled data [22], [41]. The modified

Tikhonov formulation employed in our work is given by:

Minimize‖I − f L‖2 + 𝛼‖ΓL‖2 Subject to 0 ≤ L ≤ 1, (3)

where 𝛼 is the regularizationweight value, andΓ is the aux-
iliary matrix. As demonstrated in Figure 3a–d, the recov-

ered spectra closely match the reference in both peak loca-

tion and general profile, with only minor deviations. To

quantitatively assess reconstruction accuracy, we use spec-

tral fidelity, defined as:

Fidelity =

N∑
i=1

(xi ⋅ x̃i )√
N∑
i=1

xi
2
N∑
i=1

x̃i
2

, (4)

where xi and x̂i are the original and reconstructed spectral

values at the i-th wavelength point, respectively, and N is
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the total number of data points. Fidelity values range from

0 to 1, with values approaching 1 indicating high reconstruc-

tion accuracy. Across multiple test spectra, our platform

consistently achieves fidelity values exceeding 0.99, under-

scoring the high precision of the proposed spectroscopic

architecture.

To evaluate the spectral resolution of our approach, we

reconstructed a synthetic spectrum containing two closely

spaced narrowband peaks (Δ𝜆 = 1 nm) using the single-

resonance response of our plasmonic filter structure, as

shown in Figure 3f. Sixteen filter units, with periods ranging

from 1.76 to 1.81 μm, were employed to generate transmis-
sion spectra spanning 1,520–1,560 nm (Figure 3e). Applying

our reconstruction framework, we successfully resolved the

characteristic double-peak profile using only 16 measure-

ments, demonstrating the system’s high resolution. These

results highlight the strong spectral discrimination capabil-

ity of our plasmonic filter–InGaAs detector integrated chip,

underscoring its potential for compact, on-site spectroscopic

applications such as on-site material rapid inspection and

point-of-care diagnostics.

Building on the high-fidelity spectral reconstruction

framework used in Figure 3, we further extend the plas-

monic filter–detector integrated chip toward on-chip mul-

tispectral imaging, enabling spatially resolved spectral

acquisition within a compact platform. This architecture

uniquely combines: Monolithic integration of tunable

nanohole filters with InGaAs photodiodes, computational

multiplexing enabled by the 16-channel filters, snap-

shot spatial-spectral capture without mechanical scanning.

Hyperspectral dataset validation: As shown in Figure 4a, a

hyperspectral image consisting of 463 × 241 pixels across

76 spectral bands (900–1,700 nm) was reconstructed based

on the HYPERION dataset acquired over Jiangsu Province,

China, on May 3, 2013 [42]. This dataset, primarily intended

for monitoring fluvial material variations, demands highly

accurate and faithful spectral image reconstruction. Using

the 16 filter channels described in Figure 2c, we performed

pixel-wise spectral reconstruction across the full dataset.

Figure 4b–d present representative spectra at three distinct

locations, where the reconstructed results closely match

the reference spectra, achieving a spectral fidelity greater

than 0.99. In addition, spectral images at eight representa-

tive wavelengths were visualized, demonstrating excellent

boundary fidelity of the rivermorphology and clearly delin-

eated shoreline features (Figure 4e). Furthermore, silicon-

based hot-carrier photodetectors offer a promising alterna-

tive to InGaAs detectors in the near-infrared range, substan-

tially reducing cost and improving compatibility with stan-

dard semiconductor fabrication processes. In addition, the

filter design exhibits strong spectral scalability: by tuning

the structural period P, the operational band can be readily

reconfigured to target specific wavelength ranges. Together,

these results establish our chip-based platform as a compact

(a)

(e)

(b) (c) (d)

Figure 4: Hyperspectral imaging using the narrowband near-infrared plasmonic bandpass transmission filter spectrometer. (a) Hyperspectral data

set of river image on May 3rd, 2013 [42]. (b–d) Recovered reflectance spectra (dotted lines) of three selected patches in the test multispectral image

Figure 4a, the black lines are the reference spectra; (e) a series of reconstructed images at selected wavelengths. The intensity range of these images

is normalized.
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and scalable solution for next-generation airborne or field-

deployable imaging spectrometers.

3 Conclusions

In summary, we present a monolithically integrated nar-

rowband plasmonic filter–detector chip that enables broad-

band computational spectroscopy across the near-infrared

(900–1,700 nm) with high spectral fidelity. The device lever-

ages a single-step lithographic fabrication of nanohole

arrays, yielding geometrically tunable narrowband trans-

mission with a FWHM of 5.0 nm and a Qmax of ∼284.
Direct integration of Au nanostructures with InGaAs pho-

todetectors via a SiNx interlayer eliminates post-fabrication

alignment, enhancing fabrication scalability and device

robustness. Furthermore, a nonlinear parametric design

framework effectively suppresses radiative and Ohmic

losses, ensuring high transmission efficiency. The resulting

16-channel super-pixel architecture enables simultaneous

point spectroscopy and snapshot hyperspectral imaging,

demonstrating the potential of this compact platform for

field-deployable and on-chip spectroscopic sensing applica-

tions. Future extensions may exploit higher Q-factor pho-

tonic strategies, such as bound states in the continuum (BIC),

and metasurfaces to enhance spectral resolution, together

with scalable design optimization to realize more spec-

tral channels per super-pixel without compromising spatial

resolution.
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