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Abstract: Photonic quasicrystals, generated through the
interference of multiple vortex beams, exhibit rich and com-
plex topological landscapes. However, unlike their periodic
counterparts, they have far lacked the same level of con-
trollability and reconfigurability. In this work, we develop a
theoretical model to characterize the spin topology of pho-
tonic quasicrystals and uncover the intrinsic substructure
underlying their quasi-periodic spin textures. By analyzing
the formation mechanisms, we demonstrate the controlled
decomposition and topological annihilation of individual
sublattices within a quasicrystalline configuration. Based on
this, we propose a phase-modulation method to reconfigure
these topological states. We demonstrate that a quasicrys-
tal with octagonal symmetry can be decomposed into two
square meron lattices with a relative twist. This method
is further extended to create more complex quasicrystals,
where selective sublattice activation leads to meron bags.
These findings provide new insights into both the static
design and active manipulation of topological quasicrys-
tals of light, paving the way for programmable topological
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photonic platforms with high spatial complexity and func-
tional versatility.
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plasmon polariton

1 Introduction

Topological quasiparticles are localized field configura-
tions that exhibit stable, particle-like properties. The explo-
ration of topological quasiparticles has emerged as a cen-
tral topic in modern physics, bridging condensed mat-
ter physics, high-energy physics, and photonics [1]-[10].
These quasiparticles, such as magnetic skyrmion [11]-[14],
and vortices in superfluids [15] exhibit remarkable stabil-
ity against local perturbations, making them ideal candi-
dates for robust information carriers and novel comput-
ing paradigms [16]-[20]. In recent years, such topological
quasiparticles have been observed in the realm of optics.
By precisely sculpturing the phase, polarization, and ampli-
tude of light, optical analogues of magnetic skyrmions are
constructed by either spin angular momentums (SAMs)
[21]-[27], electromagnetic field [28]-[33], Stokes vectors
[34]-[39] or Poynting vectors [40], [41], offering flexible
control and direct observability under ambient conditions.
This allows for advanced applications in optical commu-
nications, quantum information processing [42]-[44], and
ultra-precise metrology [5], [45]—-[438].

Similar to magnetic skyrmions in condensed matter
systems, photonic skyrmions can exist either as isolated
entities or periodic arrays (skyrmion lattices), depending on
the spatial distribution of the optical field, the symmetry
and geometry of the excitation pattern, and the boundary
conditions of the medium. Isolated photonic skyrmions typ-
ically arise from localized phase or polarization singular-
ities, while periodic skyrmion lattices emerge from inter-
ference patterns or periodic modulation of structured light
— that enforce topological order across space. Typically, the
interfering patterns can only be regularly tessellated with 3,
4 or 6-folds rotational symmetries in two dimensions, giving
rise to nontrivial skyrmion lattices, where the skyrmion or
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meron topology is constrained by the symmetry of optical
field [23], [49]-[52]. However, when the symmetry of the
interfering system deviates from these conventional crys-
tallographic symmetries, for instance, for N = 5, 7 or other
non-crystallographic values, the system enters the fascinat-
ing realm of quasicrystals [53], [54]. These topological qua-
sicrystals exhibit long-range order but lack the translational
periodicity of their crystalline counterparts, allowing for
rotational symmetries forbidden in conventional crystals
and potentially much higher topological complexity.

The study of topological quasicrystals is a rapidly
emerging frontier. Significant progress has been made in
exploring their generation and the characterization of their
distinct Fourier spectra, revealing intricate, layered sub-
structures [53]-[55], imparting them with novel propaga-
tion dynamics [56]. While these efforts confirm the existence
of such exotic topological states, two significant challenges
remain. First, a systematic theoretical framework capable of
analytically predicting the topology and internal structure
of photonic quasicrystals is still in its infancy. Second, and
more critically, these complex topological structures have
so far been static. The development of methods to funda-
mentally reconfigure the internal topology of a quasicrystal
— for instance, by transforming its constituent sublattices
into a periodic crystallographic lattice or by synthesizing
novel, artificial textures on demand — has not yet been
demonstrated. Overcoming these challenges is essential for
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unlocking the potential of topological quasicrystals in func-
tional photonic devices.

In this work, we propose a theoretical framework
for the generation, reconfigurable decomposition and
synthesis of topological quasicrystals. By analyzing the
formation mechanism and intrinsic substructure of the
quasi-periodic photonic spin textures, we demonstrate
the controlled composition and topological annihilation
of individual sublattices within the quasicrystalline
configuration. Building on this foundation, we construct a
novel phase-modulation scheme to achieve reconfigurable
control over these topological states. As a representative
example, we show that a spin quasicrystal with octagonal
symmetry can be decomposed into two meron lattices
with square symmetry, distinguished by a relative angular
twist (Figure 1). This principle is further generalized to
engineer higher order quasicrystals, where selective
activation of specific constituent sublattices leads
to the formation of meron bags-topologically rich
structures that allow for on-demand manipulation of
topological charge density [57]-[59]. While we focus on
SPP-based systems as a prime example, the fundamental
principles and design rules developed here are broadly
applicable to free space and other wave platforms. These
findings provide novel insight for the static design and
active manipulation of topological quasicrystals of light,
paving the way for programmable topological photonic

sublattices

Reconfigurable Synthesis §,

phase
modulation

transformed N = 4 lattice

N = 8 quasicrystal

Figure 1: Conceptual schematic of the decomposition and reconfigurable synthesis of a topological quasicrystal of light. The process begins with

an N = 8 spin quasicrystal. Through analytical decomposition, the quasicrystal with octagonal symmetry is separated into its constituent periodic
sublattices, which can be considered as a superposition of two fundamental meron lattices distinguished by a relative angular twist (Lattice A and B).
By applying a tailored phase mask, we can selectively annihilate one of these components (Lattice B), and the spin quasicrystal is transformed into

a periodic topological spin lattice.
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systems with high spatial complexity and functional
versatility.

2 Theoretical framework

2.1 Formation and decomposition
mechanism of spin quasicrystals

The formation of spin quasicrystals can be modeled by
considering the coherent interference of multiple surface
plasmon polariton (SPP) plane waves. Experimentally, these
waves can be excited by illuminating a coupling structure,
typically a polygonal slit milled in a thin metal film. For
the polygonal slit with N-fold rotational symmetry, each
slit segment functions as a nanoantenna that couples free
space light into surface wave. Due to the symmetry con-
straints imposed by the structure, N SPP waves are excited
and propagating in equally separated direction 6,, = zm
(where m=1,2,...N). The electromagnetic field arising from
the spin-orbit interaction of light can be described by a
scalar Hertz potential ¥ as [60]:

Y — i AoeiLé’m eikr(x €08 0, +y sin em)e—kzz )
m=1

where A is a constant, L is the OAM of the incident beam, k,
and k, are the transverse and longitudinal wave vector com-
ponent satisfying k3 = k% — k2 with k, being the free-space
wavenumber. The term e’ represents the helical phase
inherited from the incident OAM beam. The electromagnetic
fields E and H can be obtained accordingly [23], [61]. The
local spin density S is calculated through the vector products
of the physical fields, which can be expressed in terms of
Berry curvature of Hertz potential as [62]-[64]:
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where = indicates complex conjugation, @ denotes the
angular frequency of the electromagnetic field; € is the
permittivity of the medium, respectively. Skyrmion and
meron lattices are generated from Equations (1) and (2)
by imposing translational and rotational symmetry of the
Hertz potential for N = 3,4,6. While for other values of
N, the Hertz potential lacks translational symmetry, lead-
ing to the formation of spin quasicrystals. The longitudinal
components of SAM in photonic spin quasicrystals with N
= 5and N = 7 are illustrated in Figure 2, where the spin
textures reveal intricate long-range order without periodic
repetition. These patterns can be fundamentally interpreted
as linear superpositions of multiple sublattices, each charac-
terized by distinct lattice constants and orientations.
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Figure 2: Representative examples of spin quasicrystals. Spin textures
for (@) N =5 and (b) N =7 quasicrystals, both generated with the inter-
action between an OAM beam (L = 1) and polygonal metallic nanoslit.
The texture patterns depict complex, non-periodic structure and long-
range-order, compared with skyrmionic lattice. The corresponding
Fourier domain spectra are depicted on right panels, comprised

of discrete concentric rings revealing the sublattice structure.

The scale bar shown on (b) corresponds to SPP wavelength 4,.

To reveal the sublattice configurations, the longitu-
dinal component of the spin density is calculated from
Equations (1) and (2) as

S, o 'Y sin(Tp) - sin[Ky_(m,m) - v+ ¢, (3

where the indices m and n (ranging from 1 to N)
label the individual interfering SPP waves excited
from the N segments of the polygonal slit, T = 2xz/N,
Ky, = k,(cos 0,, — cos 0,,,sin0,, —sinb,), ¢, = LIpThe
entire spin texture is thus a result of the pairwise inter-
ference between all possible wave combinations (m, n).
To distinguish different combinations, we introduce
a relative index p = m—n, which serves as the order
or index of each interference sublattice. Equation (3)
represents a summation over a series of fundamental
interference patterns, each defined by a unique wavevector

|Kp(m, n)‘ = 2|sin %p

k,, and corresponding phase
¢, The wavevector K, represents the position in the
Fourier spectrum, confirming that the complexity of the
quasicrystal is governed by the discrete set of allowed
interference wavevectors, determined by N and p. Among
different sublattice layers, their lattice constants can be
calculated from the magnitude of wavevector.

The decomposition of topological spin lattice can be
illustrated in Fourier space. The Fourier spectra of the
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photonic spin quasicrystals with N = 5 and N = 7 are
depicted in the inset of Figure 2, which consist of several
discrete, concentric rings, confirming the sublattice struc-
ture. In the Fourier space, each ring, comprising N distinct
points, corresponds to a set of wavevectors K, that share
identical magnitude as predicted by Equation (3). The global
spin texture is the result of interplay between different
sublattices, with each sublattice C, formed by the coherent
superposition of all interference terms that share the same
wavevector magnitude |K,|. By grouping common terms
with the degeneracy (|K,| = [K_,| = [Ky_,| = [K,_y), the
contribution of each fundamental sublattice (defined by a
unique |K, |) can be expressed as:

Cp(m,n) = sin(Tp) Z

(m.njm—n=p)

>

(m,nlm—n=N-p)

sin(LTp +K,, -r)

sin(LTp —Ky_, 1) | @

where ¥, nim-n=p) SIN(LTP + K, - T) runs over all pairs of
interfering waves (m, n) that contributes to the same sub-
lattice order p. For instance, the p = 1 sublattice is formed
by the interference of all adjacent waves, while the p = 2
sublattice is formed by the interference of all next-nearest-
neighbor waves. Equation (4) explicitly reveals that the total
spin texture is the accumulation of every sublattice C, over
all possible values of p. The existence of each sublattice is
governed by the factor sin(Tp), which allows us to predict
and explain the annihilation of certain sublattices.

2.2 Annihilation condition and number
of sublattice

The sublattice structure for quasicrystal is not a fixed quan-

tity and is influenced by multiple factors, which can be

systematically suppressed or annihilated due to topologi-
cal constraints. Two primary annihilation mechanisms are
identified as:

(1) Geometric Annihilation: This is a trivial suppression
effect arising from the geometry of the wavevector
space, which occurs when the wavevector has zero
amplitude. From Equation (3), this condition meets
when sin %” = 0, which implies that p is a multiple of N
(including p = 0). These terms correspond to the cen-
tral point in Fourier spectrum and do not contribute
to the spin texture. As this effect is solely determined
by geometric factors and is independent of the light’s
topology, we term it geometric annihilation.
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(2) Topological Annihilation: The second mechanism
is a more profound, non-trivial effect arising from
destructive interference governed by the topological
properties of the electromagnetic fields. Similar to
destructive interference, certain sublattices may
vanish in the superposition process. The factor sin(Tp)
dominates the existence of each sublattice. And the
phase term LTp + K - r may vanish within a pair of
waves propagating in opposite directions, effectively
erasing it from the total spin texture. It can be solved
from the sublattice Equation (4), which leads to a
selection rule where only sublattices with specified
indices p are annihilated. For a pair of counter-
propagating waves, the destructive interference
yields:

sin(LTp+K, -r) +sin(LTp—-K_-r) =0 )

where K, and K. represent two oppositely propagating
wave vectors. The destructive interference condition is
solved as: p = k-g (k is an integer), which is governed by
a key parameter, g = N/2L. This means a sublattice is anni-
hilated if p is a multiple of the parameter g. Since this anni-
hilation is topological in nature, which is closely related to
topological charge value L, we term this process topological
annihilation.

Generally, the number of sublattices is dependent on
the number of possible values of p within the boundary p €
[1— N, N —1], while the degeneracy of wavevectors |K,
IK_,| = [Ky_p| = |K,_y| would exclude symmetrical values.
For odd N, the parameter g cannot take integer value, and
each wave with different vector amplitude contributes to
global texture. The number of vector sets is:

Myga = N-1 (6)
2
For even N, the number of allowed sublattices is
reduced by the topological annihilation. By excluding the
annihilation solutions, the number of existing vector sets
M yen»> can be obtained by subtracting the number of anni-
hilated modes M,,, from the total possible modes:

N

Myen = 0 —-1-M,,,(N,L) )]

even

Equations (6) and (7) enable a priori determination of

a spin quasicrystal’s structural complexity directly from the
number of interfering waves N and the topological charge
L of the incident beam. We verify the annihilation in spin
quasicrystals by examining two non-trivial cases in Figure 3.
For the N = 8, L = 2 system (g = 2), the unique sublattice
orders are identified as p = 1, 2, 3. Within the range, the
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Figure 3: Verification of the topological annihilation mechanism.

Spin textures (left panels) and their corresponding Fourier spectra
(right panels) for (a) N =8, L = 2 system and (b) N =12, L = 3 system.
The Fourier spectra show an absence of the corresponding wavevector
rings, which is indicated by the dotted circles marks.

only multiple of g is p = 2. As shown in Figure 3(a), the
wavevector rings corresponding to the predicted annihi-
lated modes are absent, which are highlighted by the dotted
circle marks. For the more complex N = 12, L = 3 system
(g = 2), the annihilation occurs for both p = 2 and 4 within
their range of {1, 2, 3, 4, 5}, as shown in Figure 3(b).

3 Skyrmionic textures in spin
quasicrystals

The sublattice configuration in spin quasicrystals enables
topological transformation, allowing the complex qua-
sicrystalline structure to be reconfigured into a lower-order,
periodic lattice that retains skyrmionic textures such as a
skyrmion or meron lattice. This transformation is achieved
through phase modulation, effectively filtering out specific
points in frequency domain.

3.1 Topological transformation of spin
quasicrystals

Photonic spin lattices are in general multiple superpo-
sition of adjacent wave interferences, where individual
interference patterns could be split out. Triangle meron
lattices, square meron lattices and hexagonal skyrmion
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lattices are formed under special symmetry constraint.
For quasicrystals under other symmetry, it can be consid-
ered as hybrid composition of periodic lattices.

We take spin quasicrystal with octagonal symmetry
(N =8,L=1)as an example. From the decomposition analy-
sis in Sec. 2.2, it is composed of multiple sublattices without
annihilation (p = 1, 2, 3). To demonstrate the principle of
topological transformation, we focus on the first-order sub-
lattice (p = 1). As illustrated in the wavevector diagram in
Figure 4(a), its eight constituent wavevectors pointing along
different directions can be grouped into two distinct sets of
four orthogonal vectors, denoted by lattice A (red) and lat-
tice B (blue). These two sets are mutually rotated by an angle
of Oyeq = 7/8. The spin textures generated by individual
lattice A and B are depicted in Figure 4(c) and (d), demon-
strating two periodic 4-fold meron lattices distinguished by
arelative angular twist 6 ;4. This reveals that the sublattice
under octagonal symmetry is essentially a superposition of
two meron lattices with square symmetry. This inherent
nature is not limited to N = 8 system. Higher-order even-N
systems exhibit similar reducibility. For instance, the p =1
sublattice of N = 16 quasicrystal can be decomposed into
four meron lattices. The synthesis wave vector distribution
is shown in Figure 4(b), which contains 16 equally separated
wavevectors, together with a titled angle of 0.4 = 7/16.
This inherent reducibility is the crucial feature that enables
their selective manipulation.

The decomposition and transformation of quasicrystal
enable selective activation or suppression of individual con-
stituent sublattices through controlled destructive interfer-
ence. This can be implemented by applying a targeted phase
modulation before the excitation of SPP. Experimentally,
this pre-excitation modulation can be realized by a specially
designed polygonal excitation slit with shifted edges to gen-
erate appropriate phase differences hetween surface waves.
Specifically, we apply an additional, alternating phase + «
to the surface waves propagating along each direction. The
phase modulation profile alters the interference conditions
for each lattice independently. One lattice is suppressed
when its interference terms average to zero, yielding a sim-
ilar relation to Equation (5):

sin(LTp+K, -r+a,) +sin(LTp—K_-r+a_) =0

)

where a, and _ are the applied phase on each wave. Due to

the alternating phase setup, opposite wave shares the same

applied phase. This leads to an annihilation condition for
the phase: @, = a_ = —LTp + kx.

For N = 8 and L = 1 system, the annihilation phase

is calculated as a, = —% + kn (k is an integer). The four

orthogonal wave vectors in one group disappear with
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Figure 4: Decomposition of spin quasicrystals into periodic lattices. (a-b) Wavevector diagrams for the p =1 sublattice of (a) an N = 8 system
and (b) an N = 16 system. The vectors can be grouped into orthogonal sets. For N = 8, there are two sets of four orthogonal vectors. For N = 16, there
are four sets. (c-d) The spin textures generated by activating only (c) Lattice A or (d) Lattice B. Each is a pure square meron lattice, mutually rotated

by Oieq = 7/8.

the import of phase a,. At the same time, the topol-
ogy of another group of vectors with phase a_ remains
unchanged, forming the 4-fold symmetry meron lattice. By
splitting out the two vector groups and eliminating one
group, an 8-fold quasicrystal is transformed into 4-fold
square meron lattice in the sublattice domain. The resulting
sublattice is periodic, featuring a significantly simplified
and ordered topological structure.

3.2 Engineering complex lattices
and formation of meron bag

The principle of selective sublattice annihilation provides a
general tool for engineering complex spin textures. While
the spin quasicrystal in N = 8 system behaves like a simple
on/off photonic switch, the richer structure of high-order
systems unfolds the wider potential of phase modulation.
In a higher order N = 16 system, the p = 1 sublattice is
composed of four distinct orthogonal N = 4 lattices each
rotated by an angle of 0.4 = 7/16 relative to its neighbor,
providing an abundant parameter space for manipulation.
Instead of functioning as a simple switch, the phase mod-
ulation can act as a multi-channel selector in high-order
quasicrystals.

By designing a more sophisticated phase profile, we can
selectively excite specific groups of vectors and construct
their interference patterns, as depicted in Figure 5. For

instance, by activating two sets of vector groups (e.g., lattice
A and B), a hybrid meron lattice is generated (Figure 5(a)).
The spin vector distribution (Figure 5(d)) reveals that the
unit cell contains five meron cores with opposite topologi-
cal charges, whose swirling textures are spatially displaced
and entangled. This arrangement creates a quadrupolar-like
distribution of in-plane spin angular momentum. Activating
lattice C and D would generate similar meron lattice with a
n/4 rotation (Figure 5(b) and (e)). The complexity can be fur-
ther increased by activating three vector groups (lattice A, B
and D), resulting in the even more complicated, yet ordered
spin texture (Figure 5(c)). The unit cell consists of a densely
warped array of meron cores, exhibiting a higher topologi-
cal charge density, and a lower-order rotational symmetry
compared to the former cases. The corresponding vector
field exhibits multiple alternating vortices and anti-vortices
of spin flow, a hallmark of high-density topological packing
(Figure 5(f)). When all four sublattices are active, the full
sublattice texture is recovered. Different compositions of
vector groups result in distinct spatial arrangements and
SAM distributions. This ability to pack a controllable num-
ber of topological units in a local unit cell gives rise to the
formation of meron bag concept. A meron bag can be under-
stood as a synthesized topological superstructure whose
unit cell contains a chosen number of meron cores, which
is different from the conventional meron lattice. The meron
lattice exhibits a simple, periodic alternation of spin vectors
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(c)

Figure 5: Engineering complex lattices for the generation of meron bag. (a-c) The synthesis longitudinal spin textures by activating (a) lattice A and B
in Figure 4, (b) lattice C and D in Figure 4 and (c) lattice A, B and D in Figure 4. (d-f) The corresponding vector distribution for the areas highlighted
in the (a-c). Each panel demonstrates the meron bag where a controlled number of topological units are packed into a single unit cell.

across the entire structure. In a meron bag, a more complex
multi-level alternation of the spin vectors occurs within the
confined space of a single supercell. This strategy transcends
traditional lattice formation, not by manipulating single
skyrmion, but by controlling the number and arrangement
of multiple skyrmions in a local unit cell, allowing for on-
demand control of local topology and multi-dimensional
topological data storage.

3.3 Symmetry principles for topological
programming

The reconfigurability of sublattice of a spin quasicrystal

is not a universal property but is strictly governed by

the symmetry of system. While systems like N = 8 and

N = 16 exhibit substantial applicable properties, others,

such as those with odd-N symmetry, are stable and trivial,

showing rare relations with periodic lattice. Here, we estab-
lish the fundamental symmetry principles that determine
the reconfigurability of quasicrystals.

The analysis reveals the potential for an N-fold qua-
sicrystal sublattice to be programmable, which means that it
can be crafted into a multichannel selector and transformed
into crystallographic lattice, and is constrained by three
fundamental principles:

(1) Geometric Decomposability: The symmetry of system
N must be a multiple of the order k of its constituent
elementary units (i.e., N = M-k). This principle ensures
that the sublattice can be geometrically partitioned
into a set of identical, lower-symmetry vector groups.

(2) Physical Controllability: The order k of elementary
unit must be even. This is a deterministic requirement,
as the phase-modulation technique fundamentally
relies on manipulating the interference of “opposite
propagating wavevector pairs”, a symmetric structure
that only even-k systems possess. Odd-k systems, lack-
ing this symmetry for annihilation, act as irreducible
interference units.

(3) Crystallographic Periodicity: To synthesize a periodic
lattice, the order k of elementary unit must obey the
crystallographic restriction theorem, limiting it to set
{3, 4, 6}. This makes sure that the synthesized product
belongs to non-trivial, tessellating crystal lattice.

This principle naturally describes all quasicrystals into two
functionally distinct groups. The first group, monolithic
quasicrystals, comprises all systems that violate this prin-
ciple, including all odd-N quasicrystals and certain even-
N systems (e.g, N = 10, 14...). Their symmetry is irre-
ducible, meaning their sublattices cannot be decomposed
into controllable even-k crystallographic units. This irre-
ducibility is rooted in the structure of their wavevector
space, which lacks the pairwise inversion symmetry con-
dition essential for the control scheme. As a result, they
form highly stable, self-contained topological structures.
They can be considered as elemental entities in quasicrystal
system, which is difficult to implement switched off effect or
converting sublattices into simpler lattices using the phase
modulation scheme. The second group, programmable
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quasicrystals (N = 8, 12, 16...), are those that follow this
principle. Their reconfigurability stems from the inherent
symmetry degeneracy. For instance, in sublattice domain,
an N = 8 system can be considered as two superimposed
4-fold merons. This degeneracy in the wavevector space pro-
vides distinct channels that can be individually addressed.
The phase engineering acts as a selective perturbation that
breaks this degeneracy, forcing the system to collapse into
a chosen, lower-symmetry configuration. It is the broken
symmetry of programmable quasicrystals that unlocks their
potential for topological programming.

4 Conclusions

In conclusion, we have demonstrated the generation,
decomposition and synthesis of spin quasicrystals. By estab-
lishing a universal formula for the generation of spin qua-
sicrystal, we predict the structural complexity. Based on
the theoretical model, we realized the topological transfor-
mation at the sublattice level via phase modulation. We
have shown that this principle can be generalized to more
complicated systems, enabling the synthesis of novel com-
plex lattices which do not exist in nature. By selectively
activating the lattice group, meron bag configurations — a
concept for engineering dense topological charge densities
by packing a controllable number of topological units into a
single, reconfigurable unit cell, are generated. The results
provide not only a novel insight for the design and anal-
ysis of complex quasicrystal systems but also open a new
avenue for the development of reconfigurable topological
photonic devices. The ability to dynamically control the
topological textures could be pivotal for future applications
in high-density optical information storage, programmable
meta surfaces, and parallelized nanoparticle manipulation.
Looking forward, these findings pave the way for enormous
areas. Exploring the application of this concept to other
physical systems, such as exciton—polaritons or acoustic
waves, could unlock a new family of programmable topo-
logical materials.
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