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3-dimensional plasmonic nanomotors driven
by Optical Pulling Forces

S1. Excitation of the FWM and additional suitable designs

We follow the basic theory of waveguide coupling [1] and apply it to the dielectric cylinder as done in [2]. For such a
cylinder, both TM and TE waveguide modes. Particularly, an [ —order TE mode in a waveguide with radius a will be described
by a tangential electric field
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where k, is the propagation constant, w is the angular frequency of the wave and u? = (kp - kzz)azand A and B are con-
stants. For [ = 0, this transforms into
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which has a similar spatial profile as the azimuthally polarized Bessel beam (itself a TE wave, characterized by a purely trans-
versal Ev)) in equation 1 in the main text. This similar polarization and spatial profile mean that the coupling efficiency 7,
expressed through the overlap integral at the waveguide cross-sectional surface X [3]
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will be maximized. This maximum coupling, in turn, suppresses photon recoil, favoring the optical pulling effect. A similar
phenomenon occurs when coupling a radially polarized (TM) Bessel beam with a TM-supporting waveguide, hence the viability
of radially polarized beams for optical pulling with small-angle Bessel beams.

Thus, cylinders must be able to support the TE mode in order to maximize the pulling effect. The cutoff condition for
such excitation is given by the solution of the equation
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wherew = (k2 — kj,)a? and K,(x) is the [ —order modified Bessel function of the second kind. For an incident Bessel beam
with incidence angle 6, , k, = kjcos (6,), and for small 8, an approximate solution is given by
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where z, is the first zero of the Bessel function J; (u). However, greater incidence angles require a full numerical solution of
equation S4. This is evidenced in Figure S1, where the solution of equation S4 for a wavelength of 1500 nm and indices
n, =1.33 and n, = 1.6 is shown, together with the approximation in equation S5. While the overall shapes of the solutions
are similar, and values for small angles have little discrepancy, this difference becomes important once high angles are
reached. The inset zooms in both solutions for angles between 30 and 402, where the difference between solutions is approx-
imately 0.5 um, around 30% in relative error.
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Fig. S1. Comparison of the solution of equation S4 and equation S5 for a wavelength of 1500 nm and indices combination
n, = 1.33 and n, = 1.6. The inset zooms in the 8, € [30,40]2 range, where differences can be appreciated better. The 1.77
um diameter used for the cylinder in Figure 1e in the main text can be extracted from the black line at 6, = 352.

Not all beams can be coupled to the mode. For each refractive index combination, there exists a critical angle

2
Ocrit = asin[ (:—:) -1 ] over which the FWM cannot be excited, putting an upper bound to the exploration of different

cone angles [4]. For example, for n, = 1.6 and n, = 1.33, 0y > 422, and for n, = 1.5; it drops to 8.,;; ~ 312. On the other
hand, angles over 452 quickly suppress the range of the Bessel beam. Therefore, our search has limited to n,, € [1.6, 1.8] and
angles 6, € [10,50]¢, although angles over 402 have been discarded in the n,, = 1.6 case due to being close to the critical
angle.
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Fig. S2. Phase maps of longitudinal optical force for the whole explored casuistry. The background index is n;, = 1.33 for all
cases.

Figure S2 shows the phase maps for the whole explored casuistry. In general, longer wavelengths and greater refractive
index correspond to stronger pulling forces at their minima. High refractive index contrasts also help to bring the minima to

shorter disks. For the shorter wavelengths and higher refractive indices the oscillation of the force at high angles, between
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Also, pulling force at lower angles becomes more viable at lesser refractive index contrasts, as reflections are suppressed
more efficiently by the ARCs.

pulling and pushing, becomes more visible. This is due to interference, and the period of the oscillation follows A = -



S2. Antireflection Coatings design

To improve the pulling efficiency of our nanomotors, each of the cylinders analyzed in this work have been equipped with
antireflection coatings (ARCs) at both ends. This strategy has been successfully employed in other works [6], [7]. The refractive
index of an ARC is given by

Mre = /My (56)
while its thickness is given by
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where the propagation angle within the ARC, 8¢, is given by Snell’s law:
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Thus, each of the refractive combinations and wavelengths (each panel in Figure S2), requires ARCs with different re-
fractive indices and/or thicknesses.

S3. Implementation of Bessel beams in FDTD

Due to the high cone angles considered in this work, a non-paraxial implementation of Bessel beams in FDTD was
needed. The approach described in [8] was followed. Any arbitrary Bessel beam can be understood, in the Angular Spectrum
Representation (ASR), as a superposition of plane waves with wavevectors lying on a conical surface (defined by the cone
angle 6,). In a spherical coordinate system with position vector r, at the focal point of a lens, the field of an m —order Bessel
beam propagating along z is
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where f is the focal length of the lens, and the wavevector k = (k sin 6 cos ¢, k sin 8 sin ¢, k cos 8). The angular spectrum
function Epyy is given by [9]
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where Epy, is the amplitude of each plane wave that contributes to the beam, §(6 — 6,) is the Dirac delta distribution,
limiting contributions to the cone surface with angle 6,; and the Q(6,, ) vector describes polarization as [10]
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and depends on the pair of parameters (py, p,). An azimuthal polarization is given by (Px: py) = (=sing,cos ¢). Then, the
implementation of Bessel beams consists in introducing a combination of plane waves whose amplitude, direction and polar-
ization matches the angular spectrum function Epyy,. The finiteness of the number of plane waves means that the integral in
equation S9 will be discretized as
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where ¢, corresponds to the azimuthal angle integration points, weighted by coefficients C,. They can be determined as
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where the half-valued C,, coefficients at n = 0, N compensate the degeneracy at that point. To introduce these plane waves
without periodic boundary conditions in FDTD, the Total Field/Scattered Field (TFSF) within the Lumerical FDTD software ap-
proach is followed. As shown in [8], a combination of 60 plane wave sources is enough to closely match the analytical profile
of the beam. Typically, injection angles in broadband simulations change as a function of frequency, with only the center
frequency matching the nominal injection angle. While this dispersion can be negligible for small angles, steep incidences
cause notable differences. This effect can be corrected using the Broadband Fixed Angle Source Technique (BFAST) or using

frequency dependent profiles [11], these approaches are not implemented for TSFS sources, meaning that simulations had to
be limited to a single frequency, matching the nominal angle.

Figure S3 displays the excellent match between the analytical Bessel beam from equation 1 and the TFSF approach in
Lumerical FDTD for a zero-order azimuthally polarized Bessel beam with 8, = 552 at a wavelength of 532 nm.
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Fig. $3. Comparison of analytical and FDTD-generated Bessel beams, at XY and XZ planes. The beam is zero-order with azi-

muthal polarization, and is characterized by an angle of 552, a wavelength of 532 nm, and the plane wave amplitude is set to
Epwo = 1V/m. The surrounding medium has an index n, = 1.33.

S4. Derivation of the force exerted by a zero-order azimuthally polarized Bessel beam on a

plasmonic particle

We start by considering the Lorentz force on a point dipole p, given by [12], [13]:
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substitute and obtain:
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Because the field only has the azimuthal component, the dot product in the first term simplifies to



2
. L 10Egmy _ ., 1(0F, ||
(E ~V)E—E¢[—] P —Eq,[—](Wn,p—Eq,np ——Tnp (S16)

where in the last step the fact that the field has cylindrical symmetry (% =0 ) has been exploited. For the other term

in the equation, we can first compute V X E:
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which is equation 3 in the main text. Further simplification can be achieved by computing the necessary derivatives:
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where we have exploited the recurrence relation of Bessel’s functions: J;,(x) = % Um=1(x) = Jns1(X)]. Form = 0, Jo(x) =

%U,l(x) —J1 ()] = %[—jl(x) —J1(x)] = —J1(x). Inserting these expressions together with E,, yields the final expression:
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which is equation 4 in the main text, with x, = k, sin 6, p. As stated there, the negative sign of the imaginary part of the
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SC::Z 9“ means that this longitudinal force
o

will be greater for small-angle Bessel beams, which resemble plane waves. On the other hand, when 6, — g, the longitudinal

conjugate polarizability a* will yield a positive longitudinal force. Interestingly, the

force approaches zero.

S5. CDA method for optical force calculations in plasmonic rod dimers

We follow the method outlined in [14], although we note the use of SI units below. Each of the rods in the dimer is
modeled as a point dipole p; characterized by a polarizability ;. Under this approximation, the optical response of a dimer in
a medium with dielectric constant €, = song can be obtained by solving a system of equations:
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where E; corresponds to the total electric field at the position of dipole p;, Ej 1 is the incident field on that position and the
product A_,, - pj gives the electric field caused by dipole p; at the position of dipole p;. A_,] is a second order tensor given by
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where 1; is the position vector separating the dipoles. r;; = |r,-]-|, n; = :i and I is the identity dyadic. The symbol @ denotes
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the dyadic product. For two dipoles, the system S11 can be easily solved as
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where it must be noted that the fraction here corresponds to a right-matrix division. With the expressions for both dipole
moments, the total electric field at any point in space can be calculated as

E(r) = Eg () +A(r —11) - p1 + A(r —13) - p (526)

where 1 and 1, correspond to the position vectors of the two dipoles and the corresponding magnetic field can be obtained
as B(r) = iv x E(r). Once the total field is obtained, the optical force on dipole p; can be calculated by invoking the
Lorentz Force equation [12], [13], [15]:

Fi = Re(p; - V)Re(E) + Re (%) X Re(B;) (527)

which for harmonic fields, can be time-averaged as
(F;) = Re[(p; - VDE; + iwp; X B;] (528)

where * denotes the complex conjugate. For incident plane waves, this expression can be simplified to the sum of the contri-
butions of the incident light on the individual dipoles plus an interaction term, both of which require calculating the field
across all the simulation space (equation S17) and the computationally costly gradients in equation S19 [13]. However, the
complex Bessel beam requires full calculation using equation S19.

Formally speaking, approximation of nanoparticles as dipoles with polarizabilities @; derives from the quasi-static approx-
imation for spheres. However, this approximation can be extended to ellipsoidal objects and other geometries. For gold na-
norods, we follow the expression derived by Kuwata et al. [16]:
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where V is the rod volume, A, is the incident wavelength and x = Z—a is the size parameter, with a being the particle size.
o

A, (I') and B, (I") are functions dependent on the geometrical depolarization factor I". For rods, this factor is given by
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where ¢ is the aspect ratio between the long and short dimensions of the rod. The functions A, (I") and B, (I") are then
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An important parameter to consider is interparticle distance, since for closely positioned dipoles electrostatic contributions
to the induced fields, neglected under the dipolar approximation, become relevant. This effect can be accounted for by other
methods, such as the use of Mie theory or more complex DDA approaches. To elucidate the impact that this may have on our
calculations, we compare our CDA approach to full wave FDTD results in the case of a linearly y-polarized plane wave with
intensity 0.4 W/um? intensity plane wave incident on the analyzed dimers, with a separation distance of 100 nm. This com-
parison is displayed in Figure S4a, and it can be seen that the overall shape of both the optical force and the extinction cross-
section (calculated using the extinction theorem as shown in [17]) is quite similar.
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Fig. S4. a) Comparison of FDTD and CDA solutions for a dimer with a 100 nm interparticle distance illuminated by a
y-polarized plane wave with intensity 0.4 W/um?, similarly to Figure 1d in the main text. b) FDTD and CDA results for the
individual components of the dimer (distinguished by solid/dashed lines). The background refractive index for all calculations
issetton, =1.5.

The main difference between the CDA and FDTD methods is the location of the extinction peak corresponding to the larger
rod in the dimer. While the FDTD peaks are located at 860 and 1050 nm, respectively; the CDA peaks are located at 880 and
1200 nm. The big redshift between the second peak locations between the methods mainly affects the longitudinal force,
which closely follows the extinction cross-section, although the bigger gap between resonances in the CDA method flattens
the transverse x-component force. Other than that, quantitative values do not change very significantly, with both longitudinal
forces peaking around 300 pN.

While the interparticle distance might play a role in these discrepancies, the rod’s polarizability modeling in equation S20
can highly influence the spectral locations of the individual resonances. Figure S4b shows the results of both methods for the
individual rods. Here, the spectral positions of the peaks closely match the dimer results, with the CDA methods having a
redshifted second peak with respect to FDTD simulations. Here, the FDTD peaks are located at 870 and 1035 nm, while the
CDA peaks are at 905 and 1150 nm. This means that the polarizability modelling in equation S20 is the main responsible for
the discrepancy of results, rather than the interparticle distance. It must be highlighted that the overall trends of forces and
extinctions are similar between methods, meaning that the CDA method'’s precision is enough for our purpose in this work.

$6. Transversal forces on plasmonic dimers

As seen in the previous sections, the optical force by an azimuthally polarized Bessel beam on a plasmonic nanoparticle
will have a positive longitudinal component as well as a radial component. In a plasmonic dimer, the interaction between
particles, driven by the coupling tensors A_,,, might show important deviations from this behaviour. To check this, we provide
in Figure S5 the missing components from Figure 2e-f, F, and F,. As in the CDA simulations the dimer was displaced from the
center of the beam in the -x direction, F, = —F, and F,, = F,, in the cylindrical coordinate system.

As expected, the longitudinal force, when the dimer is parallel with polarization, is accompanied by a strong x-compo-
nent force, corresponding to a radial direction. In contrast, the y-component is near zero, as is expected of the azimuthal
component for a single plasmonic particle.

On the other hand, when dimers are placed perpendicularly to the azimuthal polarization, as shown in the solid lines, all
the components are near-zero, supporting the fact that independent control of the different degrees of freedom of the na-
nomotor can be achieved by orienting the dimers in this direction.
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Fig. S5. Optical forces on the highlighted cases from Figure 2e (a) and Figure 2f (b) with all components F,, F, and F,. Solid
lines represent a perpendicular orientation to polarization, and dashed lines a parallel orientation with respect to polarization.

Some other relevant features can be found here. As shown in equation 4 in the main text, the longitudinal force is

proportional to :i:ie" , meaning that lower angles, as in Figure S5a with respect to Figure S5b, will generally have larger longi-
o

tudinal forces. Regarding the radial force, its peaks are redshifted with respect to the longitudinal peaks, and the radial force

has a remarkably weaker decay for longer wavelengths. This can be attributed to the fact that the radial force depends on the

real part of the polarizability rather than the imaginary part. This prompts a different behavior, including the sign flip found

at ~900 nm in Figure S5b.

Furthermore, in resonance, the force is positive (drawing the dimer to the center of the beam), which points to the
dimer being located at a point where the product jl(xp) -J'1(x,) is negative. Since both functions are positive for small x,,,
this suggests the opportunity to place the dimers closer to the center to avoid the radial force altogether. However, smaller
distances between dimers might induce further coupling between elements, significantly altering the overall optical response.

S7. Longitudinal forces and torques on nanomotors

For plane wave illumination, the longitudinal components of force and torque, not shown in Figure 3 in the main text,
are depicted in Figure S6. It can be seen again that the longer nanomotor, bigger in size and containing more dimers, is char-
acterized by larger forces and torques. The F, component is much larger than either F) or F, in Figure 3, meaning that any
plane wave illumination for lateral movement is going to be associated with a strong pushing force. Furthermore, the pushing
force is significant for all considered wavelengths, which allows to control pushing movement independently of lateral move-
ment if out-of-resonance wavelengths are employed (as, for example, 1 = 1700 nm). The longitudinal torque T, on the con-
trary, supposes a minor contribution against the Tj; component in Figure 3.
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Fig. S6. Longitudinal forces and torques F, and T, exerted by a linearly polarized plane wave with intensity 0.4 mW/ um? on
the a) p = 2.04 and b) p = 1.44 aspect ratio nanomotors as a function of wavelength.

The longitudinal component torques for both nanomotors are shown in Figure S7. The magnitude of both torques is
much lower than that of the dominant component T,, especially in the case of the longer cylinder. This further allows the
one-dimensional treatment employed in the diffusion simulations in the main text.
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Fig. S7. Longitudinal torque T, exerted on the a) p = 2.04 and b) p = 1.44 aspect ratio nanomotors for different positions and
orientations.

S8. Extension of the scheme for controlled rotations

The proposed scheme in the main text is designed to only provide translational lateral motion. However, for non-ab-
sorbing structures, a helicity-dependent optical torque T, can be exerted using circularly polarized light [18], [19]. Further-
more, as shown by Kall and coworkers [20], plasmonic nanorods can efficiently transduce the spin angular momentum from
circularly polarized light into a rotatory motion, something that has been important to many different applications. In partic-
ular, plasmonic rods could be fitted into the design, providing a helicity-dependent rotatory motion that can be made inde-
pendent from other lateral motions if said rods are tuned to a different illumination wavelength, i.e., a wavelength below
1000 nm, where scattering from the gold nanorod dimer becomes important.

Although absorption can play a role into the torque induced on such nanorods, the most important contribution comes
from scattering processes, for which the time-averaged torque T, can be expressed as [21]

T,  Aa? (532)

where Aa = a, — a, the polarizability anisotropy of the nanorods. As seen in this equation, longer rods, characterized by
larger anisotropies, will allow higher torques. On the other hand, larger aspect ratios in plasmonic nanorods lead to a redshift
of their plasmonic resonance [22]. We account for the necessary torque that these nanomotors require to overcome Brownian

motion:
64
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wherey, = 33—Znnwa3 is the rotational friction coefficient for a cylinder with radius a [23]. For the p = 1.44 design, the Brown-
ian torque threshold is approximately 0.02 pN pum, which is relatively low (although higher than the T, achieved with linearly
polarized illumination). Thus, rods with relatively low anisotropies can be employed for this purpose. To further separate the
response of these rods from the translational dimers, we employ silver, whose resonances are typically found at shorter
wavelengths [22], as the material of choice for these rods.

The proposed design is illustrated in Figure S8a. Silver nanorods (100 nm long, 50 nm wide and thick) are inserted be-
tween the spaces left by the four gold nanorod dimers. Their radial position is the same as the gold nanorod dimers (450 nm
from the center of the p = 1.44 cylinder) and their orientation is perpendicular to the azimuthal orientation of the Bessel
beam to preserve optical pulling. For the p = 1.44 cylinder nanomotor and appropriate Bessel beam illumination (402, 1300
nm wavelegth), the forces and torques suffer almost negligible changes upon introduction of such silver nanorods, as demon-
strated in Figure S8b. In particular, the optical pulling force is reduced by 5% approximately.

Figure S8c-d shows the transversal forces exerted on the p = 1.44 nanomotor by a circularly polarized wave, with and
without the silver nanorods. Transversal forces have a similar pattern to their linearly polarized counterparts in Figure 3 of
the main text. However, as power is distributed between both x and y polarizations, both F, and F, have significant contribu-
tions above zero, although lower than their linearly polarized counterparts. This does not change much upon introduction of
the silver nanorods, whose resonances are at shorter wavelengths. It is important to highlight that helicity changes just pro-
duce a permutation of the forces, as the nanomotor is not geometrically chiral.
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Fig. S8. a) Scheme of the 3D nanomotor design, to which four silver nanorods have been added in the available space between
the dimers (the center of the rods, as the dimers, is 450 nm away from the cylinder center). As with the dimers, the silver
nanorods are perpendicularly oriented to the azimuthal polarization of a pulling Bessel beam. b) Comparison between the
different force and torque components between the p = 1.44 nanomotor without and with the silver nanorods for the cor-
responding Bessel beam illumination. c) Optical transversal forces exerted by a 0.4 mW pum circularly polarized plane wave
on the p = 1.44 nanomotor without silver rods and (d) with them. Solid and dashed lines represent the different helicity (RCP
or LCP) of the incoming wave. e) Optical torque exerted by the same circularly polarized plane wave on the p = 1.44 nanomo-
tor without silver rods and (f) with them. Note that the LCP torque components, represented by dashed lines, have undergone
a sign change to facilitate comparison with their RCP counterparts.

On the other hand, the torques, shown in Figure S8e-f have a very dominant T, component, which was not found for
linear polarization (as shown in Figure S6b). Two peaks are found at 110 and 1300 nm, following the two resonances of the
gold nanorods. These, however, are coincident with peak values of , F,, T, and T,,, meaning that T, cannot be independently
controlled with these resonances. A third, weaker T, peak appears for a 800 nm wavelength, which is not correlated with
strong forces or torques, and thus, usable for independent rotation control. This peak can be associated with the small lateral
forces found at the same wavelength here and in Figure S5b.

Upon introduction of the silver nanorods, their contribution significantly enhances this weaker T, peak (around 92%),
without significantly altering any of the other transversal forces and torques. Again, as the system is not chiral, the torques
do not change in magnitude upon helicity changes. However, the transversal components are again interchanged, and all
torques components undergo a sign flip. Thus, a helicity-dependent optical torque one order of magnitude above the Brown-
ian threshold can be applied independently from other forces and torques, allowing efficient motion control over clockwise
and anticlockwise rotations.

S9. Characterization of the hydrodynamic properties of cylinders

The hydrodynamic behavior of cylinders has been the subject of intense research, following its frequent appearance in
colloids, such as the tobacco mosaic virus or short DNA fragments [24], [25], [26]. Most works trying to describe these hydro-
dynamic properties have focused on long aspect-ratio (“rod-like”) cylinders [27]. However, the aspect ratios of the cylinders
described in this work are rather short, with aspect ratios p < 2. Therefore, the more general formulae developed by Ortega
and Garcia de la Torre are followed [28]. In this work, the diffusion tensor component D} is related to a rotational time 7, by

1
= — 4
%= g1 (534)
For aspect ratios p > 0.75, as is the case in this work, 7, can be calculated from the interpolating equation
T
- =1.18 4+ 1.116(Inp + 0.2877)% — 0.2417(Inp + 0.2877) + 0.4954(Inp + 0.2877)* (535)

To
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L nw
4p2kpT’
Boltzmann constant and T is the temperature (taken as 300 K). On the other hand, the translational diffusion coefficient D, is
given by

where p = L/D is the length-to-diameter aspect ratio and 7, = . Here, ny, = 1073 Pa-s is the water viscosity, kg is

kgT
Dy = — (536)
R
related to a translational friction coefficient f;, given by a similar expression:
ﬁ =1.009 + 1.395 - 10~2(Inp) + 7.880 - 10~2(Inp)? + 6.040 - 10~3(Inp)? (837)
to
. 3 1/3
with fyo = 6mny L (15p2) .
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