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S1. Excitation of the FWM and additional suitable designs 

We follow the basic theory of waveguide coupling [1] and apply it to the dielectric cylinder as done in [2]. For such a 
cylinder, both TM and TE waveguide modes. Particularly, an 𝑙 −order TE mode in a waveguide with radius a will be described 
by a tangential electric field 
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where 𝑘𝑧 is the propagation constant, 𝜔 is the angular frequency of the wave and 𝑢2 = (𝑘𝑝 − 𝑘𝑧
2)𝑎2and 𝐴 and 𝐵 are con-

stants. For 𝑙 = 0, this transforms into 
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which has a similar spatial profile as the azimuthally polarized Bessel beam (itself a TE wave, characterized by a purely trans-
versal 𝐸𝜑) in equation 1 in the main text. This similar polarization and spatial profile mean that the coupling efficiency 𝜂, 

expressed through the overlap integral at the waveguide cross-sectional surface Σ [3] 

𝜂 ∝ |∬ 𝑬𝑩𝑩
∗ (𝜌, 𝜑) ⋅ 𝑬𝑻𝑬(𝜌, 𝜑)𝑑Σ

Σ

|
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 (𝑆3) 

will be maximized. This maximum coupling, in turn, suppresses photon recoil, favoring the optical pulling effect. A similar 
phenomenon occurs when coupling a radially polarized (TM) Bessel beam with a TM-supporting waveguide, hence the viability 
of radially polarized beams for optical pulling with small-angle Bessel beams. 
 

Thus, cylinders must be able to support the TE mode in order to maximize the pulling effect. The cutoff condition for 
such excitation is given by the solution of the equation 

𝐽1(𝑢)

𝐽0(𝑢)
= −

𝑢

𝑤

𝐾1(𝑤)

𝐾0(𝑤)
(𝑆4) 

where 𝑤 =  (𝑘𝑧
2 − 𝑘𝑏)𝑎2 and 𝐾𝑙(𝑥) is the 𝑙 −order modified Bessel function of the second kind. For an incident Bessel beam 

with incidence angle 𝜃0 , 𝑘𝑧 = 𝑘𝑝cos (𝜃𝑝), and for small 𝜃𝑝, an approximate solution is given by 

𝐷(𝜃0) =
2𝑧1

𝑘𝑏𝜃0

(𝑆5) 

where 𝑧1 is the first zero of the Bessel function 𝐽1(𝑢). However, greater incidence angles require a full numerical solution of 
equation S4. This is evidenced in Figure S1, where the solution of equation S4 for a wavelength of 1500 nm and indices 
𝑛𝑏 = 1.33 and 𝑛𝑝 = 1.6 is shown, together with the approximation in equation S5. While the overall shapes of the solutions 

are similar, and values for small angles have little discrepancy, this difference becomes important once high angles are 
reached. The inset zooms in both solutions for angles between 30 and 40º, where the difference between solutions is approx-
imately 0.5 µm, around 30% in relative error. 
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Fig. S1. Comparison of the solution of equation S4 and equation S5 for a wavelength of 1500 nm and indices combination 
𝑛𝑏 = 1.33 and 𝑛𝑝 = 1.6. The inset zooms in the 𝜃0 ∈ [30,40]º range, where differences can be appreciated better. The 1.77 

µm diameter used for the cylinder in Figure 1e in the main text can be extracted from the black line at 𝜃0 = 35º. 

Not all beams can be coupled to the mode. For each refractive index combination, there exists a critical angle 

 𝜃𝑐𝑟𝑖𝑡 = asin [√(
𝑛𝑝

𝑛𝑏
)

2

− 1 ] over which the FWM cannot be excited, putting an upper bound to the exploration of different 

cone angles [4]. For example, for 𝑛𝑝 = 1.6 and 𝑛𝑏 = 1.33, 𝜃𝑐𝑟𝑖𝑡 ≈ 42º, and for 𝑛𝑝 = 1.5; it drops to 𝜃𝑐𝑟𝑖𝑡 ≈ 31º. On the other 

hand, angles over 45º quickly suppress the range of the Bessel beam. Therefore, our search has limited to 𝑛𝑝 ∈ [1.6, 1.8] and 

angles 𝜃0 ∈ [10, 50]º, although angles over 40º have been discarded in the 𝑛𝑝 = 1.6 case due to being close to the critical 

angle.  
 

Fig. S2. Phase maps of longitudinal optical force for the whole explored casuistry. The background index is 𝑛𝑏 = 1.33 for all 
cases. 

 
Figure S2 shows the phase maps for the whole explored casuistry. In general, longer wavelengths and greater refractive 

index correspond to stronger pulling forces at their minima. High refractive index contrasts also help to bring the minima to 
shorter disks. For the shorter wavelengths and higher refractive indices the oscillation of the force at high angles, between 

pulling and pushing, becomes more visible. This is due to interference, and the period of the oscillation follows Δ =
𝜆

𝑛𝑝−𝑛𝑏
 [5]. 

Also, pulling force at lower angles becomes more viable at lesser refractive index contrasts, as reflections are suppressed 
more efficiently by the ARCs. 
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S2. Antireflection Coatings design 

To improve the pulling efficiency of our nanomotors, each of the cylinders analyzed in this work have been equipped with 
antireflection coatings (ARCs) at both ends. This strategy has been successfully employed in other works [6], [7]. The refractive 
index of an ARC is given by 

𝑛𝐴𝑅𝐶 =  √𝑛𝑝𝑛𝑏 (𝑆6) 

while its thickness is given by 

𝑑(𝜃0) =
𝜆 cos 𝜃𝐴𝑅𝐶

4(𝑛𝐴𝑅𝐶 − 𝑛𝑏 sin 𝜃0 sin 𝜃𝐴𝑅𝐶)
(𝑆7) 

 
where the propagation angle within the ARC, 𝜃𝐴𝑅𝐶, is given by Snell’s law: 
 

𝜃𝐴𝑅𝐶 = asin (
𝑛𝑏 sin 𝜃0

𝑛𝐴𝑅𝐶

) (𝑆8) 

Thus, each of the refractive combinations and wavelengths (each panel in Figure S2), requires ARCs with different re-
fractive indices and/or thicknesses. 

S3. Implementation of Bessel beams in FDTD 

Due to the high cone angles considered in this work, a non-paraxial implementation of Bessel beams in FDTD was 

needed. The approach described in [8] was followed. Any arbitrary Bessel beam can be understood, in the Angular Spectrum 
Representation (ASR), as a superposition of plane waves with wavevectors lying on a conical surface (defined by the cone 
angle 𝜃0). In a spherical coordinate system with position vector 𝒓, at the focal point of a lens, the field of an 𝑚 −order Bessel 
beam propagating along z is 

𝑬(𝒓) =  
𝑖𝑘𝑓𝑒−𝑖𝑘𝑓

2𝜋
∫ ∫ 𝑬𝑷𝑾(𝜃, 𝜑)𝑒𝑖𝒌·𝒓 sin 𝜃 𝑑𝜃𝑑𝜑 

2𝜋

0

𝜃𝑚𝑎𝑥  

𝜃

(𝑆9) 

where 𝑓 is the focal length of the lens, and the wavevector 𝒌 = (𝑘 sin 𝜃 cos 𝜑 , 𝑘 sin 𝜃 sin 𝜑 , 𝑘 cos 𝜃). The angular spectrum 
function 𝑬𝑷𝑾 is given by [9] 

𝑬𝑷𝑾(𝜃, 𝜑) = 𝐸𝑃𝑊0(𝜃0, 𝜑)𝑒𝑖𝑚𝜑
𝛿(𝜃 − 𝜃0)

sin 𝜃
𝑸(𝜃0, 𝜑) (𝑆10) 

where 𝐸𝑃𝑊0 is the amplitude of each plane wave that contributes to the beam, 𝛿(𝜃 − 𝜃0) is the Dirac delta distribution, 
limiting contributions to the cone surface with angle 𝜃0; and the 𝑸(𝜃0, 𝜑) vector describes polarization as [10] 
 

𝑸(𝜃0, 𝜑) =  [

𝑝𝑋(cos 𝜃0 cos2 𝜑 +  sin2 𝜑) − 𝑝𝑦(1 − cos 𝜃0) sin 𝜑 cos 𝜑

−𝑝𝑋(1 − cos 𝜃0) sin 𝜑 cos 𝜑 + 𝑝𝑦(cos 𝜃0 sin2 𝜑 +  cos2 𝜑)

−𝑝𝑥 sin 𝜃0 cos 𝜑 − 𝑝𝑦 sin 𝜃0 sin 𝜑

] (𝑆11) 

 

and depends on the pair of parameters (𝑝𝑥, 𝑝𝑦). An azimuthal polarization is given by (𝑝𝑥 , 𝑝𝑦) = (− sin 𝜑 , cos 𝜑). Then, the 

implementation of Bessel beams consists in introducing a combination of plane waves whose amplitude, direction and polar-
ization matches the angular spectrum function 𝑬𝑷𝑾. The finiteness of the number of plane waves means that the integral in 
equation S9 will be discretized as 

𝑬(𝒓) =  ∑ 𝐶𝑛𝐸𝑃𝑊0

𝑁

𝑛=0

𝑸(𝜃0, 𝜑𝑛)𝑒𝑖𝑚𝜑𝑒𝑖𝒌·𝒓 (𝑆12) 

where 𝜑𝑛 corresponds to the azimuthal angle integration points, weighted by coefficients 𝐶𝑛. They can be determined as 
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𝜑𝑛 =
2𝜋𝑛 

𝑁
, 𝑛 = 0,1 … 𝑁

𝐶𝑛 =  {

𝜋

𝑁
,                 𝑛 = 0, 𝑁

2𝜋

𝑁
,   𝑛 = 1,2 … 𝑁 − 1

(𝑆13) 

where the half-valued 𝐶𝑛 coefficients at  𝑛 = 0, 𝑁 compensate the degeneracy at that point. To introduce these plane waves 
without periodic boundary conditions in FDTD, the Total Field/Scattered Field (TFSF) within the Lumerical FDTD software ap-
proach is followed. As shown in [8], a combination of 60 plane wave sources is enough to closely match the analytical profile 
of the beam. Typically, injection angles in broadband simulations change as a function of frequency, with only the center 
frequency matching the nominal injection angle. While this dispersion can be negligible for small angles, steep incidences 
cause notable differences. This effect can be corrected using the Broadband Fixed Angle Source Technique (BFAST) or using 
frequency dependent profiles [11], these approaches are not implemented for TSFS sources, meaning that simulations had to 
be limited to a single frequency, matching the nominal angle.  
 

Figure S3 displays the excellent match between the analytical Bessel beam from equation 1 and the TFSF approach in 
Lumerical FDTD for a zero-order azimuthally polarized Bessel beam with 𝜃0 = 55º at a wavelength of 532 nm. 
 

 
 
Fig. S3. Comparison of analytical and FDTD-generated Bessel beams, at 𝑋𝑌 and 𝑋𝑍 planes. The beam is zero-order with azi-
muthal polarization, and is characterized by an angle of 55º, a wavelength of 532 nm, and the plane wave amplitude is set to 
𝐸𝑃𝑊0 = 1 V/m. The surrounding medium has an index 𝑛𝑏 = 1.33. 

S4. Derivation of the force exerted by a zero-order azimuthally polarized Bessel beam on a 
 plasmonic particle 

We start by considering the Lorentz force on a point dipole 𝒑, given by [12], [13]: 

〈𝑭〉 =
1

2
ℜ𝔢[(𝒑∗ ⋅ ∇)𝑬 + 𝑖𝜔(𝒑∗ × 𝑩)] (S14) 

where 𝑬(𝜌, 𝜑, 𝑧) = −𝑖𝐸0𝑒𝑖𝑘0 cos 𝜃0𝑧  
𝐽0

′(𝑘0 sin 𝜃0𝜌)

sin 𝜃0
 𝒏𝝋 = 𝐸𝜑𝒏𝝋, 𝒑 = εb𝛼𝑬 (where εb = ε0𝑛𝑏

2) and 𝑩 =
1

𝑖𝜔
 ∇ × 𝑬. We can 

substitute and obtain: 

〈𝑭〉 =
1

2
ℜ𝔢[εb𝛼∗(𝑬∗  ⋅ ∇)𝑬 + 𝛼∗(𝑬∗ × (∇ × 𝑬))] (S15) 

Because the field only has the azimuthal component, the dot product in the first term simplifies to 
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(𝑬∗  ⋅ ∇)𝑬 = 𝐸𝜑
∗

1

𝜌

𝜕𝐸𝜑𝒏𝝋

𝜕𝜑
= 𝐸𝜑

∗
1

𝜌
(

𝜕𝐸𝜑

𝜕𝜑
𝒏𝝋 − 𝐸𝜑𝒏𝝆) = −

|𝐸𝜑|
2

𝜌
𝒏𝝆 (𝑆16) 

where in the last step the fact that the field has cylindrical symmetry (
𝜕𝐸𝜑

𝜕𝜑
= 0 ) has been exploited. For the other term 

in the equation, we can first compute ∇ × 𝑬: 

∇ × 𝑬 =  (−
1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝑧
, 0,

1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝜌
) (𝑆17) 

With this, the product 𝑬∗ × (∇ × 𝑬) yields: 

𝑬∗ × (∇ × 𝑬) =  ||

𝒏𝝆 𝒏𝝋 𝒏𝒛

0 𝐸𝜑
∗ 0

−
1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝑧
0

1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝜌

|| = 𝐸𝜑
∗

1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝜌
𝒏𝝆 + 𝐸𝜑

∗
1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝑧
𝒏𝒛 (𝑆18) 

The first derivative can be simplified as 
𝜕(𝜌𝐸𝜑)

𝜕𝜌
= 𝐸𝜑 + 𝜌

𝜕𝐸𝜑

𝜕𝜌
, and the total force becomes 

〈𝑭〉 =
1

2
ℜ𝔢 [−εb𝛼∗

|𝐸𝜑|
2

𝜌
𝒏𝝆 + εb𝛼∗𝐸𝜑

∗
1

𝜌
(𝐸𝜑 + 𝜌

𝜕𝐸𝜑

𝜕𝜌
) 𝒏𝝆 + εb𝛼∗𝐸𝜑

∗
1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝑧
𝒏𝒛] (S19) 

which simplifies to 

〈𝑭〉 =
1

2
ℜ𝔢 [−εb𝛼∗

|𝐸𝜑|
2

𝜌
𝒏𝝆 + εb𝛼∗

|𝐸𝜑|
2

𝜌
𝒏𝝆 + εb𝛼∗

𝜕𝐸𝜑

𝜕𝜌
𝒏𝝆 +  εb𝛼∗𝐸𝜑

∗
1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝑧
𝒏𝒛] =

1

2
ℜ𝔢 [εb𝛼∗𝐸𝜑

∗ (
𝜕𝐸𝜑

𝜕𝜌
𝒏𝝆 +  

1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝑧
) 𝒏𝒛] (S20) 

which is equation 3 in the main text. Further simplification can be achieved by computing the necessary derivatives: 

𝜕(𝜌𝐸𝜑)

𝜕𝑧
= −𝜌𝐸0𝑒𝑖𝑘0 cos 𝜃0𝑧  

𝐽1(𝑘0 sin 𝜃0 𝜌)

sin 𝜃0

 𝑘0 cos 𝜃0 (𝑆21𝑎) 

𝜕𝐸𝜑

𝜕𝜌
= 𝑖𝐸0𝑒𝑖𝑘0 cos 𝜃0𝑧  

𝐽1
′ (𝑘0 sin 𝜃0 𝜌)

sin 𝜃0

 𝑘0 sin 𝜃0 = 𝑖𝑘0𝐸0𝑒𝑖𝑘0 cos 𝜃0𝑧𝐽1
′(𝑘0 sin 𝜃0 𝜌) (𝑆21𝑏) 

where we have exploited the recurrence relation of Bessel’s functions: 𝐽𝑚
′ (𝑥) =

1

2
[𝐽𝑚−1(𝑥) − 𝐽𝑚+1(𝑥)]. For 𝑚 = 0, 𝐽0

′ (𝑥) =
1

2
[𝐽−1(𝑥) − 𝐽1(𝑥)] =

1

2
[−𝐽1(𝑥) − 𝐽1(𝑥)] = −𝐽1(𝑥). Inserting these expressions together with 𝐸𝜑 yields the final expression: 

 

〈𝑭〉 =
1

2
ℜ𝔢 [εb𝛼∗𝐸0

2 (
𝑘0

sin 𝜃0

𝐽1(𝑥𝜌)𝐽1
′ (𝑥𝜌)𝒏𝝆 + 𝑖

𝑘0 cos 𝜃0

sin2 𝜃0

𝐽1
2(𝑥𝜌)𝒏𝒛)] (𝑆22) 

 
which is equation 4 in the main text, with 𝑥𝜌 =  𝑘0 sin 𝜃0 𝜌. As stated there, the negative sign of the imaginary part of the 

conjugate polarizability 𝛼∗ will yield a positive longitudinal force. Interestingly, the 
cos 𝜃0

sin2 𝜃0
 means that this longitudinal force 

will be greater for small-angle Bessel beams, which resemble plane waves. On the other hand, when 𝜃0 →
𝜋

2
, the longitudinal 

force approaches zero. 
 

S5. CDA method for optical force calculations in plasmonic rod dimers 

We follow the method outlined in [14], although we note the use of SI units below. Each of the rods in the dimer is 
modeled as a point dipole 𝒑𝒊 characterized by a polarizability 𝛼𝑖. Under this approximation, the optical response of a dimer in 
a medium with dielectric constant 𝜀𝑏 = 𝜀0𝑛𝑏

2 can be obtained by solving a system of equations: 
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𝒑𝟏 =  𝜀𝑏𝛼1𝑬𝟏 = 𝜀𝑏𝛼1(𝑬𝒊𝒏𝒄,𝟏 − 𝑨𝟏𝟐
̅̅ ̅̅ ̅ ⋅ 𝒑𝟐)

𝒑𝟐 =  𝜀𝑏𝛼2𝑬𝟐 = 𝜀𝑏𝛼2(𝑬𝒊𝒏𝒄,𝟐 − 𝑨𝟐𝟏
̅̅ ̅̅ ̅ ⋅ 𝒑𝟏)

(𝑆23) 

where 𝑬𝒊 corresponds to the total electric field at the position of dipole 𝒑𝒊, 𝑬𝒊𝒏𝒄,𝟏 is the incident field on that position and the 

product 𝑨𝒊𝒋
̅̅ ̅̅ ⋅ 𝒑𝒋 gives the electric field caused by dipole 𝒑𝒋 at the position of dipole 𝒑𝒊. 𝑨𝒊𝒋

̅̅ ̅̅  is a second order tensor given by 

𝑨𝒊𝒋
̅̅ ̅̅ (𝒓𝒊𝒋) =  

𝑒𝑖𝑘𝑟𝑖𝑗  

4𝜋𝜀𝑏𝑟𝑖𝑗

[𝑘2(𝒏𝒊𝒋 ⊗ 𝒏𝒊𝒋 − 𝑰 ) +
𝑖𝑘𝑟𝑖𝑗 − 1

𝑟𝑖𝑗
2 (3𝒏𝒊𝒋 ⊗ 𝒏𝒊𝒋 − 𝑰 )] (𝑆24) 

where 𝒓𝒊𝒋 is the position vector separating the dipoles. 𝑟𝑖𝑗 = |𝒓𝒊𝒋|, 𝒏𝒊𝒋 =  
𝒓𝒊𝒋

𝑟𝑖𝑗
 and 𝑰 is the identity dyadic. The symbol ⊗ denotes 

the dyadic product. For two dipoles, the system S11 can be easily solved as 

𝒑𝟏 =  
𝜀𝑏𝛼1(𝑬𝒊𝒏𝒄,𝟏 − 𝜀𝑏𝛼2 𝑨𝟏𝟐

̅̅ ̅̅ ̅ ⋅ 𝑬𝒊𝒏𝒄,𝟐)

𝑰 − 𝜀𝑏
2 𝛼1𝛼2 𝑨𝟏𝟐

̅̅ ̅̅ ̅ ⋅ 𝑨𝟐𝟏
̅̅ ̅̅ ̅

𝒑𝟐 =  
𝜀0𝜀𝑏𝛼2(𝑬𝒊𝒏𝒄,𝟐 − 𝜀𝑏𝛼1 𝑨𝟐𝟏

̅̅ ̅̅ ̅ ⋅ 𝑬𝒊𝒏𝒄,𝟏)

𝑰 − 𝜀𝑏
2 𝛼1𝛼2 𝑨𝟐𝟏

̅̅ ̅̅ ̅ ⋅ 𝑨𝟏𝟐
̅̅ ̅̅ ̅

(𝑆25) 

where it must be noted that the fraction here corresponds to a right-matrix division. With the expressions for both dipole 

moments, the total electric field at any point in space can be calculated as 

𝑬(𝒓) = 𝑬𝒊𝒏𝒄(𝒓) + 𝑨̅(𝒓 − 𝒓𝟏) ⋅ 𝒑𝟏 + 𝑨̅(𝒓 − 𝒓𝟐) ⋅ 𝒑𝟐 (𝑆26) 

where 𝒓𝟏 and 𝒓𝟐 correspond to the position vectors of the two dipoles and the corresponding magnetic field can be obtained 

as 𝑩(𝒓) =  
1

𝑖𝜔
𝛁 × 𝑬(𝒓). Once the total field is obtained, the optical force on dipole 𝒑𝒊 can be calculated by invoking the 

Lorentz Force equation [12], [13], [15]: 

𝑭𝒊 = ℜ𝔢(𝒑𝒊 ⋅ 𝛁𝒊)ℜ𝔢(𝑬𝒊) + ℜ𝔢 (
𝑑𝒑𝒊

𝑑𝑡
) × ℜ𝔢(𝑩𝒊) (𝑆27) 

which for harmonic fields, can be time-averaged as 

〈𝑭𝒊〉 = ℜ𝔢[(𝒑𝒊
∗ ⋅ 𝛁𝒊)𝐸𝑖 + 𝑖𝜔𝒑𝒊

∗ × 𝑩𝒊] (𝑆28) 

where * denotes the complex conjugate. For incident plane waves, this expression can be simplified to the sum of the contri-

butions of the incident light on the individual dipoles plus an interaction term, both of which require calculating the field 
across all the simulation space (equation S17) and the computationally costly gradients in equation S19 [13]. However, the 
complex Bessel beam requires full calculation using equation S19. 
 

Formally speaking, approximation of nanoparticles as dipoles with polarizabilities 𝛼𝑖  derives from the quasi-static approx-
imation for spheres. However, this approximation can be extended to ellipsoidal objects and other geometries. For gold na-
norods, we follow the expression derived by Kuwata et al. [16]: 

𝛼 ≈
𝑉

(𝛤 +
𝜀𝑏

𝜀 − 𝜀𝑏
) + 𝐴𝑥(𝛤)(𝑛𝑏𝑥)2 + 𝐵𝑥(𝛤)(𝑛𝑏𝑥)4 − 𝑖

4𝜋2𝑛𝑏
3

3
𝑉
𝜆0

3

(𝑆29)
 

where 𝑉 is the rod volume, 𝜆0 is the incident wavelength and 𝑥 =  
𝜋𝑎

𝜆0
 is the size parameter, with 𝑎 being the particle size. 

𝐴𝑥(𝛤) and 𝐵𝑥(𝛤) are functions dependent on the geometrical depolarization factor 𝛤. For rods, this factor is given by 

𝛤𝑟𝑜𝑑 =
[(𝜉 − 1)3 − 2 − (𝜉 − 2𝜉 − 1)√𝜉2 − 2𝜉 + 2]

3(𝜉 − 1)3
(𝑆30) 

where 𝜉 is the aspect ratio between the long and short dimensions of the rod. The functions 𝐴𝑥(𝛤) and 𝐵𝑥(𝛤) are then 
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𝐴𝑥(𝛤) = −0.4865𝛤 − 1.046𝛤2 + 0.8481𝛤3

𝐵𝑥(𝛤) = 0.019𝛤 + 0.1999𝛤2 + 0.6077𝛤3
(𝑆31) 

An important parameter to consider is interparticle distance, since for closely positioned dipoles electrostatic contributions 
to the induced fields, neglected under the dipolar approximation, become relevant. This effect can be accounted for by other 
methods, such as the use of Mie theory or more complex DDA approaches. To elucidate the impact that this may have on our 
calculations, we compare our CDA approach to full wave FDTD results in the case of a linearly y-polarized plane wave with 
intensity 0.4 W/µm2 intensity plane wave incident on the analyzed dimers, with a separation distance of 100 nm. This com-
parison is displayed in Figure S4a, and it can be seen that the overall shape of both the optical force and the extinction cross-
section (calculated using the extinction theorem as shown in [17]) is quite similar. 

 
Fig. S4. a) Comparison of FDTD and CDA solutions for a dimer with a 100 nm interparticle distance illuminated by a 
y-polarized plane wave with intensity 0.4 W/µm2, similarly to Figure 1d in the main text. b) FDTD and CDA results for the 
individual components of the dimer (distinguished by solid/dashed lines). The background refractive index for all calculations 
is set to 𝑛𝑏 = 1.5. 

 
The main difference between the CDA and FDTD methods is the location of the extinction peak corresponding to the larger 

rod in the dimer. While the FDTD peaks are located at 860 and 1050 nm, respectively; the CDA peaks are located at 880 and 
1200 nm. The big redshift between the second peak locations between the methods mainly affects the longitudinal force, 
which closely follows the extinction cross-section, although the bigger gap between resonances in the CDA method flattens 
the transverse x-component force. Other than that, quantitative values do not change very significantly, with both longitudinal 
forces peaking around 300 pN.  

 
While the interparticle distance might play a role in these discrepancies, the rod’s polarizability modeling in equation S20 

can highly influence the spectral locations of the individual resonances. Figure S4b shows the results of both methods for the 
individual rods. Here, the spectral positions of the peaks closely match the dimer results, with the CDA methods having a 
redshifted second peak with respect to FDTD simulations. Here, the FDTD peaks are located at 870 and 1035 nm, while the 
CDA peaks are at 905 and 1150 nm. This means that the polarizability modelling in equation S20 is the main responsible for 
the discrepancy of results, rather than the interparticle distance. It must be highlighted that the overall trends of forces and 
extinctions are similar between methods, meaning that the CDA method’s precision is enough for our purpose in this work. 

S6. Transversal forces on plasmonic dimers 
 
As seen in the previous sections, the optical force by an azimuthally polarized Bessel beam on a plasmonic nanoparticle 

will have a positive longitudinal component as well as a radial component. In a plasmonic dimer, the interaction between 
particles, driven by the coupling tensors 𝑨𝒊𝒋

̅̅ ̅̅  , might show important deviations from this behaviour. To check this, we provide 

in Figure S5 the missing components from Figure 2e-f, 𝐹𝑥 and 𝐹𝑦. As in the CDA simulations the dimer was displaced from the 

center of the beam in the -x direction, 𝐹𝑥 = −𝐹𝜌 and 𝐹𝑦 = 𝐹𝜑 in the cylindrical coordinate system. 

As expected, the longitudinal force, when the dimer is parallel with polarization, is accompanied by a strong x-compo-
nent force, corresponding to a radial direction. In contrast, the y-component is near zero, as is expected of the azimuthal 
component for a single plasmonic particle.  

On the other hand, when dimers are placed perpendicularly to the azimuthal polarization, as shown in the solid lines, all 
the components are near-zero, supporting the fact that independent control of the different degrees of freedom of the na-
nomotor can be achieved by orienting the dimers in this direction.  
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Fig. S5. Optical forces on the highlighted cases from Figure 2e (a) and Figure 2f (b) with all components 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧. Solid 

lines represent a perpendicular orientation to polarization, and dashed lines a parallel orientation with respect to polarization. 

Some other relevant features can be found here. As shown in equation 4 in the main text, the longitudinal force is 

proportional to 
cos 𝜃0

sin2 𝜃0
, meaning that lower angles, as in Figure S5a with respect to Figure S5b, will generally have larger longi-

tudinal forces. Regarding the radial force, its peaks are redshifted with respect to the longitudinal peaks, and the radial force 
has a remarkably weaker decay for longer wavelengths. This can be attributed to the fact that the radial force depends on the 
real part of the polarizability rather than the imaginary part. This prompts a different behavior, including the sign flip found 
at ~900 nm in Figure S5b. 

 Furthermore, in resonance, the force is positive (drawing the dimer to the center of the beam), which points to the 

dimer being located at a point where the product 𝐽1(𝑥𝜌) ⋅ 𝐽′1(𝑥𝜌) is negative. Since both functions are positive for small 𝑥𝜌, 

this suggests the opportunity to place the dimers closer to the center to avoid the radial force altogether. However, smaller 
distances between dimers might induce further coupling between elements, significantly altering the overall optical response. 

S7. Longitudinal forces and torques on nanomotors 
 
For plane wave illumination, the longitudinal components of force and torque, not shown in Figure 3 in the main text, 

are depicted in Figure S6. It can be seen again that the longer nanomotor, bigger in size and containing more dimers, is char-
acterized by larger forces and torques. The 𝐹𝑧 component is much larger than either 𝐹|| or 𝐹⊥ in Figure 3, meaning that any 

plane wave illumination for lateral movement is going to be associated with a strong pushing force. Furthermore, the pushing 
force is significant for all considered wavelengths, which allows to control pushing movement independently of lateral move-
ment if out-of-resonance wavelengths are employed (as, for example, 𝜆 = 1700 nm). The longitudinal torque 𝑇𝑧, on the con-
trary, supposes a minor contribution against the 𝑇|| component in Figure 3. 

 

Fig. S6. Longitudinal forces and torques 𝐹𝑧 and 𝑇𝑧  exerted by a linearly polarized plane wave with intensity 0.4 mW/ µm2 on 
the a) 𝑝 = 2.04 and b) 𝑝 = 1.44 aspect ratio nanomotors as a function of wavelength. 
 

The longitudinal component torques for both nanomotors are shown in Figure S7. The magnitude of both torques is 
much lower than that of the dominant component 𝑇𝑦, especially in the case of the longer cylinder. This further allows the 

one-dimensional treatment employed in the diffusion simulations in the main text. 
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Fig. S7. Longitudinal torque 𝑇𝑧  exerted on the a) 𝑝 = 2.04 and b) 𝑝 = 1.44 aspect ratio nanomotors for different positions and 
orientations. 
 

S8. Extension of the scheme for controlled rotations 

The proposed scheme in the main text is designed to only provide translational lateral motion. However, for non-ab-
sorbing structures, a helicity-dependent optical torque 𝑇𝑧  can be exerted using circularly polarized light [18], [19]. Further-
more, as shown by Käll and coworkers [20], plasmonic nanorods can efficiently transduce the spin angular momentum from 
circularly polarized light into a rotatory motion, something that has been important to many different applications. In partic-
ular, plasmonic rods could be fitted into the design, providing a helicity-dependent rotatory motion that can be made inde-
pendent from other lateral motions if said rods are tuned to a different illumination wavelength, i.e., a wavelength below 
1000 nm, where scattering from the gold nanorod dimer becomes important.  

Although absorption can play a role into the torque induced on such nanorods, the most important contribution comes 

from scattering processes, for which the time-averaged torque 𝑇𝑧  can be expressed as [21] 

𝑇𝑧 ∝ Δ𝛼2 (𝑆32) 

where Δ𝛼 =  𝛼𝑥 − 𝛼𝑦  the polarizability anisotropy of the nanorods. As seen in this equation, longer rods, characterized by 

larger anisotropies, will allow higher torques. On the other hand, larger aspect ratios in plasmonic nanorods lead to a redshift 
of their plasmonic resonance [22]. We account for the necessary torque that these nanomotors require to overcome Brownian 
motion: 

𝑇𝐵 = √2𝛾𝑟𝑘𝐵𝑇 = √𝑘𝐵𝑇
64

3
𝜋𝜂𝑊𝑎3 (𝑆33) 

where 𝛾𝑟 =
32

3
𝜋𝜂𝑊𝑎3 is the rotational friction coefficient for a cylinder with radius 𝑎 [23]. For the 𝑝 = 1.44 design, the Brown-

ian torque threshold is approximately 0.02 pN µm, which is relatively low (although higher than the 𝑇𝑧  achieved with linearly 
polarized illumination). Thus, rods with relatively low anisotropies can be employed for this purpose. To further separate the 
response of these rods from the translational dimers, we employ silver, whose resonances are typically found at shorter 
wavelengths [22], as the material of choice for these rods. 

The proposed design is illustrated in Figure S8a. Silver nanorods (100 nm long, 50 nm wide and thick) are inserted be-
tween the spaces left by the four gold nanorod dimers. Their radial position is the same as the gold nanorod dimers (450 nm 
from the center of the 𝑝 = 1.44 cylinder) and their orientation is perpendicular to the azimuthal orientation of the Bessel 
beam to preserve optical pulling. For the 𝑝 = 1.44 cylinder nanomotor and appropriate Bessel beam illumination (40º, 1300 
nm wavelegth), the forces and torques suffer almost negligible changes upon introduction of such silver nanorods, as demon-
strated in Figure S8b. In particular, the optical pulling force is reduced by 5% approximately. 

Figure S8c-d shows the transversal forces exerted on the 𝑝 = 1.44 nanomotor by a circularly polarized wave, with and 
without the silver nanorods. Transversal forces have a similar pattern to their linearly polarized counterparts in Figure 3 of 
the main text. However, as power is distributed between both x and y polarizations, both 𝐹𝑥 and 𝐹𝑦 have significant contribu-

tions above zero, although lower than their linearly polarized counterparts. This does not change much upon introduction of 
the silver nanorods, whose resonances are at shorter wavelengths. It is important to highlight that helicity changes just pro-
duce a permutation of the forces, as the nanomotor is not geometrically chiral. 
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Fig. S8. a) Scheme of the 3D nanomotor design, to which four silver nanorods have been added in the available space between 
the dimers (the center of the rods, as the dimers, is 450 nm away from the cylinder center). As with the dimers, the silver 
nanorods are perpendicularly oriented to the azimuthal polarization of a pulling Bessel beam. b) Comparison between the 
different force and torque components between the 𝑝 = 1.44 nanomotor without and with the silver nanorods for the cor-
responding Bessel beam illumination. c) Optical transversal forces exerted by a 0.4 mW µm-2 circularly polarized plane wave 
on the 𝑝 = 1.44 nanomotor without silver rods and (d) with them. Solid and dashed lines represent the different helicity (RCP 
or LCP) of the incoming wave. e) Optical torque exerted by the same circularly polarized plane wave on the 𝑝 = 1.44 nanomo-
tor without silver rods and (f) with them. Note that the LCP torque components, represented by dashed lines, have undergone 
a sign change to facilitate comparison with their RCP counterparts. 

 On the other hand, the torques, shown in Figure S8e-f have a very dominant 𝑇𝑧  component, which was not found for 
linear polarization (as shown in Figure S6b). Two peaks are found at 110 and 1300 nm, following the two resonances of the 
gold nanorods. These, however, are coincident with peak values of 𝐹𝑥, 𝐹𝑦, 𝑇𝑥 and 𝑇𝑦, meaning that 𝑇𝑧  cannot be independently 

controlled with these resonances. A third, weaker 𝑇𝑧  peak appears for a 800 nm wavelength, which is not correlated with 
strong forces or torques, and thus, usable for independent rotation control. This peak can be associated with the small lateral 
forces found at the same wavelength here and in Figure S5b. 

Upon introduction of the silver nanorods, their contribution significantly enhances this weaker 𝑇𝑧  peak (around 92%), 
without significantly altering any of the other transversal forces and torques. Again, as the system is not chiral, the torques 
do not change in magnitude upon helicity changes. However, the transversal components are again interchanged, and all 
torques components undergo a sign flip. Thus, a helicity-dependent optical torque one order of magnitude above the Brown-
ian threshold can be applied independently from other forces and torques, allowing efficient motion control over clockwise 
and anticlockwise rotations.  
 

S9. Characterization of the hydrodynamic properties of cylinders 
 
The hydrodynamic behavior of cylinders has been the subject of intense research, following its frequent appearance in 

colloids, such as the tobacco mosaic virus or short DNA fragments [24], [25], [26]. Most works trying to describe these hydro-
dynamic properties have focused on long aspect-ratio (“rod-like”) cylinders [27]. However, the aspect ratios of the cylinders 
described in this work are rather short, with aspect ratios 𝑝 ≲ 2. Therefore, the more general formulae developed by Ortega 
and García de la Torre are followed [28]. In this work, the diffusion tensor component 𝐷𝑟

⊥ is related to a rotational time 𝜏𝑎 by 
 

𝜏𝑎 =  
1

6𝐷𝑟
⊥

(𝑆34) 

For aspect ratios 𝑝 > 0.75, as is the case in this work, 𝜏𝑎 can be calculated from the interpolating equation 
 

𝜏𝑎

𝜏0

= 1.18 + 1.116(ln 𝑝 + 0.2877)2 − 0.2417(ln 𝑝 + 0.2877)3 + 0.4954(ln 𝑝 + 0.2877)4 (𝑆35) 
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where 𝑝 = 𝐿/𝐷 is the length-to-diameter aspect ratio and 𝜏0 =  
𝜋𝐿3𝜂𝑊

4𝑝2𝑘𝐵𝑇
. Here, 𝜂𝑊 = 10−3 Pa·s is the water viscosity, 𝑘𝐵 is 

Boltzmann constant and 𝑇 is the temperature (taken as 300 K). On the other hand, the translational diffusion coefficient 𝐷𝑡 is 
given by 

𝐷𝑡 =  
𝑘𝐵𝑇

𝑓𝑡

(𝑆36) 

related to a translational friction coefficient 𝑓𝑡, given by a similar expression: 
 

𝑓𝑡

𝑓𝑡0

= 1.009 + 1.395 ⋅ 10−2(ln 𝑝) + 7.880 ⋅ 10−2(ln 𝑝)2 + 6.040 ⋅ 10−3(ln 𝑝)3 (𝑆37) 

 

with 𝑓𝑡0 =  6𝜋𝜂𝑊𝐿 (
3

16𝑝2
)

1/3

. 
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