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Abstract: Traditional metasurface design is limited by the

computational cost of full-wave simulations, preventing

thorough exploration of complex configurations. Data-

driven approaches have emerged as a solution to this

bottleneck, replacing costly simulations with rapid neural

network evaluations and enabling near-instant design for

meta-atoms. Despite advances, implementing a new optical

function still requires building and training a task-specific

network, along with exhaustive searches for suitable archi-

tectures and hyperparameters. Pre-trained large language

models (LLMs), by contrast, sidestep this laborious process

with a simple fine-tuning technique. However, applying

LLMs to the design of nanophotonic devices, particularly for

arbitrarily shaped metasurfaces, is still in its early stages;

as such tasks often require graphical networks. Here, we

show that an LLM, fed with descriptive inputs of arbitrarily

shapedmetasurface geometries, can learn the physical rela-

tionships needed for spectral prediction and inverse design.

We further benchmarked a range of open-weight LLMs and

identified relationships between accuracy and model size

at the billion-parameter level. We demonstrated that 1-D

token-wise LLMs provide a practical tool for designing 2-D

arbitrarily shaped metasurfaces. Linking natural-language

interaction to electromagneticmodelling, this “chat-to-chip”

workflow represents a step towardmore user-friendly data-

driven nanophotonics.
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1 Introduction

Metasurfaces, which are defined as planar arrays of sub-

wavelength scatterers that modulate the amplitude, phase,

and polarization of light locally, have quickly become piv-

otal to nanophotonic devices [1], enabling applications from

high-numerical-aperture meta-lenses [2] and holographic

imagers [3] to augmented-reality displays [4]. Despite this

progress, metasurface design remains constrained by the

need for brute-force full-wave electromagnetic solvers such

as the finite-difference time-domain (FDTD) [5] and finite-

element methods (FEM) [6]. A single design iteration must

traverse a high-dimensional parameter space, carry out

numerous simulations, and finely adjust geometric features

to satisfy spectral and/or wave-front requirements [7]. For

practical devices targeting large apertures and multiple

functionalities, the corresponding computational load may

take days or weeks, even when executed on large clusters

or supercomputers [8]. The resulting limitation discour-

ages the exploration of unconventional materials, multi-

layer stacks, and fully aperiodic layouts. To keep pace with

the burgeoning applications for metasurfaces, new design

paradigms that bypass repeated heavy-duty simulations are

urgently required.

Recent breakthroughs in data-driven modelling offer

a promising alternative route [9]. Once trained on curated

pairs of optical or electromagnetic responses with cor-

responding metasurface geometry, deep neural networks

(DNNs) can predict the optical response of previously

unseen geometries within milliseconds, marking structure

evaluation orders of magnitude faster than that based on

full-wave solvers [10], [11]. Recent works have shown the

potential of DNN-based approaches for metasurface design

[12]–[14]. For instance, Malkiel et al. employed a DNN for

H-shaped plasmonic nanostructure design [15]. An et al.

developed a DNN to predict wideband amplitude and phase

responses of quasi-freeform dielectric metasurfaces [16].

Chen et al. introduced a transformer-based model for both

forward and inverse design of broadband solar metama-

terial absorbers [17]. Moreover, Zhang et al. proposed a

fixed-attention mechanism for the design of high-degree-of-

freedom metamaterials [18].
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Although DNN-based models have demonstrated

impressive accuracy and speed, integrating them into a

metasurface design pipeline is still far from a turnkey

off-the-shelf procedure [19]. Each new optical function

typically requires a new training set, a custom network

topology, and exhaustive hyper-parameter selections. This

typically includes choosing the number of layers and

neurons in each layer, which is an iterative, code-heavy

process driven largely by heuristic intuition rather

than first-principles guidance [20]. To this end, large

language models (LLMs) present a qualitatively different

proposition. LLMs are transformer-based neural networks

that encapsulate billions of parameters in a single,

frozen architecture pre-trained on vast amounts of

natural-language text and code [21]. In this stage, the

model is taught the simple objective of predicting the

next word in a sequence; yet, by doing so at web-scale, it

internalizes syntax, semantics, and a surprising amount

of factual and mathematical structure [22]. Since the

core model is fixed, researchers can simply train the

LLM on task-specific datasets instead of re-designing and

re-training a new network for every new task, thereby

eliminating the laborious network-sizing and hand-tuning

that DNNs demand. These characteristics make LLMs ideal

candidates for enabling efficient design of metasurfaces

with complex structures and layouts that possess various

targeted functionalities.

When domain precision is required, the same model

can be “further trained” in an efficient manner (i.e., fine-

tuned) on a relatively small, task-specific dataset, such as

predicting the transmission spectrum of a metasurface [23],

[24]. In practice, this dataset pairs sequence-based descrip-

tions of each unit cell (geometric parameters, material

indices, lattice spacing, and so on) with descriptions of

its simulated optical response (spectral magnitude, phase,

near-field maps, etc.). This pairing mirrors the input-output

structure of conventional DNNs but represents both geom-

etry and responses in a language-like format amenable to

LLMs. Because LLMs accept byte streams, neither archi-

tectural redesign nor feature engineering is necessary: the

model simply learns themapping of geometries to responses

in passes. After fine-tuning on a new dataset, which takes

slightly longer than the time taken to train one custom

DNN, the LLMs can predict spectra within seconds, pro-

viding near-real-time feedback during design loops while

removing the code-heavy scaffolding and exhaustive hyper-

parameter sweeps that traditional DNN-based methods

demand. Thus, LLMs promise a “chat-to-chip” route for

modelling metasurfaces. For example, in their pioneering

study Kim et al. fine-tuned Llama [25] for both forward

prediction and inverse design of all-dielectric metasurfaces

[26], lowering the entry barrier for researchers who lack

machine-learning background. Lu et al. fine-tuned ChatGPT

3.5 on various details of prompts and temperatures for

the design of metamaterials [27], Liu et al. used LLMs for

design recommendation of phosphorescent materials [28],

and, by optimizing and stitchingwavelength-scale superpix-

els, Lupoiu et al. introduced a multi-agent LLM framework

paired with a surrogate Maxwell solver that autonomously

designs metasurfaces in near-real time [29]. However, scal-

ing these approaches from parameterized meta-atoms to

arbitrarily shaped metasurfaces is of great importance to

numerous applications but remains largely unexplored [30],

[31]. Token-wise attention is intrinsically one-dimensional,

whereas free-form surfaces require rich spatial reasoning.

Emerging hybrids that couple LLMbackboneswith graph or

vision transformers, or that embed topology as structured

tokens, may be a possible solution [32]. However, a generally

applicable framework for LLM-accelerated design of com-

plex metasurfaces has yet to be reported, as accuracy of

vision language models (VLMs) still lags behind LLM-level

reliability while their implementation is cost-intensive and

fragile [33].

Here, we present a workflow using LLMs to acceler-

ate both forward and inverse design of arbitrarily shaped

metasurfaces. We note that, in our study, an “arbitrarily

shaped” meta-atom refers to a planar structure with a non-

canonical or free-form shape, rather than a fully unparam-

eterized one. Although limited to one-dimensional token

streams, our results show that sequence-based LLMs are

capable of capturing the physics required to predict optical

responses for arbitrarily shaped metasurfaces. Also, for the

inverse design section, our workflow addresses the designs

of high-degree-of-freedom, randomly shaped 2D unit cells,

which cannot be solved by existing image-generation or

multimodal LLM approaches. This method eliminates DNN

engineering and therefore further lowers the barrier for

researchers with limited expertise in machine learning.

Finally, cross-model benchmarks that exploit state-of-the-

art LLMs in this design task are provided, establishing ref-

erence baselines to guide future work on LLM-accelerated

photonic design.

2 Methods

Figure 1a outlines the workflow we use to generate

arbitrarily shaped meta-atoms, a successfully verified

parameterization approach adopted from [30]. First,

a 4 × 4 control-point grid was randomly generated,

where each element ranges within [0, 1]. The grid was
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(a)

(b)

Figure 1: Mapping arbitrarily shaped metasurface geometries to language sequences and training an LLM for rapid optical prediction. (a) A 4 × 4

matrix of a randomly sampled grid of control-points is replicated by four-fold rotational symmetry, interpolated into a 256 × 256 scalar field, binarized

at a fixed threshold of 0.5, and regularised by iterative morphological opening/closing that removes isolated features smaller than 8,192 pixels and

seals internal voids. The resulting binary mask is then extruded into a 200 nm-thick silicon layer on a 1 μm-pitch glass substrate and analysed with
FDTD, establishing paired grid-spectrum data. (b) Fine-tuning and inference process for forward prediction. Each grid-spectrum pair is rewritten as a

natural-language prompt that encodes the control-point grid and a target output that lists the 31 transmission values between 1,050 nm and 1,600 nm.

Moreover, parameter-efficient fine-tuning (LoRA) of a pre-trained LLM minimises cross-entropy between predicted and ground-truth tokens, so that at

inference the model returns an accurate spectrum within seconds from a single grid prompt, eliminating the need for labour-intensive network design.

replicated by a four-fold rotational symmetry, yielding

a 7 × 7 lattice of control values. Interpolation converts

these discrete values into a 256 × 256 surface. Binarization

at a fixed threshold (t = 0.5) converts this surface into

a preliminary foreground-background mask. To ensure

the pattern is fabrication-friendly, the mask undergoes

iterative morphological opening and closing until no

further topological changes occur [31]. This regularisation

step eliminates isolated islands, fills holes, and enforces

a minimum feature width and gap size compatible with

standard fabrication processes. The final design is a

1,000 nm × 1,000 nm square unit cell comprising an

arbitrarily shaped silicon pattern (refractive index = 3.5)

generated using this approach sitting on a glass substrate

(refractive index = 1.5).

We generated a dataset of 45,790 metasurface designs

with randomly generated control-point grids illuminated by

a left-handed circularly polarized (LCP) normally incident

wave. These designs were simulated using the commer-

cial software package Lumerical FDTD on a server with

two Intel(R) Xeon(R) Gold 6258R CPUs and 1.5 TB mem-

ory. After every simulation, the transmission spectrum was

recorded at 31 uniformly spacedwavelengths from 1,050 nm

to 1,600 nm. The completed dataset was randomly parti-

tioned into training and test sets with a 4:1 ratio, resulting

in 36,632 training samples and 9,158 test samples.

To prepare the geometrical-optical pairs for

the forward-prediction task using LLMs, each 4 × 4

control-point grid is converted into a natural-language

prompt and its 31-element transmission vector into the



3628 — H. Zhang et al.: Chat to chip: LLM based design of arbitrarily shaped metasurfaces

corresponding completion. A typical prompt would be: “We

have a 4-by-4 grid: [[g11, . . . , g14], . . . , [g41, . . . , g44]], what is

the transmission spectrum of the metasurface generated

using this grid?” while the target completion would then

be: “The transmission values sampled at 31 evenly spaced

points between 1,050 nm and 1,600 nm for the metasurface

generated using this grid are [t1, . . . , t31]”. All numerical

values are rounded to three decimal places, a choice

that is not accuracy-limiting at the error scales considered,

balancing GPUmemory usage with predictive accuracy, and

aligns with prior works [26], [27]. All prompts and expected

outputs are tokenised with the same byte-pair encoder

as the base model to ensure vocabulary consistency.

Fine-tuning proceeds by feeding these prompt-completion

pairs to the LLM and minimising the loss between the

predicted tokens and the ground-truth completion, as

illustrated in Figure 1b. This formulation re-casts spectrum

prediction as language-sequence completion, allowing us to

exploit the LLMs’ autoregressive training objective without

architectural modifications.

The LLM implemented in both the forward and inverse

design process is Meta-Llama-3.1-8B-Instruct [25] quantised

to 4 bit weights by Unsloth. This LLM is identical to that

employed by Kim et al. [26], eliminating the need for neu-

ral network engineering. Parameter-efficient adaptation is

realisedwith low-rank adaptation (LoRA [24]), which injects

low-rank adapters into all projection layers. The entire

workflow is built using open-source libraries including

Pytorch, HuggingFace, and Unsloth. All 7–9B parameter

LLMs are trained on a single NVIDIA RTX 2080 Ti GPU, while

the larger and smaller LLMs used in the benchmarking

process are trained on one NVIDIA L40S GPU. The rank r

and the scaling factor 𝛼 were both set to 32. Fine-tuning

proceeds for 8 epochs with an effective batch size of 192,

using the AdamW optimiser with an initial learning rate

of 4.0 × 10−4 followed by linear decay and the standard

cross-entropy objective for next-tokenprediction. This setup

resulted in approximately 10 GB of GPU memory usage for

7–9B models, a requirement that is met by most contempo-

rary commercially available consumer graphics cards.

3 Results and discussion

3.1 Forward design

To demonstrate the prediction accuracy, Figure 2 com-

pares the spectra predicted by our fine-tuned Llama-

3.1–8B with FDTD simulation results for four represen-

tative meta-atoms. The orange dashed curves (Llama)

track the blue solid curves (FDTD) almost perfectly across

(a) (b)

(c) (d)

Figure 2: Predicted and simulated transmission spectra for four grids from the test set. The corresponding control-point grids and MSE are: (a) ([0.411,

0.795, 0.126, 0.233], [0.876, 0.187, 0.209, 0.911], [0.318, 0.479, 0.998, 0.826], [0.555, 0.820, 0.238, 0.058]), MSE = 7.8 × 10−6. (b) ([0.156, 0.485, 0.350,

0.248], [0.391, 0.476, 0.083, 0.444], [0.041, 0.419, 0.524, 0.511], [0.695, 0.026, 0.690, 0.560]), MSE = 2.6 × 10−6. (c) ([0.203, 0.155, 0.608, 0.655], [0.682,

0.541, 0.924, 0.898], [0.660, 0.610, 0.193, 0.065], [0.145, 0.508, 0.538, 0.098]), MSE = 3.6 × 10−6. (d) ([0.049, 0.881, 0.405, 0.843], [0.288, 0.836, 0.375,

0.149], [0.736, 0.211, 0.728, 0.012], [0.471, 0.181, 0.914, 0.007]), MSE = 4.1 × 10−6.
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the 1,000–1,600 nm band, faithfully reproducing both

plateaus and sharp resonances. Querying the model is

straightforward: copy and paste the 4 × 4 control-point

matrix into a prompt, as discussed previously, and then

read out the 31-point spectrum returned by the LLM. On a

single RTX 2080 Ti GPU, this prediction takes approximately

2 s, about 60 times faster than the corresponding full-wave

simulation on our CPU cluster. Across the entire 9158 sample

test set the mean squared error (MSE) is 3.4 × 10−3 when

trained for 8 epochs, matching specialised DNNs reported

in the literature [31], [34]. In other words, a lightly fine-

tuned (i.e., only the number of epochs needs tuning), off-the-

shelf LLM delivers turnkey, high-fidelity forward modelling

without any bespoke network design or hyper-parameter

sweeps, demonstrating a practical “no code” path to rapid

metasurface prototyping.

Furthermore, to quantify the influence of fine-tuning

epochs, we tested how different training epochs impact

the prediction accuracy. Figure 3a confirms that fine-tuning

length is a minor knob for this prediction task. Specifically,

when the Llama-3.1–8B model is fine-tuned for between 5

and 20 epochs, a typical range for fine-tuning LLMs, its test-

setMSEmeanderswithin 3.4–4.7 × 10−3, comfortably below

the 5 × 10−3 marked by the red dashed line. In contrast, a

hand-built eight-layer fully connected network swings from

a best-case 2.0 × 10−3 to 1.78 × 10−2 after enlarging each

layer from 512 to 895 neurons, marked by the two dark-blue

dashed lines. Custom DNNs can still edge out the LLMs by a

small margin, but only at the cost of exhaustive architecture

(a) (b)

(c) (d)

Figure 3: Effect of fine-tuning duration and model size on forward-prediction MSE. (a) Test-set MSE for Llama-3.1–8B versus fine-tuning epochs.

Although the MSE exceeds the 5 × 10−3 tolerance line (red dashed line) during epochs 1–4 (grey curve), once fine-tuning reaches epoch 5 the orange

curve remains consistently below this tolerance and only marginally above the 2 × 10−3 benchmark reached by the best hand-tuned eight-layer DNNs

(blue dashed line), indicating that predictive accuracy is largely insensitive to training length within a certain range. (b–d) MSE after eight-epoch LoRA

fine-tuning for open-weight models grouped by size: (b) mid-size checkpoints (7–9B parameters). DS-Llama-8B stands for DeepSeek-distilled

Llama-3.1–8B; (c) large models (> 9B); (d) small models (< 7B).
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searches. Hence, a pragmatic workflow is to deploy LLMs

for rapid evaluation and reserve heavyweight solvers or

customized networks for final, high-precision refinement

stages. We note that the proposed workflow is excitation-

agnostic: adapting to other illumination conditions such as

different polarization or incidence angle simply requires

changing the simulation setup and regenerating the corre-

sponding dataset with no architectural changes required

[35].

However, not all instruction-tuned LLMs are well-

suited for numerical regression.Whenwe fine-tuned Qwen-

3B, a reasoning model, it repeatedly abandoned the target

format and instead produced a verbose diagnostic such as:

“To determine the transmission spectrum of the metasurface

generated using the given 4-by-4 grid, we need to analyze the

optical properties of the grid. Each value in the grid repre-

sents the transmission coefficient for a specific wavelength

or frequency. However, the provided grid does not include

information about the wavelength range or the specific fre-

quencies corresponding to each value. Additionally, the trans-

mission spectrum typically requires information about the

incident light, the material properties, and the geometry of

the metasurface. Without this information, it is not possi-

ble to accurately compute the transmission spectrum. Please

provide additional details about the wavelength range, inci-

dent light parameters, and material properties to proceed

with the calculation.” Other similar reasoning LLMs, such

as Phi-4-Reasoning, Llama-4, gpt-oss, and Gemma-3, exhibit

similar behaviours during our fine-tuning. Such chain-of-

thought digressions reveal that strong conversational priors

can overshadow the supervised objective, prompting the

model to seek more information from the user rather than

produce the requested 31 transmission values. Therefore,

reasoning-centric LLMs may demand additional engineer-

ing before they serve reliably as high-throughput, numeric

predictors in scientific design loops.

3.2 Benchmarking

To assess how sensitive our workflow is to model choice,

we fine-tuned eleven open-weight LLMs spanning three

parameter bands “small” (< 7 B), “mid-size” (7–9 B), and

“large” (> 9 B) on the same training-test split and fine-

tuning setup, and summarized the resulting test-set MSEs

in Figure 3b–d. Note that these regions are defined solely

to show the feasibility of our method based on commonly

used consumer-grade GPUs, rather than to align with def-

initions used in the machine learning community. Larger

models are more sample-efficient during fine-tuning [36],

and increasing epochs or fine-tuning data for larger models

leads to diminishing returns [37]. Thus, the fine-tuning con-

figuration used for mid-sized models is sufficient for other

regions. In the mid-size model regime (Figure 3b), accuracy

generally improves with increasing size but not strictly

monotonically: the 7B Qwen checkpoint reaches 4.0 × 10−3,

and the 9B Gemma variant levels off at 2.8 × 10−3, indicat-

ing that entry-level GPUs can deliver spectra of acceptable

fidelity. ButMistral 7B showed betterMSE than the 8B Llama

variant, illustrating that architecture and internal design

can outweigh simple parameter count increase. Accord-

ingly, the size-accuracy gains discussed in Figure 3b are

best viewed as a trend rather than a strict rule. The small-

model sweep (Figure 3d) reinforces this point: Gemma-2-3B

achieves 3.4 × 10−3, whereas the tiny SmolLM2-0.1 B vari-

ants drift above 14.7 × 10−3. However, scaling further yields

diminishing returns. In particular, enlarging Qwen-2.5 from

7B to 72B shaves only 1.2 × 10−3 off the MSE yet stretches

inference to almost 35 s and consumes the full 48 GB mem-

ory of a single NVIDIA L40S GPU (Figure 3c). Gemmamodels

rank first or second across all size bands, further suggesting

that architectural priors outweigh raw parameter count in

certain ranges. A plausible reason Gemma advances across

models in our task is its larger, digit-friendly tokenizer,

which represents decimals more regularly. Note that no

deeper architectural tests are investigated here because

the goal of our study is to provide a clear, out-of-the-box

workflow that lets non-AI practitioners accelerate photon-

ics design. Taken together, these benchmarks show that: (i)

model selection can be guided by simple size thresholds

rather than exhaustive hyper-parameter searches: changing

the model size within the LLM family produces only modest

accuracy shifts. In contrast, the DNN baseline shows amuch

larger spread across sizes. (ii) Gemma variants currently

offer the best accuracy-to-cost ratio for rapid prototyping,

and (iii) future gains are likely to come from designs that

embed stronger numerical priors or VLMs rather than from

continued parameter scaling alone.

3.3 Inverse design

Inverse metasurface design is fundamentally many-to-one:

distinct geometries produce near-identical spectra, so a

deterministic inverse network receives conflicting labels

and its gradients cancel, stalling training, leading to non-

convergence problems. Conventional remedies such as tan-

dem networks, where an inverse generator is optimized

through a frozen forward model [38], ease convergence but

often collapse to a single prototype [10] and inherit the

surrogate’s biases, thereby limiting design diversity [39].

Leveraging the intrinsic stochasticity of LLMs circumvents

this problem. As sketched in Figure 4a, we encode a 31-point
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(a)

(b)

Figure 4: LLM-based inverse design. (a) Workflow of the inverse-design stage. A target 31-point transmission spectrum is fed to the fine-tuned

Llama-3.1–8B as a natural-language query of a corresponding grid; the model autoregressively returns a control-point grid that defines a candidate

meta-atom. (b) Representative results for four unseen targets. The orange dashed lines are FDTD simulated results of inverse-designed metasurfaces.

The corresponding inverse-designed grids and MSE are: top-left: ([0.550, 0.073, 0.906, 0.559], [0.324, 0.326, 0.831, 0.708], [0.916, 0.060, 0.517, 0.120],

[0.023, 0, 0.249, 0.263]), MSE = 2.0 × 10−7; top-right: ([0.360, 0.903, 0.903, 0.822], [0.419, 0.386, 0.377, 0.962], [0.744, 0.397, 0.391, 0.742], [0.890, 0.048,

0.259, 0.686]), MSE = 1.2 × 10−6; bottom-left: ([0.460, 0.289, 0.513, 0.473], [0.199, 0.641, 0.932, 0.866], [0.757, 0.956, 0.755, 0.282], [0.9120, 0.571, 0.547,

0.876]), MSE = 1.4 × 10−6; bottom-right: ([0.964, 0.207, 0.656, 0.287], [0.777, 0.548, 0.192, 0.460], [0.181, 0.202, 0.218, 0.812], [0.303, 0.866, 0.496,

0.582]), MSE = 3.0 × 10−7. The histogram within the top-left figure depicts the inverse-design test-set MSE distribution, showing that over 88 % of

samples achieve an MSE below 1 × 10−2.

transmission vector into the prompt “What’s one grid of a

metasurface that can produce the following spectrum: [t1, . . . ,

t31]”, invite the model to return “One possible grid would

be [[g11, . . . , g14], . . . , [g41, . . . , g44]]” and parse the tokens

into the control-point grids. The deliberate phrasing “one

possible” signals the multiplicity of valid answers explicitly,
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allowing the fine-tuned Llama-3.1–8B to learn that several

candidates can generate similar spectra. After fine-tuning

for 8 epochs, the Llama proposes a grid in about 0.9 s

on a single RTX 2080 Ti GPU. Figure 4b (and more exam-

ples in Figure S1 of Supplementary Information) demon-

strates four such inverse-designed meta-atoms: their FDTD-

validated spectra (orange dashed) closely track the targets

(blue solid) while their geometries differmarkedly, confirm-

ing both fidelity and diversity without the need for tech-

niques typically used in customized DNN approaches tomit-

igate non-convergence problems. Collectively, these results

position LLMs as a fast, versatile alternative for inverse elec-

tromagnetic design. To compare to simple inverse baselines,

we also implement a classical tandem inverse network,

where an inverse network (spectrum to control points) is

trained through a frozen forward network. Architecture

details and representative results are provided in Figure S2

and S3 of Supplementary Information, with detailed obser-

vations from the comparison.

4 Conclusions

In summary, this work demonstrates that one-dimensional

token-wise LLMs can serve as a practical “chat-to-chip”

solution for both forward and inverse design of two-

dimensional arbitrarily shaped metasurfaces without the

need for vision models. Systematic benchmarking across

widely used open-weight LLM checkpoints not only quan-

tifies performance but also supplies a clear reference

for future research. Collectively, these findings lower the

barrier to entry for nanophotonic researchers who lack

machine learning expertise and foreshadow a design

paradigm in which LLMs drive rapid, automated explo-

ration of increasingly complexmetasurfaces andmultifunc-

tional electromagnetic devices.
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