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Abstract: Traditional metasurface design is limited by the
computational cost of full-wave simulations, preventing
thorough exploration of complex configurations. Data-
driven approaches have emerged as a solution to this
bottleneck, replacing costly simulations with rapid neural
network evaluations and enabling near-instant design for
meta-atoms. Despite advances, implementing a new optical
function still requires building and training a task-specific
network, along with exhaustive searches for suitable archi-
tectures and hyperparameters. Pre-trained large language
models (LLMs), by contrast, sidestep this laborious process
with a simple fine-tuning technique. However, applying
LLMs to the design of nanophotonic devices, particularly for
arbitrarily shaped metasurfaces, is still in its early stages;
as such tasks often require graphical networks. Here, we
show that an LLM, fed with descriptive inputs of arbitrarily
shaped metasurface geometries, can learn the physical rela-
tionships needed for spectral prediction and inverse design.
We further benchmarked a range of open-weight LLMs and
identified relationships between accuracy and model size
at the billion-parameter level. We demonstrated that 1-D
token-wise LLMs provide a practical tool for designing 2-D
arbitrarily shaped metasurfaces. Linking natural-language
interaction to electromagnetic modelling, this “chat-to-chip”
workflow represents a step toward more user-friendly data-
driven nanophotonics.
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1 Introduction

Metasurfaces, which are defined as planar arrays of sub-
wavelength scatterers that modulate the amplitude, phase,
and polarization of light locally, have quickly become piv-
otal to nanophotonic devices [1], enabling applications from
high-numerical-aperture meta-lenses [2] and holographic
imagers [3] to augmented-reality displays [4]. Despite this
progress, metasurface design remains constrained by the
need for brute-force full-wave electromagnetic solvers such
as the finite-difference time-domain (FDTD) [5] and finite-
element methods (FEM) [6]. A single design iteration must
traverse a high-dimensional parameter space, carry out
numerous simulations, and finely adjust geometric features
to satisfy spectral and/or wave-front requirements [7]. For
practical devices targeting large apertures and multiple
functionalities, the corresponding computational load may
take days or weeks, even when executed on large clusters
or supercomputers [8]. The resulting limitation discour-
ages the exploration of unconventional materials, multi-
layer stacks, and fully aperiodic layouts. To keep pace with
the burgeoning applications for metasurfaces, new design
paradigms that bypass repeated heavy-duty simulations are
urgently required.

Recent breakthroughs in data-driven modelling offer
a promising alternative route [9]. Once trained on curated
pairs of optical or electromagnetic responses with cor-
responding metasurface geometry, deep neural networks
(DNNs) can predict the optical response of previously
unseen geometries within milliseconds, marking structure
evaluation orders of magnitude faster than that based on
full-wave solvers [10], [11]. Recent works have shown the
potential of DNN-based approaches for metasurface design
[12]-[14]. For instance, Malkiel et al. employed a DNN for
H-shaped plasmonic nanostructure design [15]. An et al.
developed a DNN to predict wideband amplitude and phase
responses of quasi-freeform dielectric metasurfaces [16].
Chen et al. introduced a transformer-based model for both
forward and inverse design of broadband solar metama-
terial absorbers [17]. Moreover, Zhang et al. proposed a
fixed-attention mechanism for the design of high-degree-of-
freedom metamaterials [18].
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Although DNN-based models have demonstrated
impressive accuracy and speed, integrating them into a
metasurface design pipeline is still far from a turnkey
off-the-shelf procedure [19]. Each new optical function
typically requires a new training set, a custom network
topology, and exhaustive hyper-parameter selections. This
typically includes choosing the number of layers and
neurons in each layer, which is an iterative, code-heavy
process driven largely by heuristic intuition rather
than first-principles guidance [20]. To this end, large
language models (LLMs) present a qualitatively different
proposition. LLMs are transformer-based neural networks
that encapsulate billions of parameters in a single,
frozen architecture pre-trained on vast amounts of
natural-language text and code [21]. In this stage, the
model is taught the simple objective of predicting the
next word in a sequence; yet, by doing so at web-scale, it
internalizes syntax, semantics, and a surprising amount
of factual and mathematical structure [22]. Since the
core model is fixed, researchers can simply train the
LLM on task-specific datasets instead of re-designing and
re-training a new network for every new task, thereby
eliminating the laborious network-sizing and hand-tuning
that DNNs demand. These characteristics make LLMs ideal
candidates for enabling efficient design of metasurfaces
with complex structures and layouts that possess various
targeted functionalities.

When domain precision is required, the same model
can be “further trained” in an efficient manner (i.e., fine-
tuned) on a relatively small, task-specific dataset, such as
predicting the transmission spectrum of a metasurface [23],
[24]. In practice, this dataset pairs sequence-based descrip-
tions of each unit cell (geometric parameters, material
indices, lattice spacing, and so on) with descriptions of
its simulated optical response (spectral magnitude, phase,
near-field maps, etc.). This pairing mirrors the input-output
structure of conventional DNNs but represents both geom-
etry and responses in a language-like format amenable to
LLMs. Because LLMs accept byte streams, neither archi-
tectural redesign nor feature engineering is necessary: the
model simply learns the mapping of geometries to responses
in passes. After fine-tuning on a new dataset, which takes
slightly longer than the time taken to train one custom
DNN, the LLMs can predict spectra within seconds, pro-
viding near-real-time feedback during design loops while
removing the code-heavy scaffolding and exhaustive hyper-
parameter sweeps that traditional DNN-based methods
demand. Thus, LLMs promise a “chat-to-chip” route for
modelling metasurfaces. For example, in their pioneering
study Kim et al. fine-tuned Llama [25] for both forward
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prediction and inverse design of all-dielectric metasurfaces
[26], lowering the entry barrier for researchers who lack
machine-learning background. Lu et al. fine-tuned ChatGPT
3.5 on various details of prompts and temperatures for
the design of metamaterials [27], Liu et al. used LLMs for
design recommendation of phosphorescent materials [28],
and, by optimizing and stitching wavelength-scale superpix-
els, Lupoiu et al. introduced a multi-agent LLM framework
paired with a surrogate Maxwell solver that autonomously
designs metasurfaces in near-real time [29]. However, scal-
ing these approaches from parameterized meta-atoms to
arbitrarily shaped metasurfaces is of great importance to
numerous applications but remains largely unexplored [30],
[31]. Token-wise attention is intrinsically one-dimensional,
whereas free-form surfaces require rich spatial reasoning.
Emerging hybrids that couple LLM backbones with graph or
vision transformers, or that embed topology as structured
tokens, may be a possible solution [32]. However, a generally
applicable framework for LLM-accelerated design of com-
plex metasurfaces has yet to be reported, as accuracy of
vision language models (VLMs) still lags behind LLM-level
reliability while their implementation is cost-intensive and
fragile [33].

Here, we present a workflow using LLMSs to acceler-
ate both forward and inverse design of arbitrarily shaped
metasurfaces. We note that, in our study, an “arbitrarily
shaped” meta-atom refers to a planar structure with a non-
canonical or free-form shape, rather than a fully unparam-
eterized one. Although limited to one-dimensional token
streams, our results show that sequence-based LLMs are
capable of capturing the physics required to predict optical
responses for arbitrarily shaped metasurfaces. Also, for the
inverse design section, our workflow addresses the designs
of high-degree-of-freedom, randomly shaped 2D unit cells,
which cannot be solved by existing image-generation or
multimodal LLM approaches. This method eliminates DNN
engineering and therefore further lowers the barrier for
researchers with limited expertise in machine learning.
Finally, cross-model benchmarks that exploit state-of-the-
art LLMs in this design task are provided, establishing ref-
erence baselines to guide future work on LLM-accelerated
photonic design.

2 Methods

Figure 1a outlines the workflow we use to generate
arbitrarily shaped meta-atoms, a successfully verified
parameterization approach adopted from [30]. First,
a 4x4 control-point grid was randomly generated,
where each element ranges within [0, 1]. The grid was
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Figure 1: Mapping arbitrarily shaped metasurface geometries to language sequences and training an LLM for rapid optical prediction. (a) A4 X 4
matrix of a randomly sampled grid of control-points is replicated by four-fold rotational symmetry, interpolated into a 256 X 256 scalar field, binarized
at a fixed threshold of 0.5, and regularised by iterative morphological opening/closing that removes isolated features smaller than 8,192 pixels and
seals internal voids. The resulting binary mask is then extruded into a 200 nm-thick silicon layer on a 1 pm-pitch glass substrate and analysed with
FDTD, establishing paired grid-spectrum data. (b) Fine-tuning and inference process for forward prediction. Each grid-spectrum pair is rewritten as a
natural-language prompt that encodes the control-point grid and a target output that lists the 31 transmission values between 1,050 nm and 1,600 nm.
Moreover, parameter-efficient fine-tuning (LoRA) of a pre-trained LLM minimises cross-entropy between predicted and ground-truth tokens, so that at
inference the model returns an accurate spectrum within seconds from a single grid prompt, eliminating the need for labour-intensive network design.

replicated by a four-fold rotational symmetry, yielding
a 7x7 lattice of control values. Interpolation converts
these discrete values into a 256 X 256 surface. Binarization
at a fixed threshold (¢ =0.5) converts this surface into
a preliminary foreground-background mask. To ensure
the pattern is fabrication-friendly, the mask undergoes
iterative morphological opening and closing until no
further topological changes occur [31]. This regularisation
step eliminates isolated islands, fills holes, and enforces
a minimum feature width and gap size compatible with
standard fabrication processes. The final design is a
1,000 nm X 1,000 nm square unit cell comprising an
arbitrarily shaped silicon pattern (refractive index = 3.5)
generated using this approach sitting on a glass substrate
(refractive index = 1.5).

We generated a dataset of 45,790 metasurface designs
with randomly generated control-point grids illuminated by
a left-handed circularly polarized (LCP) normally incident
wave. These designs were simulated using the commer-
cial software package Lumerical FDTD on a server with
two Intel(R) Xeon(R) Gold 6258R CPUs and 1.5TB mem-
ory. After every simulation, the transmission spectrum was
recorded at 31 uniformly spaced wavelengths from 1,050 nm
to 1,600 nm. The completed dataset was randomly parti-
tioned into training and test sets with a 4:1 ratio, resulting
in 36,632 training samples and 9,158 test samples.

To prepare the geometrical-optical pairs for
the forward-prediction task using LLMs, each 4Xx4
control-point grid is converted into a natural-language
prompt and its 31-element transmission vector into the
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corresponding completion. A typical prompt would be: “We
have a 4-by-4 grid: [[8;, -, 814l, -+ [8415 -, 8a4ll, What is
the transmission spectrum of the metasurface generated
using this grid?” while the target completion would then
be: “The transmission values sampled at 31 evenly spaced
points between 1,050 nm and 1,600 nm for the metasurface
generated using this grid are [t;, ..., ty]”. All numerical
values are rounded to three decimal places, a choice
that is not accuracy-limiting at the error scales considered,
balancing GPU memory usage with predictive accuracy, and
aligns with prior works [26], [27]. All prompts and expected
outputs are tokenised with the same byte-pair encoder
as the base model to ensure vocabulary consistency.
Fine-tuning proceeds by feeding these prompt-completion
pairs to the LLM and minimising the loss between the
predicted tokens and the ground-truth completion, as
illustrated in Figure 1b. This formulation re-casts spectrum
prediction as language-sequence completion, allowing us to
exploit the LLMs’ autoregressive training objective without
architectural modifications.

The LLM implemented in both the forward and inverse
design process is Meta-Llama-3.1-8B-Instruct [25] quantised
to 4 bit weights by Unsloth. This LLM is identical to that
employed by Kim et al. [26], eliminating the need for neu-
ral network engineering. Parameter-efficient adaptation is

FDTD simulated transmission
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realised with low-rank adaptation (LoRA [24]), which injects
low-rank adapters into all projection layers. The entire
workflow is built using open-source libraries including
Pytorch, HuggingFace, and Unsloth. All 7-9B parameter
LLMs are trained on a single NVIDIA RTX 2080 Ti GPU, while
the larger and smaller LLMs used in the benchmarking
process are trained on one NVIDIA L40S GPU. The rank r
and the scaling factor @ were hoth set to 32. Fine-tuning
proceeds for 8 epochs with an effective batch size of 192,
using the AdamW optimiser with an initial learning rate
of 4.0 x 10~* followed by linear decay and the standard
cross-entropy objective for next-token prediction. This setup
resulted in approximately 10 GB of GPU memory usage for
7-9B models, a requirement that is met by most contempo-
rary commercially available consumer graphics cards.

3 Results and discussion

3.1 Forward design

To demonstrate the prediction accuracy, Figure?2 com-
pares the spectra predicted by our fine-tuned Llama-
3.1-8B with FDTD simulation results for four represen-
tative meta-atoms. The orange dashed curves (Llama)
track the blue solid curves (FDTD) almost perfectly across
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Figure 2: Predicted and simulated transmission spectra for four grids from the test set. The corresponding control-point grids and MSE are: (a) ([0.411,
0.795, 0.126, 0.233], [0.876, 0.187, 0.209, 0.911], [0.318, 0.479, 0.998, 0.826], [0.555, 0.820, 0.238, 0.058]), MSE = 7.8 X 10~°. (b) ([0.156, 0.485, 0.350,
0.248], [0.391, 0.476, 0.083, 0.444], [0.041, 0.419, 0.524, 0.511], [0.695, 0.026, 0.690, 0.560]), MSE = 2.6 X 107°. (c) ([0.203, 0.155, 0.608, 0.655], [0.682,
0.541, 0.924, 0.898], [0.660, 0.610, 0.193, 0.065], [0.145, 0.508, 0.538, 0.098]), MSE = 3.6 X 10°. (d) ([0.049, 0.881, 0.405, 0.843], [0.288, 0.836, 0.375,
0.149], [0.736, 0.211, 0.728, 0.012], [0.471, 0.181, 0.914, 0.007]), MSE = 4.1 X 10~°.
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the 1,000-1,600 nm band, faithfully reproducing both
plateaus and sharp resonances. Querying the model is
straightforward: copy and paste the 4 X 4 control-point
matrix into a prompt, as discussed previously, and then
read out the 31-point spectrum returned by the LLM. On a
single RTX 2080 Ti GPU, this prediction takes approximately
2's, about 60 times faster than the corresponding full-wave
simulation on our CPU cluster. Across the entire 9158 sample
test set the mean squared error (MSE) is 3.4 X 10~% when
trained for 8 epochs, matching specialised DNNs reported
in the literature [31], [34]. In other words, a lightly fine-
tuned (i.e., only the number of epochs needs tuning), off-the-
shelf LLM delivers turnkey, high-fidelity forward modelling
without any bespoke network design or hyper-parameter
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sweeps, demonstrating a practical “no code” path to rapid
metasurface prototyping.

Furthermore, to quantify the influence of fine-tuning
epochs, we tested how different training epochs impact
the prediction accuracy. Figure 3a confirms that fine-tuning
length is a minor knob for this prediction task. Specifically,
when the Llama-3.1-8B model is fine-tuned for between 5
and 20 epochs, a typical range for fine-tuning LLMs, its test-
set MSE meanders within 3.4-4.7 X 103, comfortably below
the 5 X 1072 marked by the red dashed line. In contrast, a
hand-built eight-layer fully connected network swings from
a best-case 2.0 X 1073 to 1.78 x 102 after enlarging each
layer from 512 to 895 neurons, marked by the two dark-blue
dashed lines. Custom DNNs can still edge out the LLMs by a
small margin, but only at the cost of exhaustive architecture
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Figure 3: Effect of fine-tuning duration and model size on forward-prediction MSE. (a) Test-set MSE for Llama-3.1-8B versus fine-tuning epochs.
Although the MSE exceeds the 5 x 1073 tolerance line (red dashed line) during epochs 1-4 (grey curve), once fine-tuning reaches epoch 5 the orange
curve remains consistently below this tolerance and only marginally above the 2 X 10~3 benchmark reached by the best hand-tuned eight-layer DNNs
(blue dashed line), indicating that predictive accuracy is largely insensitive to training length within a certain range. (b-d) MSE after eight-epoch LoRA
fine-tuning for open-weight models grouped by size: (b) mid-size checkpoints (7-9B parameters). DS-Llama-8B stands for DeepSeek-distilled

Llama-3.1-8B; (c) large models (> 9B); (d) small models (< 7B).
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searches. Hence, a pragmatic workflow is to deploy LLMs
for rapid evaluation and reserve heavyweight solvers or
customized networks for final, high-precision refinement
stages. We note that the proposed workflow is excitation-
agnostic: adapting to other illumination conditions such as
different polarization or incidence angle simply requires
changing the simulation setup and regenerating the corre-
sponding dataset with no architectural changes required
[35].

However, not all instruction-tuned LLMs are well-
suited for numerical regression. When we fine-tuned Qwen-
3B, a reasoning model, it repeatedly abandoned the target
format and instead produced a verbose diagnostic such as:
“To determine the transmission spectrum of the metasurface
generated using the given 4-by-4 grid, we need to analyze the
optical properties of the grid. Each value in the grid repre-
sents the transmission coefficient for a specific wavelength
or frequency. However, the provided grid does not include
information about the wavelength range or the specific fre-
quencies corresponding to each value. Additionally, the trans-
mission spectrum typically requires information about the
incident light, the material properties, and the geometry of
the metasurface. Without this information, it is not possi-
ble to accurately compute the transmission spectrum. Please
provide additional details about the wavelength range, inci-
dent light parameters, and material properties to proceed
with the calculation.” Other similar reasoning LLMs, such
as Phi-4-Reasoning, Llama-4, gpt-oss, and Gemma-3, exhibit
similar behaviours during our fine-tuning. Such chain-of-
thought digressions reveal that strong conversational priors
can overshadow the supervised objective, prompting the
model to seek more information from the user rather than
produce the requested 31 transmission values. Therefore,
reasoning-centric LLMs may demand additional engineer-
ing before they serve reliably as high-throughput, numeric
predictors in scientific design loops.

3.2 Benchmarking

To assess how sensitive our workflow is to model choice,
we fine-tuned eleven open-weight LLMs spanning three
parameter bands “small” (< 7B), “mid-size” (7-9 B), and
“large” (> 9 B) on the same training-test split and fine-
tuning setup, and summarized the resulting test-set MSEs
in Figure 3b-d. Note that these regions are defined solely
to show the feasibility of our method based on commonly
used consumer-grade GPUs, rather than to align with def-
initions used in the machine learning community. Larger
models are more sample-efficient during fine-tuning [36],
and increasing epochs or fine-tuning data for larger models
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leads to diminishing returns [37]. Thus, the fine-tuning con-
figuration used for mid-sized models is sufficient for other
regions. In the mid-size model regime (Figure 3b), accuracy
generally improves with increasing size but not strictly
monotonically: the 7B Qwen checkpoint reaches 4.0 X 1073,
and the 9B Gemma variant levels off at 2.8 X 10~3, indicat-
ing that entry-level GPUs can deliver spectra of acceptable
fidelity. But Mistral 7B showed better MSE than the 8B Llama
variant, illustrating that architecture and internal design
can outweigh simple parameter count increase. Accord-
ingly, the size-accuracy gains discussed in Figure 3b are
best viewed as a trend rather than a strict rule. The small-
model sweep (Figure 3d) reinforces this point: Gemma-2-3B
achieves 3.4 X 1073, whereas the tiny SmolLM2-0.1 B vari-
ants drift above 14.7 X 10~3. However, scaling further yields
diminishing returns. In particular, enlarging Qwen-2.5 from
7B to 72B shaves only 1.2 X 10~3 off the MSE yet stretches
inference to almost 35 s and consumes the full 48 GB mem-
ory of a single NVIDIA L40S GPU (Figure 3c). Gemma models
rank first or second across all size bands, further suggesting
that architectural priors outweigh raw parameter count in
certain ranges. A plausible reason Gemma advances across
models in our task is its larger, digit-friendly tokenizer,
which represents decimals more regularly. Note that no
deeper architectural tests are investigated here because
the goal of our study is to provide a clear, out-of-the-box
workflow that lets non-Al practitioners accelerate photon-
ics design. Taken together, these benchmarks show that: (i)
model selection can be guided by simple size thresholds
rather than exhaustive hyper-parameter searches: changing
the model size within the LLM family produces only modest
accuracy shifts. In contrast, the DNN baseline shows a much
larger spread across sizes. (ii) Gemma variants currently
offer the best accuracy-to-cost ratio for rapid prototyping,
and (iii) future gains are likely to come from designs that
embed stronger numerical priors or VLMs rather than from
continued parameter scaling alone.

3.3 Inverse design

Inverse metasurface design is fundamentally many-to-one:
distinct geometries produce near-identical spectra, so a
deterministic inverse network receives conflicting labels
and its gradients cancel, stalling training, leading to non-
convergence problems. Conventional remedies such as tan-
dem networks, where an inverse generator is optimized
through a frozen forward model [38], ease convergence but
often collapse to a single prototype [10] and inherit the
surrogate’s biases, thereby limiting design diversity [39].
Leveraging the intrinsic stochasticity of LLMs circumvents
this problem. As sketched in Figure 4a, we encode a 31-point
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Figure 4: LLM-based inverse design. (a) Workflow of the inverse-design stage. A target 31-point transmission spectrum is fed to the fine-tuned
Llama-3.1-8B as a natural-language query of a corresponding grid; the model autoregressively returns a control-point grid that defines a candidate
meta-atom. (b) Representative results for four unseen targets. The orange dashed lines are FDTD simulated results of inverse-designed metasurfaces.
The corresponding inverse-designed grids and MSE are: top-left: ([0.550, 0.073, 0.906, 0.559], [0.324, 0.326, 0.831, 0.708], [0.916, 0.060, 0.517, 0.120],
[0.023, 0, 0.249, 0.263]), MSE = 2.0 X 10~; top-right: ([0.360, 0.903, 0.903, 0.822], [0.419, 0.386, 0.377, 0.962], [0.744, 0.397, 0.391, 0.742], [0.890, 0.048,
0.259, 0.686]), MSE = 1.2 X 10~%; bottom-left: ([0.460, 0.289, 0.513, 0.473], [0.199, 0.641, 0.932, 0.866], [0.757, 0.956, 0.755, 0.282], [0.9120, 0.571, 0.547,
0.876]), MSE = 1.4 X 10~¢; bottom-right: ([0.964, 0.207, 0.656, 0.2871, [0.777, 0.548, 0.192, 0.460], [0.181, 0.202, 0.218, 0.812], [0.303, 0.866, 0.496,
0.582]), MSE = 3.0 X 10~7. The histogram within the top-left figure depicts the inverse-design test-set MSE distribution, showing that over 88 % of
samples achieve an MSE below 1 X 1072,

transmission vector into the prompt “What’s one grid of a  be [[g;, ..., 814l .-, [841 --., §44]]” and parse the tokens
metasurface that can produce the following spectrum: [t,..., into the control-point grids. The deliberate phrasing “one
t3,]”, invite the model to return “One possible grid would possible” signals the multiplicity of valid answers explicitly,
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allowing the fine-tuned Llama-3.1-8B to learn that several
candidates can generate similar spectra. After fine-tuning
for 8 epochs, the Llama proposes a grid in about 0.9 s
on a single RTX 2080 Ti GPU. Figure 4b (and more exam-
ples in Figure S1 of Supplementary Information) demon-
strates four such inverse-designed meta-atoms: their FDTD-
validated spectra (orange dashed) closely track the targets
(blue solid) while their geometries differ markedly, confirm-
ing both fidelity and diversity without the need for tech-
niques typically used in customized DNN approaches to mit-
igate non-convergence problems. Collectively, these results
position LLMs as a fast, versatile alternative for inverse elec-
tromagnetic design. To compare to simple inverse baselines,
we also implement a classical tandem inverse network,
where an inverse network (spectrum to control points) is
trained through a frozen forward network. Architecture
details and representative results are provided in Figure S2
and S3 of Supplementary Information, with detailed obser-
vations from the comparison.

4 Conclusions

In summary, this work demonstrates that one-dimensional
token-wise LLMs can serve as a practical “chat-to-chip”
solution for both forward and inverse design of two-
dimensional arbitrarily shaped metasurfaces without the
need for vision models. Systematic benchmarking across
widely used open-weight LLM checkpoints not only quan-
tifies performance but also supplies a clear reference
for future research. Collectively, these findings lower the
barrier to entry for nanophotonic researchers who lack
machine learning expertise and foreshadow a design
paradigm in which LLMs drive rapid, automated explo-
ration of increasingly complex metasurfaces and multifunc-
tional electromagnetic devices.
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