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Abstract: This work designs a model named POST based
on the vision transformer (ViT) approach. Across single,
double, and even triple lattices, as well as various non-
circular complex hole structures, POST enables prediction
of multiple optical properties of photonic crystal layers in
photonic crystal surface emitting lasers (PCSELs) with high
speed and accuracy, without requiring manual interven-
tion, which serves as a comprehensive surrogate for the
optical field simulation. In the predictions of quality factor
(Q) and surface-emitting efficiency (SE) for PCSEL, the R-
squared values reach 0.909 and 0.779, respectively. Addi-
tionally, it achieves nearly 5,000 predictions per second,
significantly lowering simulation costs. The precision and
speed of POST predictions lay a solid foundation for future
ultra-complex model parameter tuning involving dozens
of parameters. It can also swiftly meet designers’ ad-hoc
requirements for evaluating photonic crystal properties.
The database used for training the POST model is derived
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from predictions of different photonic crystal structures
using the coupled-wave theory (CWT) model. This dataset
will be made publicly available to foster interdisciplinary
research advancements in materials science and computer
science.
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1 Introduction

Photonic crystal surface emitting lasers (PCSELs) are a
novel type of semiconductor lasers that achieve high power,
high beam quality, and low divergence by applying a two-
dimensional photonic crystal layer as optical resonant cav-
ity [1], [2]. The periodic modulation of the refractive index
enables in-plane distributed feedback and vertical radia-
tion, making PCSELs advantageous over traditional VCSELS
in terms of scalability and output coherence [3]-[5]. Conven-
tional modeling techniques for EELs and VCSELSs — such as
Fabry—Pérot cavity analysis or 1D transfer matrix methods
— are efficient for vertically layered structures but fail to
capture the lateral periodicity and complex mode coupling
in PCSELs. Numerical solvers like FDTD (Finite-difference
time-domain) can handle these effects, but their high com-
putational cost (hours per simulation) limits scalability [4],
[6], [7]. Coupled-wave theory (CWT) offers a more efficient
alternative. By expanding electromagnetic fields into spatial
harmonics, CWT accurately models in-plane diffraction and
vertical radiation in photonic crystals [8]-[10]. It provides a
good balance between physical accuracy and computational
speed, making it especially suitable for large-scale PCSEL
design [1].

While CWT is significantly faster than full-wave solvers,
it still requires several minutes per simulation for complex
PCSEL unit cells — especially those with multi-lattice or
irregular hole geometries: Conducting 100,000 simulations
will take nearly a year. Moreover, irregular geometries lead
to the explosion of the number of design variables — poten-
tially dozens or even over one hundred, which increases the
volume of the simulation space exponentially. Optimization
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process on such space always requires millions or even
billions of simulations.

To overcome these challenges, an idea is to establish
a database where a machine learning architecture can
learn the physical principles of PCSEL’s photonic crystal
layers and makes efficient predictions, for example, within
0.001 s per sample. Then over 80 million predictions could
be performed daily to satisfy the requirements of high-
dimensional optimization.

Vision Transformer (ViT) architecture is the go-to solu-
tion for this machine learning problem. Inspired by the suc-
cess of Transformers in natural language processing (NLP)
[11]-[15], researchers began exploring their application to
computer vision. ViT [16] proposed a purely transformer-
based architecture for image classification, challenging the
dominance of convolutional neural networks (CNNs). ViT
divides an image into fixed-size patches (e.g., 16 X 16), treats
each patch as a token, and processes the resulting sequence
using standard transformer mechanisms, mirroring how
sequences of words are handled in NLP. ViT has demon-
strated strong performance on image classification [16],
[17], object detection [18]-[21], and semantic segmenta-
tion [22]-[25], and has been extensively improved through
works such as DeiT [26] and ConViT [27] to enhance its train-
ing efficiency and accuracy. ViT offers advantages like lower
computational cost and compatibility with transformer-
based optimization frameworks.

The swin transformer (SwinT) [28] is one of the ViT
models. It computes self-attention within non-overlapping
local windows, reducing complexity from quadratic to lin-
ear. The introduction of shifted windowing facilitates cross-
window information flow and enhances local context mod-
eling. These architectural innovations make SwinT a versa-
tile backbone for a wide range of vision tasks and are key to
its success in our proposed POST model.

Despite ViT’s advantages, there has been limited appli-
cation of ViT architectures to physical modeling tasks,
particularly in photonics. Accurate modeling of the opti-
cal properties of complex PCSEL photonic crystal layers
remains largely unexplored. This presents a significant
research gap and a promising direction for applying ViT-
based methodologies to advanced physical modeling and
predictive tasks in photonics [29]-[31]. The application of
ViT in photonic crystal design faces challenges: ViT model
has high data requirements, difficulties in visual reasoning
and training stability issues, while design of photonic crystal
requires simultaneously analyzing both the global and local
physical properties effectively.

This work addresses these challenges by employing
the CWT model and the POST model (The overview of this
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Figure 1: Schematic overview. This work replaces PCSEL’s conventional
simulation model with POST neural network prediction model, achieving
a qualitative leap in the speed of design characterization.

work is shown in Figure 1). The POST model handles single-,
double-, and triple-lattice configurations as well as arbitrar-
ily shaped holes with smooth curved contours, supporting
irregular geometries beyond circles or triangles. POST pre-
dicts multiple optical properties efficiently with high accu-
racy, achieving a simulation speed of about 5,000 samples
per second and a training time under 1,000 s per epoch.
POST is based on SwinT [28], a state-of-the-art ViT architec-
ture. The mean squared error of predictions is reduced by
over 50 % compared to previous works, and it surpasses the
prediction accuracy of existing methods with less than 20 %
of the original dataset [32].

2 Results

2.1 Dataset generation

2.1.1 Raw data acquisition via CWT

The epitaxial structure listed in Table 1serves as a represen-
tative baseline for PCSEL design. While the epitaxial config-
uration influences parameters such as the optical Green’s
function and the confinement factor of the photonic crystal
(I'ppc) within the CWT framework, its impact on the overall
device behavior is secondary to the photonic crystal design.
Therefore, the proposed methodology retains broad appli-
cability and can be readily extended to alternative epitaxial
stacks without significant modification.

To evaluate the optical performance of PCSELs, we
adopt the CWT to model the interaction of fundamental
waves within the photonic crystal lattice. By considering
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Table 1: Epitaxial structure of the PCSEL in this work.

Layer Material Thickness  Refractive

(pm) index
Photonic crystal p-GaAs/Air 0.35 3.4826/1
Waveguide p-GaAs 0.08 3.4826
Electron blocking layers  p-AlGaAs 0.025 3.2806
Active region InGaAs/AlGaAs 0.116 3.3944
n-cladding n-AlGaAs 2.11 3.2441
n-substrate n-GaAs - 3.4826

four primary wave components propagating along orthogo-
nal directions, a set of coupled partial differential equations
is established to capture both diffraction feedback and radi-
ation loss mechanisms [33].

Solving this model under appropriate boundary condi-
tions for a finite-size square-lattice photonic crystal allows
us to compute the spatial distribution of optical fields, from
which key performance metrics can be derived. Among
these, two indicators are particularly crucial. Surface-
emitting efficiency (SE) defined as the ratio between the
surface-emitting optical power and the total stimulated
emission power:

SE = Psurface —

P

stim

Q
surface , (1)

Qiotal

where ag e and @, are the surface radiation loss
and total radiation loss of the lasing mode, respectively.
This ratio reflects how effectively the laser extracts optical
energy through vertical radiation and serves as a direct
metric for surface output optimization.

Quality factor (Q) quantifies the ratio of stored optical
energy to energy lost per oscillation cycle, expressed as:

0= 2/

9
Xiotal

v

where a is the lattice constant. A higher Q indicates better
optical confinement and lower lasing threshold.

To ensure consistency across all simulated designs, the
Bragg wavelength was fixed at 980 nm by adjusting the pho-
tonic crystal lattice constant accordingly, resulting in neg-
ligible wavelength variation across the dataset. Similarly,
because the structure of the epitaxial layer (Table 1) remains
unchanged for all samples, the energy confinement factor
does not vary significantly. Furthermore, the analysis specif-
ically targets the fundamental I'®-point band-edge mode of
the photonic band structure: Variations in other bands or
off-I'® modes are beyond the scope of this work. Therefore,
focusing on Q and SE as prediction targets was a deliberate
first step, since these quantities are well defined within the
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CWT framework and directly reflect device efficiency and
feedback strength in the design stage.

Other important figures of merit in PCSEL design, such
as device size and the accuracy of the numerical solution to
differential equations, were intentionally fixed in this study
to avoid introducing additional degrees of freedom that
would obscure the model’s evaluation. Nevertheless, POST is
inherently data-driven and architecture-agnostic. Provided
that the corresponding training data are available, POST can
be readily extended to predict emission wavelength shifts,
confinement factors under different epitaxial stacks, device
size or even full band diagrams. This extensibility ensures
that the proposed framework is not limited to Q and SE,
but can evolve into a comprehensive predictive tool for
a broader range of PCSEL performance metrics in future
work.

2.1.2 Data preprocessing

The original dataset used in this work contains 25,000 sam-
ples, which we divided into training and test sets at a 4:1
ratio. Since the actual device consists of tens of thousands
of lattices arranged in a periodic square matrix, flipping
or rotating a single lattice’s design pattern theoretically
does not affect the final PCSEL properties. Furthermore,
we observed that even translating patterns, which alter the
edge structures of the periodic square matrix, has negligible
impact on overall PCSEL performance. The accompanying
Figure 2 demonstrates this phenomenon using a randomly
generated device pattern subjected to flipping, rotation, and
translation operations followed by CWT simulations.

The histograms in Figure 2 show highly consistent sim-
ulation results in all transformations, with Q variations sig-
nificantly below 1 and SE variations well under 0.1 %. These
results not only confirm the pattern-invariant nature of pho-
tonic crystal properties but also validate the reliability of the
numerical solution component in our CWT model, partic-
ularly its convergence characteristics in the non-analytical
portion of the calculations.

Physically, the invariance of Q and SE under transla-
tion arises because a rigid lateral shift of the pattern only
introduces a phase change in the Fourier components of
the permittivity distribution, without affecting their mag-
nitudes. In the CWT formulation, the key coupling coeffi-
cients (k; ;) that determine feedback and radiation are pro-
portional to the magnitude of these Fourier terms and the
vertical field profile. Thus, a mere translation, which shifts
the phase of each Fourier coefficient &; ;, leaves the mag-
nitude of x;; unchanged. Consequently, the cavity’s mode
profile and thus edge losses remain virtually the same under
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Figure 2: Flip-rotate-translate pattern effects simulation. (a) A randomly generated unit cell pattern of the photonic crystal. (b) The first row shows
eight variants of the lattice structure in subfigure after flipping and rotation. Rows two to nine show sixty-four additional patterns generated by
horizontal or vertical translation of the original structure. (c-d) Simulation results of coupled-wave theory model for the photonic crystal lattice
structure shown in b after flipping, rotation, and translation. The upper and lower histograms show the distributions of simulated Q and SE,

respectively.

translation, explaining why the Q and SE are insensitive to
such translations.

Therefore, the dataset size can be expanded using the
methods mentioned above to improve prediction accuracy.
The related research is discussed in Section 2.3.

The choice of prediction targets is also investigated. SE
naturally ranges between 0 and 1 with relatively uniform
distribution (Figure 3). Results show that raw SE values
achieve the highest prediction accuracy without prepro-
cessing (Table 2). In contrast, the Q factor can vary dra-
matically from hundreds to hundreds of thousands. Taking
its logarithm yields a more uniform distribution (Figure 3)
and maximizes prediction accuracy (Table 2). Balanced sam-
ple distributions across all value ranges enable the neural

Table 2: Accuracy versus optimization targets.

Target R? Target R?
SE 0.779 Q 0.636
Std SE 0.775 Std Q 0.818
log Q 0.909
Stdlog Q 0.865

This table presents POST’s R? accuracy under different optimization
targets. StdQ/StdSE: linear rescaling of all Q/SE values to [0, 1] range;
Stdlog Q: logarithmic transformation of Q values followed by [0, 1]
rescaling.

network to better distinguish between different photonic
crystal designs.

> 5000 1
&
5
g 2500 |
=
01— . . ) . .
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Figure 3: Distributions of data. The histograms show the distributions of log Q and SE for all samples in the original dataset.
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2.2 POST backbone architecture

2.2.1 Encoding module based on Swin Transformer Block

To enhance the extraction of feature representations
from the single-channel input image I, we used a Swin
Transformer Block-based encoder. The resulting multi-
dimensional representation Z, is subsequently passed
through an output layer to produce the final prediction
results. The overall formulation of the encoding process is
expressed as:

Ie RHXWXl. (3)

SwinTransformer(I) = Z,,

In accordance with the requirements of our task, we
adopted the architecture illustrated in Figure 4(a). The input
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which is treated as an individual token. These tokens are
subsequently projected to a predefined feature dimension
C through a linear embedding layer, enabling the subse-
quent transformer layers to more effectively capture rele-
vant features.

In the proposed architecture, the input tokens are ini-
tially passed through a linear embedding layer and subse-
quently processed by a sequence of modified self-attention
modules, known as swin transformer block. These modules
operate within non-overlapping local windows to capture
spatially localized features while maintaining the number
of tokens. We define this initial structure — comprising the
linear embedding and swin transformer block — as Stage
1, which serves as the basis for subsequent hierarchical

image is first divided into non-overlapping patches, each of processing.
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Figure 4: POST network structure. Graph (a) shows the architecture of the SwinT encoder. The input single-channel image is partitioned into patches,
linearly embedded, then processed through four hierarchical stages to produce the final multi-dimensional representation Z,. Graph (b) displays two
consecutive swin transformer stacks. W-MSA and SW-MSA refer to multi-head self-attention modules with regular and shifted window configurations.
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To generate more efficient hierarchical representa-
tions, SwinT incorporates a patch merging mechanism [34].
As the network deepens, the number of tokens is pro-
gressively reduced through these patch merging layers,
thereby improving the model’s computational efficiency.
For instance, in Stage 2, features from each group of 2 X 2
neighboring patches are concatenated into a single vector
of dimension 4C, followed by a linear layer that projects it
down to 2C dimensions. This operation reduces the tokens
count to one-fourth of the previous stage, effectively fusing
local information for subsequent processing. The resulting
representation, with a resolution of %x %, is then pro-
cessed by additional swin transformer block.

This design is extended to Stage 3 and Stage 4, where

the resolutions are further reduced to f—ex % and %x

3—”; respectively, resulting in progressively abstract multi-
dimensional representations. The complete formulation of
the process is provided in Supplementary Information.

2.2.2 Swin Transformer Block

SwinT enhances the model’s capacity for global information
integration by incorporating a shifted window mechanism
[34] into its architecture and constructing the swin trans-
former block, as illustrated in Figure 4(a). This module is
a modification of the standard transformer block, in which
the conventional multi-head self-attention (MSA) is replaced
with localized attention mechanisms operating within regu-
lar and shifted windows — referred to as window-based MSA
(W-MSA) and shifted window MSA (SW-MSA), respectively.
This design facilitates cross-window information while sig-
nificantly reducing computational complexity. The forward
propagation of two consecutive swin transformer stacks is
depicted in Figure 4(b) and the detailed algorithmic proce-
dures are provided in Supplementary Information.

Specifically, each swin transformer block in the archi-
tecture comprises two primary components: a window-
based self-attention module (either W-MSA or SW-MSA),
and a two-layer multilayer perceptron (MLP) equipped with
the GELU activation function. Layer normalization (LN) is
applied before each submodule, while residual connections
are employed following each submodule to enhance train-
ing stability in deep networks.

2.3 Training process

Data augmentation through geometric transformations of
device patterns proves essential in preprocessing. A single
simulation sample can generate 144 valid training samples
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via 4 flips, 4 rotations, and 3 translations, effectively expand-
ing the original 20,000-sample training set to nearly 3 mil-
lion samples while significantly reducing additional dataset
generation costs. This operation substantially enhances pre-
diction accuracy because neural networks struggle to inher-
ently learn the rotational, reflectional, and translational
symmetry properties of PCSEL photonic crystal layers from
individual unit cells alone.

To validate this approach, we systematically evalu-
ated POST model performance with different augmenta-
tion strategies (Table 3). The first two rows demonstrate
improved Q-factor and SE prediction accuracy through
rotation and flipping. While increasing translation itera-
tions revealed oscillating accuracy patterns — with odd-
numbered translations extracting more meaningful fea-
tures — excessive translations may cause R* degradation
due to premature overfitting. Notably, since training set
size grows quadratically with translation iterations, we ulti-
mately selected 4 flips, 4 rotations, and 3 translations to
optimally balance training efficiency and model precision.
It should be noted that “1 translation” here means no addi-
tional translation operation is performed.

For the loss function, we employed the conventional
mean squared error (MSE) (Equation (4)), while adopt-
ing the R* metric (Equation (5)) as our primary evalua-
tion strategy to intuitively assess prediction accuracy and
compare model performance between different photonic
crystal properties. The R? metric provides an interpretable
scale where: R> = 0 indicates that the model’s predic-
tions are no better than simply using the mean of the
property values, while R* = 1 represents perfect prediction
accuracy. Higher R? values correspond to better predictive
performance.

Table 3: Data augmentation boosts accuracy.

Rotations & Translation R? R? Speed
flips (s) (SE) (log Q) (s/epoch)
No 1 0.473 0.649 13
Yes 1 0.654 0.845 102
Yes 2 0.665 0.855 407
Yes 3 0.779 0.909 919
Yes 4 0.650 0.851 1,623
Yes 5 0.775 0.913 2,552
Yes 6 0.784 0.907 3,678

The table compares POST’s performance across different data
augmentation strategies. The combination of 4 flips, 4 rotations, and
6 translations yields the best SE accuracy (R> = 0.784), while using

5 translations achieves the highest log Q accuracy (R? = 0.913).
Translation = 1 means no additional translation operation is applied.
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where C* = %2?21( y; — y)?is a dataset-dependent constant.

2.4 Model performance analysis

2.4.1 Comparison to other neuron networks

A performance comparison of multiple existing neural net-
works is provided in Table 4 [26], [27], [35]-[37]. The evalua-
tion includes not only traditional deep learning models (e.g.,
FCNN, CNN, and AlexNet) but also various ViT architectures,
all tested on the same dataset. The table reveals that POST
achieves the highest accuracy (highest R?) in predicting both
log Q and SE. For log Q prediction, POST attains an R* of
0.909, outperforming the second-tier models CaiT (0.883),
ConViT (0.882), and LeViT (0.881). Similarly, in SE prediction,
POST leads with an R? of 0.779, surpassing CaiT (0.763). These
results indicate that POST’s architectural design excels
at processing smaller-scale images and more accurately
captures the physical features of photonic crystal lattice

Table 4: Comparison in accuracy and speed.

Neuron Train speed Predict speed R? of test
network (s) (s) set
log Q
FCNN 95 0.15 0.749
CNN 95 0.18 0.706
AlexNet [35] 492 0.51 0.817
DeiT-Ti [26] 433 0.52 0.869
CaiT-S24 [36] 1,630 1.69 0.883
ConViT-Ti [27] 743 0.92 0.882
LeViT-128s [37] 687 0.84 0.881
POST (this work) 918 1.08 0.909
SE
FCNN 80 0.16 0.570
CNN 95 0.18 0.545
AlexNet [35] 492 0.51 0.667
DeiT-Ti [26] 432 0.52 0.749
CaiT-S24 [36] 1,621 1.70 0.763
ConViT-Ti [27] 743 0.91 0.731
LeViT-128s [37] 683 0.84 0.722
POST (this work) 920 1.09 0.779

The tables compare the prediction performance of different neural
networks for two key PCSEL properties (log Q and SE), evaluating three
critical metrics: training speed (seconds/epoch), prediction throughput
(seconds/5 x 103 samples), and test set R? scores.
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structures, whereas most ViT models exhibit significant
advantages only when handling images larger than 100 pix-
els. Nevertheless, the second-tier ViT models still surpass the
milestone model AlexNet in prediction accuracy, highlight-
ing the overall superiority of ViT architectures.

It can be observed that traditional small-scale convo-
lutional neural networks (CNNs) exhibit slightly lower pre-
dictive performance than fully connected neural networks
(FCNNs). This is attributed to the fact that small CNNs, rely-
ing on convolutional mechanisms, can only identify local
correlations between pixels and their neighbors, failing to
extract global information. In contrast, analyzing the opti-
cal field of photonic crystals requires consideration of the
entire unit cell structure.

While POST requires greater computational resources
than lightweight models, its speed of > 1 X 10® samples/day
and superior precision make it fully capable of supporting
more optimization applications.

2.4.2 Comparison between predictions and simulations

POST achieves prediction accuracies (R?) of 0.909 for log Q
and 0.779 for SE in PCSEL modeling (shown in Figure 5).
It typically reaches peak accuracy within fifteen epochs,

1.0 1.0
0.8 0.8
o
0.6 206
p =
0.4 B 04
= o
— ~ Y
024|— Train R° 02 7
4
0.0 0.0
0 20 0.0 0.5 1.0
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Y 2
; B 04
L
& ;
0.2 —— Train R? 02 ,,»'
4
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0 10 20 0.0 0.5 1.0
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Figure 5: Training dynamics and predictive performance. Graphs (a) and
(c) show the training curves of the POST’s predictions for log Q and SE,
respectively. The blue line (Train R?) and red line (Test R?) indicate

the goodness-of-fit of the model on the training set and test set as the
training epochs progress. Graphs (b) and (d), respectively, display scatter
plots of the model’s predictive performance for log Q and SE. The scatter
points compare the model’s predicted values with the true values, while
the black dashed line represents the ideal fit line used to evaluate
prediction accuracy.
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requiring only about 3 h of training time, followed by a slight
overfitting trend that leads to a minor decline in test set
performance.

The scatter plot visually confirms that POST’s predic-
tion accuracy for log Q is significantly higher than for SE.
This discrepancy stem from the more complex partial differ-
ential numerical solving process involved in SE calculations.

2.4.3 Accuracy with limited training samples

For many simulation software tools, obtaining 25,000 raw
data points remains challenging, especially when the input
patterns for simulation modules have higher pixel density
— simulation time costs increase quadratically. If the simu-
lation input involves 3D structural data, the cost escalates
cubically. Therefore, the learning performance of different
neural networks under reduced raw data volumes (shown
in Figure 6) is investigated, where the horizontal axis repre-
sents the proportion of the new training set relative to the
original training set.

It can be observed that POST consistently maintains
the strongest predictive capability across all dataset sizes
and achieves R* accuracies of > 0.8 for log Q and > 0.6
for SE with only 20 % of the original training set. Addi-
tionally, we note that POST’s prediction accuracy for log Q
converges with only about 60 % of the original training set,
whereas its accuracy for SE may require a dataset larger
than the original training set to converge. This also suggests
that predicting the SE parameter is more complex than
predicting Q.

Furthermore, training results with 20 % of the original

training set in Figure 6 (R%, = 0.607 and RIZOg o = 0:813)

are worse than those without translation in Table 3 (R§E
= 0.654 and RlzOg 0= 0.845). However, the former involved
three additional translations in both horizontal and verti-

cal directions, resulting in an actual training data volume
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that was significantly larger than the latter. This suggests
that the augmented samples generated through translation
carry less additional information compared to entirely new
samples.

2.4.4 Fourier-space feature attribution via SHAP
analysis

To further investigate whether POST has internalized the
physical priors embedded in CWT, we conduct a post
hoc interpretability study using SHAP (SHapley additive
explanations) [38], [39]. Unlike traditional saliency-based
methods that rely on image-space gradients, this analysis
evaluates the relative importance of Fourier components
in predicting optical properties of PCSEL structures. Specif-
ically, we apply a 2D discrete Fourier transform (DFT) to
the photonic crystal unit cell and analyze the real and
imaginary parts of selected Fourier coefficients as input
features.

For a 32 X 32 dielectric constant distribution represent-
ing a photonic crystal pattern, we perform a 2D Fourier
transform and extract a subset of its Hermitian-symmetric
coefficients according to a triangular masking rule, as illus-
trated in Figure 2. This results in 512 unique complex-valued
coefficients, each decomposed into real and imaginary parts
and concatenated to form a 1,024-dimensional input vector.
Each index (m,n) corresponds to a Fourier mode &, , =

ﬁ,n + igrln,n'

To quantify the contribution of each Fourier compo-
nent to the model’s predictions, we apply the Permutation
SHAP algorithm with 50 background samples and 100 eval-
uation samples drawn from the test dataset. The prediction
function internally recovers the spatial-domain input from
each perturbed Fourier vector, enabling seamless compat-
ibility with the original POST architecture trained in the
spatial domain.
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Figure 6: Accuracy versus training set size. The line chart compares the prediction accuracy (measured by R?) of seven neural networks across varying
training set sizes. The horizontal axis represents the proportion of the training set used, relative to the original size of 20,000 samples (80 % of the total
25,000 samples). The reduced training set is then augmented through 4 flips, 4 rotations, and 3 translations before training. The vertical axis shows

the corresponding R? accuracy for each model.
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the relative magnitude of the coefficient, with red and blue representing high and low values, respectively. The violin plot contours represent

the variability and concentration of each coefficient’s contribution. Positive SHAP values suggest a positive influence on the predicted outcome,

while negative values imply a suppressive effect.

Figure 7 shows the SHAP violin plots for the top 15 most
influential Fourier features for both SE and log Q. The most
impactful coefficients are concentrated near the center of
the Fourier domain, reflecting their critical roles in deter-
mining photonic crystal performance.

In particular, éfi , corresponds to the average refractive
index of the photonic crystal layer. A higher value typi-
cally indicates a lower filling factor, meaning more high-
index material is present. This leads to weaker photonic
crystal modulation but stronger waveguiding effect, which
enhances vertical optical confinement and contributes pos-
itively to Q.

Coefficients such as &f) and &7, are directly related to
vertical radiation coupling. Deviations of their values from
zero increase surface emission efficiency (SE) by enhancing
out-of-plane leakage. However, since this also introduces
greater radiation loss, it tends to reduce Q.

In contrast, e;‘fm governs the strength of in-plane two-
dimensional diffraction, contributing to lateral distributed
feedback. A larger magnitude of this coefficient suggests
stronger horizontal coupling, which reinforces resonant
feedback and increases Q.

Although the top-ranked Fourier features differ slightly
between SE and log Q, substantial overlap exists in high-
impact modes. This indicates that both performance met-
rics are shaped by a common set of structural features,
especially those affecting radiative loss, confinement, and
feedback within the photonic crystal.

According to the 3D-CWT framework [40], the radiation
constant o and thus the Q-factor of the lasing mode depend

explicitly on three quantities: the non-Hermitian coupling
coefficient u, and the real and imaginary parts (R, I) of the
effective Hermitian coupling (x;;, + k,_)e . Specifically,

~ 2r/a __ M p
ery T arEh ©
where a is the lattice constant. The coupling coefficients «;,
and «,;,_ are positive correlated with the Fourier coeffi-
cients & _; (or £_;4) and &, (or &;,), respectively. There-
fore, the Q-factor is highly sensitive to the magnitudes of
&1 and &, . This theoretical insight aligns well with the
SHAP analysis, which identifies 51_*1’1 can significantly influ-
ence Q predictions.

It should be noted that the ultimate performance of
a PCSEL is governed by the combined action of Hermitian
couplings and non-Hermitian coupling [40]. In this context,
our SHAP analysis does not aim to replace the underly-
ing physical derivations, but rather to evaluate the inter-
pretability of POST. By highlighting that the most influen-
tial Fourier components align with those known to con-
trol (R,I, u) in coupled-wave theory, SHAP provides evi-
dence that POST has internalized meaningful physical pri-
ors, thereby enhancing trust in the model’s predictions.

2.5 Conclusions

The authors employed a novel neural network, POST, to
predict the photonic crystal simulation results of the CWT
model. This approach enables fully automated and highly
accurate predictions across single, double, and even triple
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lattices, as well as various non-circular complex hole struc-
tures. It can complete nearly 10,000 predictions in just 2 s,
with a mean squared error less than 50 % of previous simi-
lar work. Moreover, using only 20 % of the original dataset, it
achieves prediction accuracy surpassing prior studies. And
SHAP analysis confirms that the model prioritizes physically
meaningful Fourier components indicating alignment with
CWT theory.

These results demonstrate that POST not only acceler-
ates PCSEL evaluation but also captures key physical prin-
ciples, making it a promising tool for future Al-assisted
photonic device design. The dataset used will be released to
support broader research efforts.

Looking forward, an important extension of this work
isto validate and retrain POST on more comprehensive data
sources beyond CWT. Because POST’s vision-transformer
architecture is data-driven and not tied to a specific physics
model, it can in principle be re-trained or fine-tuned using
full-wave simulation data (e.g., FDTD or FEM (Finite element
method) results such as threshold mode-spacing and far-
field beam quality) or even experimental measurements.
This architectural flexibility means that POST could serve
as a high-speed surrogate for diverse modeling approaches,
bridging the gap between analytical approximations and
real-world device behavior.

3 Methods

3.1 CWT-based dataset generation

The optical properties of PCSELs were simulated using a
custom three-dimensional coupled-wave theory (3D-CWT)
solver implemented in Python. The model accounts for both
in-plane diffraction and vertical radiation loss, using up to
441 Fourier harmonics to ensure numerical convergence.
For each PCSEL configuration, SE and log Q were computed.
The refractive indices used in the simulations are listed
in Table 1. The photonic crystal cell was discretized on a
32 x 32 grid, and simulations were repeated for over 25,000
unique photonic crystal geometries. The simulated PCSEL
devices consist of a finite-size photonic crystal pattern of
200 X 200 pm. The finite-size photonic crystal is discretized
to a 17 x 17 grid for CWT calculation, where the underlying
partial differential equations are mathematically solved by
the FEM method.

3.2 Neural network model: POST

The POST model is based on the SwinT architecture
and was implemented using PyTorch. The model takes a

DE GRUYTER

single-channel 32 X 32 real-space dielectric pattern as input
and passes it through four hierarchical self-attention stages.
For training, we used an Adam optimizer with a learning
rate of 10~* and batch size of 64. Separate models were
trained for SE and log Q using mean squared error loss.
Training and evaluation were performed on a single NVIDIA
RTX 3070 GPU.

Although POST is trained using real-space dielectric
patterns, an alternative approach is to directly use Fourier
coefficients as model input. Fourier-space features naturally
encode Bragg scattering and mode coupling information,
providing a physically transparent representation. In pre-
liminary tests, we found such Fourier-based inputs to be
effective in reproducing device behavior [32]. Nevertheless,
we intentionally selected real-space images for the present
work. This vision-based representation enables POST to
scale to arbitrary geometries or full-wave simulation and to
exploit state-of-the-art computer vision architectures such
as the swin transformer, which are optimized for spatial cor-
relation learning. As a result, real-space inputs offer greater
flexibility and generalizability for practical PCSEL design
automation, while Fourier-space features remain a promis-
ing complementary representation for future extensions.

3.3 SHAP analysis in the Fourier domain

To interpret the model’s prediction behavior, we used the
PermutationExplainer from the SHAP Python library [39].
SHAP values were computed in the Fourier domain using
50 background samples and 100 test samples. The model’s
internal prediction logic includes inverse Fourier recovery
to spatial domain before inference. Violin plots of SHAP
values (Figure 7) were used to identify the most influential
modes for SE and log Q.
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