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Abstract: This work designs a model named POST based

on the vision transformer (ViT) approach. Across single,

double, and even triple lattices, as well as various non-

circular complex hole structures, POST enables prediction

of multiple optical properties of photonic crystal layers in

photonic crystal surface emitting lasers (PCSELs) with high

speed and accuracy, without requiring manual interven-

tion, which serves as a comprehensive surrogate for the

optical field simulation. In the predictions of quality factor

(Q) and surface-emitting efficiency (SE) for PCSEL, the R-

squared values reach 0.909 and 0.779, respectively. Addi-

tionally, it achieves nearly 5,000 predictions per second,

significantly lowering simulation costs. The precision and

speed of POST predictions lay a solid foundation for future

ultra-complex model parameter tuning involving dozens

of parameters. It can also swiftly meet designers’ ad-hoc

requirements for evaluating photonic crystal properties.

The database used for training the POST model is derived
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from predictions of different photonic crystal structures

using the coupled-wave theory (CWT) model. This dataset

will be made publicly available to foster interdisciplinary

research advancements in materials science and computer

science.
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1 Introduction

Photonic crystal surface emitting lasers (PCSELs) are a

novel type of semiconductor lasers that achieve high power,

high beam quality, and low divergence by applying a two-

dimensional photonic crystal layer as optical resonant cav-

ity [1], [2]. The periodic modulation of the refractive index

enables in-plane distributed feedback and vertical radia-

tion, making PCSELs advantageous over traditional VCSELs

in terms of scalability and output coherence [3]–[5]. Conven-

tional modeling techniques for EELs and VCSELs – such as

Fabry–Pérot cavity analysis or 1D transfer matrix methods

– are efficient for vertically layered structures but fail to

capture the lateral periodicity and complex mode coupling

in PCSELs. Numerical solvers like FDTD (Finite-difference

time-domain) can handle these effects, but their high com-

putational cost (hours per simulation) limits scalability [4],

[6], [7]. Coupled-wave theory (CWT) offers a more efficient

alternative. By expanding electromagnetic fields into spatial

harmonics, CWT accurately models in-plane diffraction and

vertical radiation in photonic crystals [8]–[10]. It provides a

good balance between physical accuracy and computational

speed, making it especially suitable for large-scale PCSEL

design [1].

While CWT is significantly faster than full-wave solvers,

it still requires several minutes per simulation for complex

PCSEL unit cells – especially those with multi-lattice or

irregular hole geometries: Conducting 100,000 simulations

will take nearly a year. Moreover, irregular geometries lead

to the explosion of the number of design variables – poten-

tially dozens or even over one hundred, which increases the

volume of the simulation space exponentially. Optimization
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process on such space always requires millions or even

billions of simulations.

To overcome these challenges, an idea is to establish

a database where a machine learning architecture can

learn the physical principles of PCSEL’s photonic crystal

layers and makes efficient predictions, for example, within

0.001 s per sample. Then over 80 million predictions could

be performed daily to satisfy the requirements of high-

dimensional optimization.

Vision Transformer (ViT) architecture is the go-to solu-

tion for this machine learning problem. Inspired by the suc-

cess of Transformers in natural language processing (NLP)

[11]–[15], researchers began exploring their application to

computer vision. ViT [16] proposed a purely transformer-

based architecture for image classification, challenging the

dominance of convolutional neural networks (CNNs). ViT

divides an image into fixed-size patches (e.g., 16 × 16), treats

each patch as a token, and processes the resulting sequence

using standard transformer mechanisms, mirroring how

sequences of words are handled in NLP. ViT has demon-

strated strong performance on image classification [16],

[17], object detection [18]–[21], and semantic segmenta-

tion [22]–[25], and has been extensively improved through

works such as DeiT [26] and ConViT [27] to enhance its train-

ing efficiency and accuracy. ViT offers advantages like lower

computational cost and compatibility with transformer-

based optimization frameworks.

The swin transformer (SwinT) [28] is one of the ViT

models. It computes self-attention within non-overlapping

local windows, reducing complexity from quadratic to lin-

ear. The introduction of shifted windowing facilitates cross-

window information flow and enhances local context mod-

eling. These architectural innovations make SwinT a versa-

tile backbone for a wide range of vision tasks and are key to

its success in our proposed POST model.

Despite ViT’s advantages, there has been limited appli-

cation of ViT architectures to physical modeling tasks,

particularly in photonics. Accurate modeling of the opti-

cal properties of complex PCSEL photonic crystal layers

remains largely unexplored. This presents a significant

research gap and a promising direction for applying ViT-

based methodologies to advanced physical modeling and

predictive tasks in photonics [29]–[31]. The application of

ViT in photonic crystal design faces challenges: ViT model

has high data requirements, difficulties in visual reasoning

and training stability issues,while design of photonic crystal

requires simultaneously analyzing both the global and local

physical properties effectively.

This work addresses these challenges by employing

the CWT model and the POST model (The overview of this

Figure 1: Schematic overview. This work replaces PCSEL’s conventional

simulation model with POST neural network prediction model, achieving

a qualitative leap in the speed of design characterization.

work is shown in Figure 1). The POSTmodel handles single-,

double-, and triple-lattice configurations as well as arbitrar-

ily shaped holes with smooth curved contours, supporting

irregular geometries beyond circles or triangles. POST pre-

dicts multiple optical properties efficiently with high accu-

racy, achieving a simulation speed of about 5,000 samples

per second and a training time under 1,000 s per epoch.

POST is based on SwinT [28], a state-of-the-art ViT architec-

ture. The mean squared error of predictions is reduced by

over 50 % compared to previous works, and it surpasses the

prediction accuracy of existing methods with less than 20 %

of the original dataset [32].

2 Results

2.1 Dataset generation

2.1.1 Raw data acquisition via CWT

The epitaxial structure listed in Table 1 serves as a represen-

tative baseline for PCSEL design. While the epitaxial config-

uration influences parameters such as the optical Green’s

function and the confinement factor of the photonic crystal

(ΓPhC) within the CWT framework, its impact on the overall

device behavior is secondary to the photonic crystal design.

Therefore, the proposed methodology retains broad appli-

cability and can be readily extended to alternative epitaxial

stacks without significant modification.

To evaluate the optical performance of PCSELs, we

adopt the CWT to model the interaction of fundamental

waves within the photonic crystal lattice. By considering
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Table 1: Epitaxial structure of the PCSEL in this work.

Layer Material Thickness

(μm)

Refractive

index

Photonic crystal p-GaAs/Air 0.35 3.4826/1

Waveguide p-GaAs 0.08 3.4826

Electron blocking layers p-AlGaAs 0.025 3.2806

Active region InGaAs/AlGaAs 0.116 3.3944

n-cladding n-AlGaAs 2.11 3.2441

n-substrate n-GaAs – 3.4826

four primary wave components propagating along orthogo-

nal directions, a set of coupled partial differential equations

is established to capture both diffraction feedback and radi-

ation loss mechanisms [33].

Solving this model under appropriate boundary condi-

tions for a finite-size square-lattice photonic crystal allows

us to compute the spatial distribution of optical fields, from

which key performance metrics can be derived. Among

these, two indicators are particularly crucial. Surface-

emitting efficiency (SE) defined as the ratio between the

surface-emitting optical power and the total stimulated

emission power:

SE = Psurface
Pstim

= 𝛼surface

𝛼total

, (1)

where 𝛼surface and 𝛼total are the surface radiation loss

and total radiation loss of the lasing mode, respectively.

This ratio reflects how effectively the laser extracts optical

energy through vertical radiation and serves as a direct

metric for surface output optimization.

Quality factor (Q) quantifies the ratio of stored optical

energy to energy lost per oscillation cycle, expressed as:

Q = 2𝜋∕a
𝛼total

, (2)

where a is the lattice constant. A higher Q indicates better

optical confinement and lower lasing threshold.

To ensure consistency across all simulated designs, the

Bragg wavelength was fixed at 980 nm by adjusting the pho-

tonic crystal lattice constant accordingly, resulting in neg-

ligible wavelength variation across the dataset. Similarly,

because the structure of the epitaxial layer (Table 1) remains

unchanged for all samples, the energy confinement factor

does not vary significantly. Furthermore, the analysis specif-

ically targets the fundamental Γ(2)-point band-edge mode of

the photonic band structure: Variations in other bands or

off-Γ(2) modes are beyond the scope of this work. Therefore,

focusing on Q and SE as prediction targets was a deliberate

first step, since these quantities are well defined within the

CWT framework and directly reflect device efficiency and

feedback strength in the design stage.

Other important figures of merit in PCSEL design, such

as device size and the accuracy of the numerical solution to

differential equations, were intentionally fixed in this study

to avoid introducing additional degrees of freedom that

would obscure themodel’s evaluation.Nevertheless, POST is

inherently data-driven and architecture-agnostic. Provided

that the corresponding training data are available, POST can

be readily extended to predict emission wavelength shifts,

confinement factors under different epitaxial stacks, device

size or even full band diagrams. This extensibility ensures

that the proposed framework is not limited to Q and SE,

but can evolve into a comprehensive predictive tool for

a broader range of PCSEL performance metrics in future

work.

2.1.2 Data preprocessing

The original dataset used in this work contains 25,000 sam-

ples, which we divided into training and test sets at a 4:1

ratio. Since the actual device consists of tens of thousands

of lattices arranged in a periodic square matrix, flipping

or rotating a single lattice’s design pattern theoretically

does not affect the final PCSEL properties. Furthermore,

we observed that even translating patterns, which alter the

edge structures of the periodic squarematrix, has negligible

impact on overall PCSEL performance. The accompanying

Figure 2 demonstrates this phenomenon using a randomly

generated device pattern subjected to flipping, rotation, and

translation operations followed by CWT simulations.

The histograms in Figure 2 show highly consistent sim-

ulation results in all transformations, with Q variations sig-

nificantly below 1 and SE variations well under 0.1 %. These

results not only confirm thepattern-invariant nature of pho-

tonic crystal properties but also validate the reliability of the

numerical solution component in our CWT model, partic-

ularly its convergence characteristics in the non-analytical

portion of the calculations.

Physically, the invariance of Q and SE under transla-

tion arises because a rigid lateral shift of the pattern only

introduces a phase change in the Fourier components of

the permittivity distribution, without affecting their mag-

nitudes. In the CWT formulation, the key coupling coeffi-

cients (𝜅 i, j) that determine feedback and radiation are pro-

portional to the magnitude of these Fourier terms and the

vertical field profile. Thus, a mere translation, which shifts

the phase of each Fourier coefficient 𝜉i, j, leaves the mag-

nitude of 𝜅 i, j unchanged. Consequently, the cavity’s mode

profile and thus edge losses remain virtually the sameunder
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(a) (b)

(c)

(d)

Figure 2: Flip-rotate-translate pattern effects simulation. (a) A randomly generated unit cell pattern of the photonic crystal. (b) The first row shows

eight variants of the lattice structure in subfigure after flipping and rotation. Rows two to nine show sixty-four additional patterns generated by

horizontal or vertical translation of the original structure. (c–d) Simulation results of coupled-wave theory model for the photonic crystal lattice

structure shown in b after flipping, rotation, and translation. The upper and lower histograms show the distributions of simulated Q and SE,

respectively.

translation, explaining why the Q and SE are insensitive to

such translations.

Therefore, the dataset size can be expanded using the

methods mentioned above to improve prediction accuracy.

The related research is discussed in Section 2.3.

The choice of prediction targets is also investigated. SE

naturally ranges between 0 and 1 with relatively uniform

distribution (Figure 3). Results show that raw SE values

achieve the highest prediction accuracy without prepro-

cessing (Table 2). In contrast, the Q factor can vary dra-

matically from hundreds to hundreds of thousands. Taking

its logarithm yields a more uniform distribution (Figure 3)

andmaximizes prediction accuracy (Table 2). Balanced sam-

ple distributions across all value ranges enable the neural

Table 2: Accuracy versus optimization targets.

Target R2 Target R2

SE 0.779 Q 0.636

Std SE 0.775 Std Q 0.818

log Q 0.909

Stdlog Q 0.865

This table presents POST’s R2 accuracy under different optimization

targets. StdQ/StdSE: linear rescaling of all Q/SE values to [0, 1] range;

Stdlog Q: logarithmic transformation of Q values followed by [0, 1]

rescaling.

network to better distinguish between different photonic

crystal designs.

Figure 3: Distributions of data. The histograms show the distributions of log Q and SE for all samples in the original dataset.
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2.2 POST backbone architecture

2.2.1 Encodingmodule based on Swin Transformer Block

To enhance the extraction of feature representations

from the single-channel input image I, we used a Swin

Transformer Block-based encoder. The resulting multi-

dimensional representation 4 is subsequently passed

through an output layer to produce the final prediction

results. The overall formulation of the encoding process is

expressed as:

SwinTransformer(I ) = 4, I ∈ ℝH×W×1. (3)

In accordance with the requirements of our task, we

adopted the architecture illustrated in Figure 4(a). The input

image is first divided into non-overlapping patches, each of

which is treated as an individual token. These tokens are

subsequently projected to a predefined feature dimension

C through a linear embedding layer, enabling the subse-

quent transformer layers to more effectively capture rele-

vant features.

In the proposed architecture, the input tokens are ini-

tially passed through a linear embedding layer and subse-

quently processed by a sequence of modified self-attention

modules, known as swin transformer block. These modules

operate within non-overlapping local windows to capture

spatially localized features while maintaining the number

of tokens. We define this initial structure – comprising the

linear embedding and swin transformer block – as Stage

1, which serves as the basis for subsequent hierarchical

processing.

(a)

(b)

Figure 4: POST network structure. Graph (a) shows the architecture of the SwinT encoder. The input single-channel image is partitioned into patches,

linearly embedded, then processed through four hierarchical stages to produce the final multi-dimensional representation4. Graph (b) displays two

consecutive swin transformer stacks. W-MSA and SW-MSA refer to multi-head self-attention modules with regular and shifted window configurations.
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To generate more efficient hierarchical representa-

tions, SwinT incorporates a patch merging mechanism [34].

As the network deepens, the number of tokens is pro-

gressively reduced through these patch merging layers,

thereby improving the model’s computational efficiency.

For instance, in Stage 2, features from each group of 2 × 2

neighboring patches are concatenated into a single vector

of dimension 4C, followed by a linear layer that projects it

down to 2C dimensions. This operation reduces the tokens

count to one-fourth of the previous stage, effectively fusing

local information for subsequent processing. The resulting

representation, with a resolution of
H

8
× W

8
, is then pro-

cessed by additional swin transformer block.

This design is extended to Stage 3 and Stage 4, where

the resolutions are further reduced to H

16
× W

16
and H

32
×

W

32
, respectively, resulting in progressively abstract multi-

dimensional representations. The complete formulation of

the process is provided in Supplementary Information.

2.2.2 Swin Transformer Block

SwinT enhances themodel’s capacity for global information

integration by incorporating a shifted window mechanism

[34] into its architecture and constructing the swin trans-

former block, as illustrated in Figure 4(a). This module is

a modification of the standard transformer block, in which

the conventionalmulti-head self-attention (MSA) is replaced

with localized attentionmechanisms operatingwithin regu-

lar and shiftedwindows – referred to aswindow-basedMSA

(W-MSA) and shifted window MSA (SW-MSA), respectively.

This design facilitates cross-window information while sig-

nificantly reducing computational complexity. The forward

propagation of two consecutive swin transformer stacks is

depicted in Figure 4(b) and the detailed algorithmic proce-

dures are provided in Supplementary Information.

Specifically, each swin transformer block in the archi-

tecture comprises two primary components: a window-

based self-attention module (either W-MSA or SW-MSA),

and a two-layermultilayer perceptron (MLP) equippedwith

the GELU activation function. Layer normalization (LN) is

applied before each submodule, while residual connections

are employed following each submodule to enhance train-

ing stability in deep networks.

2.3 Training process

Data augmentation through geometric transformations of

device patterns proves essential in preprocessing. A single

simulation sample can generate 144 valid training samples

via 4 flips, 4 rotations, and 3 translations, effectively expand-

ing the original 20,000-sample training set to nearly 3 mil-

lion samples while significantly reducing additional dataset

generation costs. This operation substantially enhances pre-

diction accuracy because neural networks struggle to inher-

ently learn the rotational, reflectional, and translational

symmetry properties of PCSEL photonic crystal layers from

individual unit cells alone.

To validate this approach, we systematically evalu-

ated POST model performance with different augmenta-

tion strategies (Table 3). The first two rows demonstrate

improved Q-factor and SE prediction accuracy through

rotation and flipping. While increasing translation itera-

tions revealed oscillating accuracy patterns – with odd-

numbered translations extracting more meaningful fea-

tures – excessive translations may cause R2 degradation

due to premature overfitting. Notably, since training set

size grows quadratically with translation iterations, we ulti-

mately selected 4 flips, 4 rotations, and 3 translations to

optimally balance training efficiency and model precision.

It should be noted that “1 translation” here means no addi-

tional translation operation is performed.

For the loss function, we employed the conventional

mean squared error (MSE) (Equation (4)), while adopt-

ing the R2 metric (Equation (5)) as our primary evalua-

tion strategy to intuitively assess prediction accuracy and

compare model performance between different photonic

crystal properties. The R2 metric provides an interpretable

scale where: R2 = 0 indicates that the model’s predic-

tions are no better than simply using the mean of the

property values, while R2 = 1 represents perfect prediction

accuracy. Higher R2 values correspond to better predictive

performance.

Table 3: Data augmentation boosts accuracy.

Rotations &

flips

Translation

(s)

R2

(SE)

R2

(log Q)

Speed

(s/epoch)

No 1 0.473 0.649 13

Yes 1 0.654 0.845 102

Yes 2 0.665 0.855 407

Yes 3 0.779 0.909 919

Yes 4 0.650 0.851 1,623

Yes 5 0.775 0.913 2,552

Yes 6 0.784 0.907 3,678

The table compares POST’s performance across different data

augmentation strategies. The combination of 4 flips, 4 rotations, and

6 translations yields the best SE accuracy (R2 = 0.784), while using

5 translations achieves the highest log Q accuracy (R2 = 0.913).

Translation= 1 means no additional translation operation is applied.
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MSE = 1

n

n∑

i=1
(yi − ŷi )

2
, (4)

R2 = 1−
∑n

i=1(yi − ŷi )
2

∑n

i=1(yi − ȳ)2
= 1− MSE

C∗
, (5)

where C∗ = 1

n

∑n

i=1(yi − ȳ)2 is a dataset-dependent constant.

2.4 Model performance analysis

2.4.1 Comparison to other neuron networks

A performance comparison of multiple existing neural net-

works is provided in Table 4 [26], [27], [35]–[37]. The evalua-

tion includes not only traditional deep learningmodels (e.g.,

FCNN, CNN, and AlexNet) but also various ViT architectures,

all tested on the same dataset. The table reveals that POST

achieves the highest accuracy (highestR2) in predicting both

log Q and SE. For log Q prediction, POST attains an R2 of

0.909, outperforming the second-tier models CaiT (0.883),

ConViT (0.882), and LeViT (0.881). Similarly, in SE prediction,

POST leadswith anR2 of 0.779, surpassing CaiT (0.763). These

results indicate that POST’s architectural design excels

at processing smaller-scale images and more accurately

captures the physical features of photonic crystal lattice

Table 4: Comparison in accuracy and speed.

Neuron

network

Train speed

(s)

Predict speed

(s)

R2 of test

set

log Q

FCNN 95 0.15 0.749

CNN 95 0.18 0.706

AlexNet [35] 492 0.51 0.817

DeiT-Ti [26] 433 0.52 0.869

CaiT-S24 [36] 1,630 1.69 0.883

ConViT-Ti [27] 743 0.92 0.882

LeViT-128s [37] 687 0.84 0.881

POST (this work) 918 1.08 0.909

SE

FCNN 80 0.16 0.570

CNN 95 0.18 0.545

AlexNet [35] 492 0.51 0.667

DeiT-Ti [26] 432 0.52 0.749

CaiT-S24 [36] 1,621 1.70 0.763

ConViT-Ti [27] 743 0.91 0.731

LeViT-128s [37] 683 0.84 0.722

POST (this work) 920 1.09 0.779

The tables compare the prediction performance of different neural

networks for two key PCSEL properties (log Q and SE), evaluating three

critical metrics: training speed (seconds/epoch), prediction throughput

(seconds/5 × 103 samples), and test set R2 scores.

structures, whereas most ViT models exhibit significant

advantages only when handling images larger than 100 pix-

els. Nevertheless, the second-tier ViTmodels still surpass the

milestone model AlexNet in prediction accuracy, highlight-

ing the overall superiority of ViT architectures.

It can be observed that traditional small-scale convo-

lutional neural networks (CNNs) exhibit slightly lower pre-

dictive performance than fully connected neural networks

(FCNNs). This is attributed to the fact that small CNNs, rely-

ing on convolutional mechanisms, can only identify local

correlations between pixels and their neighbors, failing to

extract global information. In contrast, analyzing the opti-

cal field of photonic crystals requires consideration of the

entire unit cell structure.

While POST requires greater computational resources

than lightweight models, its speed of > 1 × 108 samples/day

and superior precision make it fully capable of supporting

more optimization applications.

2.4.2 Comparison between predictions and simulations

POST achieves prediction accuracies (R2) of 0.909 for log Q

and 0.779 for SE in PCSEL modeling (shown in Figure 5).

It typically reaches peak accuracy within fifteen epochs,

Figure 5: Training dynamics and predictive performance. Graphs (a) and

(c) show the training curves of the POST’s predictions for log Q and SE,

respectively. The blue line (Train R2) and red line (Test R2) indicate

the goodness-of-fit of the model on the training set and test set as the

training epochs progress. Graphs (b) and (d), respectively, display scatter

plots of the model’s predictive performance for log Q and SE. The scatter

points compare the model’s predicted values with the true values, while

the black dashed line represents the ideal fit line used to evaluate

prediction accuracy.
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requiring only about 3 h of training time, followedby a slight

overfitting trend that leads to a minor decline in test set

performance.

The scatter plot visually confirms that POST’s predic-

tion accuracy for log Q is significantly higher than for SE.

This discrepancy stem from themore complex partial differ-

ential numerical solving process involved in SE calculations.

2.4.3 Accuracy with limited training samples

For many simulation software tools, obtaining 25,000 raw

data points remains challenging, especially when the input

patterns for simulation modules have higher pixel density

– simulation time costs increase quadratically. If the simu-

lation input involves 3D structural data, the cost escalates

cubically. Therefore, the learning performance of different

neural networks under reduced raw data volumes (shown

in Figure 6) is investigated, where the horizontal axis repre-

sents the proportion of the new training set relative to the

original training set.

It can be observed that POST consistently maintains

the strongest predictive capability across all dataset sizes

and achieves R2 accuracies of > 0.8 for log Q and > 0.6

for SE with only 20 % of the original training set. Addi-

tionally, we note that POST’s prediction accuracy for log Q

converges with only about 60 % of the original training set,

whereas its accuracy for SE may require a dataset larger

than the original training set to converge. This also suggests

that predicting the SE parameter is more complex than

predicting Q.

Furthermore, training results with 20 % of the original

training set in Figure 6 (R2
SE

= 0.607 and R2
log Q

= 0.813)

are worse than those without translation in Table 3 (R2
SE

= 0.654 and R2
log Q

= 0.845). However, the former involved

three additional translations in both horizontal and verti-

cal directions, resulting in an actual training data volume

that was significantly larger than the latter. This suggests

that the augmented samples generated through translation

carry less additional information compared to entirely new

samples.

2.4.4 Fourier-space feature attribution via SHAP

analysis

To further investigate whether POST has internalized the

physical priors embedded in CWT, we conduct a post

hoc interpretability study using SHAP (SHapley additive

explanations) [38], [39]. Unlike traditional saliency-based

methods that rely on image-space gradients, this analysis

evaluates the relative importance of Fourier components

in predicting optical properties of PCSEL structures. Specif-

ically, we apply a 2D discrete Fourier transform (DFT) to

the photonic crystal unit cell and analyze the real and

imaginary parts of selected Fourier coefficients as input

features.

For a 32 × 32 dielectric constant distribution represent-

ing a photonic crystal pattern, we perform a 2D Fourier

transform and extract a subset of its Hermitian-symmetric

coefficients according to a triangular masking rule, as illus-

trated in Figure 2. This results in 512 unique complex-valued

coefficients, each decomposed into real and imaginary parts

and concatenated to form a 1,024-dimensional input vector.

Each index (m, n) corresponds to a Fourier mode 𝜉m,n =
𝜉
R
m,n

+ i𝜉I
m,n

.

To quantify the contribution of each Fourier compo-

nent to the model’s predictions, we apply the Permutation

SHAP algorithm with 50 background samples and 100 eval-

uation samples drawn from the test dataset. The prediction

function internally recovers the spatial-domain input from

each perturbed Fourier vector, enabling seamless compat-

ibility with the original POST architecture trained in the

spatial domain.

Figure 6: Accuracy versus training set size. The line chart compares the prediction accuracy (measured by R2) of seven neural networks across varying

training set sizes. The horizontal axis represents the proportion of the training set used, relative to the original size of 20,000 samples (80 % of the total

25,000 samples). The reduced training set is then augmented through 4 flips, 4 rotations, and 3 translations before training. The vertical axis shows

the corresponding R2 accuracy for each model.
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(a) (b)

Figure 7: Distributions of SHAP values. Distributions of SHAP values for the top 15 Fourier coefficients contributing to the prediction of (a) SE and

(b) log Q. Each row denotes a distinct coefficient in the Fourier domain, with the x-axis showing its corresponding SHAP value. Color shading indicates

the relative magnitude of the coefficient, with red and blue representing high and low values, respectively. The violin plot contours represent

the variability and concentration of each coefficient’s contribution. Positive SHAP values suggest a positive influence on the predicted outcome,

while negative values imply a suppressive effect.

Figure 7 shows the SHAP violin plots for the top 15 most

influential Fourier features for both SE and log Q. The most

impactful coefficients are concentrated near the center of

the Fourier domain, reflecting their critical roles in deter-

mining photonic crystal performance.

In particular, 𝜉R
0,0

corresponds to the average refractive

index of the photonic crystal layer. A higher value typi-

cally indicates a lower filling factor, meaning more high-

index material is present. This leads to weaker photonic

crystal modulation but stronger waveguiding effect, which

enhances vertical optical confinement and contributes pos-

itively to Q.

Coefficients such as 𝜉R
1,0

and 𝜉R
0,1

are directly related to

vertical radiation coupling. Deviations of their values from

zero increase surface emission efficiency (SE) by enhancing

out-of-plane leakage. However, since this also introduces

greater radiation loss, it tends to reduce Q.

In contrast, 𝜉R−1,1 governs the strength of in-plane two-

dimensional diffraction, contributing to lateral distributed

feedback. A larger magnitude of this coefficient suggests

stronger horizontal coupling, which reinforces resonant

feedback and increases Q.

Although the top-ranked Fourier features differ slightly

between SE and log Q, substantial overlap exists in high-

impact modes. This indicates that both performance met-

rics are shaped by a common set of structural features,

especially those affecting radiative loss, confinement, and

feedback within the photonic crystal.

According to the 3D-CWT framework [40], the radiation

constant 𝛼 and thus the Q-factor of the lasing mode depend

explicitly on three quantities: the non-Hermitian coupling

coefficient 𝜇, and the real and imaginary parts (R, I) of the

effective Hermitian coupling (𝜅1D + 𝜅2D− )e
−i𝜃pc . Specifically,

Q ≈ 2𝜋∕a
𝛼

, 𝛼 = 𝜇

𝜇
2 + R2

I2, (6)

where a is the lattice constant. The coupling coefficients 𝜅1D

and 𝜅2D− are positive correlated with the Fourier coeffi-

cients 𝜉1,−1 (or 𝜉−1,1) and 𝜉2,0 (or 𝜉0,2), respectively. There-

fore, the Q-factor is highly sensitive to the magnitudes of

𝜉−1,1 and 𝜉2,0. This theoretical insight aligns well with the

SHAP analysis, which identifies 𝜉R−1,1 can significantly influ-

ence Q predictions.

It should be noted that the ultimate performance of

a PCSEL is governed by the combined action of Hermitian

couplings and non-Hermitian coupling [40]. In this context,

our SHAP analysis does not aim to replace the underly-

ing physical derivations, but rather to evaluate the inter-

pretability of POST. By highlighting that the most influen-

tial Fourier components align with those known to con-

trol (R, I, 𝜇) in coupled-wave theory, SHAP provides evi-

dence that POST has internalized meaningful physical pri-

ors, thereby enhancing trust in the model’s predictions.

2.5 Conclusions

The authors employed a novel neural network, POST, to

predict the photonic crystal simulation results of the CWT

model. This approach enables fully automated and highly

accurate predictions across single, double, and even triple
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lattices, as well as various non-circular complex hole struc-

tures. It can complete nearly 10,000 predictions in just 2 s,

with a mean squared error less than 50 % of previous simi-

larwork.Moreover, using only 20 %of the original dataset, it

achieves prediction accuracy surpassing prior studies. And

SHAPanalysis confirms that themodel prioritizes physically

meaningful Fourier components indicating alignment with

CWT theory.

These results demonstrate that POST not only acceler-

ates PCSEL evaluation but also captures key physical prin-

ciples, making it a promising tool for future AI-assisted

photonic device design. The dataset used will be released to

support broader research efforts.

Looking forward, an important extension of this work

is to validate and retrain POST onmore comprehensive data

sources beyond CWT. Because POST’s vision-transformer

architecture is data-driven and not tied to a specific physics

model, it can in principle be re-trained or fine-tuned using

full-wave simulation data (e.g., FDTD or FEM (Finite element

method) results such as threshold mode-spacing and far-

field beam quality) or even experimental measurements.

This architectural flexibility means that POST could serve

as a high-speed surrogate for diverse modeling approaches,

bridging the gap between analytical approximations and

real-world device behavior.

3 Methods

3.1 CWT-based dataset generation

The optical properties of PCSELs were simulated using a

custom three-dimensional coupled-wave theory (3D-CWT)

solver implemented in Python. Themodel accounts for both

in-plane diffraction and vertical radiation loss, using up to

441 Fourier harmonics to ensure numerical convergence.

For each PCSEL configuration, SE and log Qwere computed.

The refractive indices used in the simulations are listed

in Table 1. The photonic crystal cell was discretized on a

32 × 32 grid, and simulations were repeated for over 25,000

unique photonic crystal geometries. The simulated PCSEL

devices consist of a finite-size photonic crystal pattern of

200 × 200 μm. The finite-size photonic crystal is discretized
to a 17 × 17 grid for CWT calculation, where the underlying

partial differential equations are mathematically solved by

the FEM method.

3.2 Neural network model: POST

The POST model is based on the SwinT architecture

and was implemented using PyTorch. The model takes a

single-channel 32 × 32 real-space dielectric pattern as input

and passes it through four hierarchical self-attention stages.

For training, we used an Adam optimizer with a learning

rate of 10−4 and batch size of 64. Separate models were

trained for SE and log Q using mean squared error loss.

Training and evaluationwere performed on a singleNVIDIA

RTX 3070 GPU.

Although POST is trained using real-space dielectric

patterns, an alternative approach is to directly use Fourier

coefficients asmodel input. Fourier-space features naturally

encode Bragg scattering and mode coupling information,

providing a physically transparent representation. In pre-

liminary tests, we found such Fourier-based inputs to be

effective in reproducing device behavior [32]. Nevertheless,

we intentionally selected real-space images for the present

work. This vision-based representation enables POST to

scale to arbitrary geometries or full-wave simulation and to

exploit state-of-the-art computer vision architectures such

as the swin transformer,which are optimized for spatial cor-

relation learning. As a result, real-space inputs offer greater

flexibility and generalizability for practical PCSEL design

automation, while Fourier-space features remain a promis-

ing complementary representation for future extensions.

3.3 SHAP analysis in the Fourier domain

To interpret the model’s prediction behavior, we used the

PermutationExplainer from the SHAP Python library [39].

SHAP values were computed in the Fourier domain using

50 background samples and 100 test samples. The model’s

internal prediction logic includes inverse Fourier recovery

to spatial domain before inference. Violin plots of SHAP

values (Figure 7) were used to identify the most influential

modes for SE and log Q.
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