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Abstract: The intrinsically disordered periodic architec-
ture inherent in natural biomaterials exhibits signifi-
cant potential for serving as resonant cavities, enabling
the development of eco-friendly, biocompatible, and cost-
effective microlaser systems. In this study, we demon-
strate a biomaterial-based random laser utilizing birch
leaf—derived carbon dots (CDs) as the gain medium.
CDs ethanol solution was introduced into the peanut via
microinjection, successfully fabricating CDs-doped peanut
samples that preserved the fluorescence characteristics of
the CDs in solution. Random lasing was observed on mul-
tiple surfaces of the CDs-doped peanut under pulsed laser
excitation, with varying thresholds across different regions.
This demonstrates that the natural disordered microstruc-
ture of biological materials can facilitate random lasing.
Analysis of surface morphology and scattering patterns
indicates that the lasing mechanism arises from multi-
ple light scattering within the disordered structure of the
peanut surface, forming coherent feedback loops. Further-
more, the intrinsic biocompatibility of bio-derived CDs
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effectively addresses the persistent toxicity concerns associ-
ated with synthetic laser materials. Such biomaterial-based
random lasers could enable eco-friendly and cost-effective
photonic applications.
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1 Introduction

Biomaterial-based random laser, a novel class of laser
devices that utilize biological materials as gain media
or optical resonators [1], have demonstrated significant
potential in vivo bioimaging, cellular sensing, and med-
ical diagnostics due to their exceptional biocompatibil-
ity [2]-[6]. Conventional biomaterial-based random lasers
predominantly employ organic dyes, fluorescent proteins,
and quantum dots as gain media [7] [8]. However, these
materials exhibit substantial limitations: organic dyes suf-
fer from photobleaching and cytotoxicity [9], while fluo-
rescent proteins, despite their biocompatibility [10], [11],
involve complex preparation processes, high costs, and
potential metabolic toxicity. Consequently, developing new
gain media that combine high biocompatibility, superior
photostability, and cost-effectiveness has become a critical
challenge in advancing biomaterial-based random lasers
technology [12]-[14].

Carbon dots (CDs), an emerging class of carbon-based
nanomaterials first reported by Xu et al. in 2004 [15], have
rapidly gained prominence in bio-photonics due to their
unique fluorescence properties, excellent biocompatibility
(low cytotoxicity), and solution processability [16], [17]. Com-
pared to semiconductor quantum dots [18], CDs exhibit
comparable photostability (antiphotobleaching capability)
and quantum yields, while offering advantages in terms
of abundant raw materials and simplified synthesis meth-
ods, making them more suitable for scalable production
[19]. Red-emissive carbon dots (R-CDs) exhibit significant
advantages in laser-based applications within biomaterials.
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Firstly, their long-wavelength emission confers crucial opti-
cal properties: red light offers substantially greater penetra-
tion depth in biological tissues compared to shorter wave-
lengths, facilitating effective excitation and signal acqui-
sition from deeper structures. Concurrently, the relatively
lower photon energy of red light significantly reduces the
risk of photodamage to biological samples [20]. This combi-
nation of deep tissue penetration and minimal phototoxicity
is essential for nondestructive or minimally invasive imag-
ing of living systems or sensitive specimens.

The study of CD-based lasers began with the pioneering
work of Zhang’s group in 2012, who first demonstrated stim-
ulated emission from CDs under optical pumping [21]. Sub-
sequent research has progressively enhanced CDs laser per-
formance through coordinated material engineering and
cavity design. In 2017, Liao et al. developed a plasmon-
enhanced random laser with tunable threshold by deposit-
ing carbon dots on a gallium nitride (GaN) surface [22].
Further progress was made in 2019 when Han et al. syn-
thesized narrow-bandwidth, high-quantum-yield orange-
emitting CDs and integrated them into a bottle-like fiber
microcavity laser, achieving remarkably low pump thresh-
olds and narrow linewidths [23]. Recent advances in crys-
tal encapsulation have opened new avenues for CD lasers.
Prakash et al. [24] developed a room-temperature oxidation
method to embed sucrose-derived CDs within NacCl crys-
tal matrices. These crystals served as Fabry—-Pérot (F-P)
resonators, enhancing the CDs-NaCl crystal’s fluorescence
by suppressing nonradiative transitions and enabling las-
ing at 488 nm [24]. A breakthrough came in 2024 when
Liw’s team synthesized water-dispersible CDs from PDA
(3,9-perylenedicarboxylic acid), achieving a record photolu-
minescence quantum yield of 97.2 % among carbon-based
nanomaterials. By injecting these CDs into an F-P cavity,
they demonstrated the first continuous-wave lasing from CD
aqueous solutions [25]. However, the aforementioned stud-
ies have predominantly focused on the structural design of
laser cavities, while research on CDs lasers utilizing natural
biological cavity structures and their underlying mecha-
nisms remains virtually unexplored.

In this work, we developed biomaterial-based ran-
dom lasers using birch leaf—derived red emissive carbon
dots (R-CDs) as the gain medium and peanut kernel as
the natural optical cavity. The peanut was precisely sec-
tioned into cuboid structures, into which the R-CDs solution
was injected via a syringe, resulting in R-CDs@Peanut. The
fabricated R-CDs@Peanut bio-cavity exhibited the charac-
teristic fluorescence of R-CDs. The processed peanut sur-
face was found to exhibit irregular microstructures that
enable the crucial random lasing of optical confinement and
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multiple scattering feedback. Threshold analysis indicated
varying lasing thresholds across the five measured surfaces
of the R-CDs@Peanut cavity, with the injection-site top sur-
face demonstrating the lowest threshold of 96.4 kW/cm?.
Notably, this biomaterial-based random laser architecture
offers significant advantages over conventional approaches
by leveraging the inherent surface disorder of peanut tis-
sue, which eliminates the need for complex artificial scat-
tering media or precision cavity fabrication, thereby sub-
stantially reducing manufacturing complexity and cost. This
study establishes bio-derived cavities as a viable platform
for developing eco-friendly, biologically integrated laser
devices, while demonstrating the synergistic combination of
CDs gain media with natural photonic structures.

2 Characterization

The surface microstructures of R-CDs@Peanut are observed
under a scanning electron microscope (SEM) at various
magnifications. A FEI Tecnai G2 F30 high-resolution trans-
mission electron microscopy (HR-TEM, FEI, America) is used
to investigate the morphology of the R-CDs.

The fluorescence spectra of R-CDs, peanut kernel,
and R-CDs@Peanut are measured on an FS5 spectrome-
ter (Edinburgh Instruments, UK). The UV-Vis absorption
spectra are recorded with an Ultraviolet-Visible spectropho-
tometry (UV-Vis, U-3000, Hamamatsu Photonics, Japan).
Neodymium-doped yttrium aluminum garnet (Nd:YAG)
pulsed laser (355 nm, 6 ns, 10 Hz, Continuum Surelite, Cal-
ifornia, USA) with an optical parameter oscillator (Contin-
uum Horizon, California, USA) acted as an excitation source
for the lasing measurements. The excitation heam is focused
by an optical lens on the surface of the R-CDs@Peanut to
form a small spot. Laser spectra were characterized by
a HORIBA iHR320 spectrophotometer (Minami-ku, Kyoto,
Japan).

3 Discussion

The R-CDs employed in this study was derived from birch
leaves. The fabrication of R-CDs was reported in our pre-
vious publication [26]. The morphological and structural
characteristics of the as-prepared R-CDs were investigated
by transmission electron microscopy (TEM) analysis. As
depicted in Figure 1(a), the TEM analysis reveals that the
R-CDs exhibit uniform dispersion and homogeneous mor-
phological features. High-resolution TEM (HRTEM) images
(Figure 1(b) and (c)) further demonstrate the spherical mor-
phology of the R-CDs, with distinct lattice fringes measuring
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Figure 1: Structure and UV-Vis absorption characterization of R-CDs and R-CDs@Peanut. (a) TEM image of R-CDs on a carbon support grid.
(b) and (c) HRTEM images of R-CDs. (d)-(f) SEM micrographs of R-CDs@Peanut at different magnifications. (g)-(i) UV-Vis absorption spectra of R-CDs

in ethanol solution, R-CDs@Peanut, and peanut kernel.

0.20 nm in spacing, which corresponds to the (100) crystal-
lographic plane of single-crystal graphite [27].

The morphological features of the R-CDs@Peanut were
investigated by SEM analysis. Figure 1(d)—(f) are the SEM
images of the R-CDs@Peanut at 200X, 500X, and 2000x
magnifications. The SEM micrograph (Figure 1(d)) shows
the surface of the R-CDs@Peanut appears rough winkles,
deep folds, micropores, shallow protrusions, and irregularly
shaped textures. The enlarged image of irregularly shaped
micropores is shown in Figure 1(e), the small and irregularly
shaped micropores are of an average pore size of around
50 pm. Under higher magnification, a clear microstructure
of cellular structure can be observed in Figure 1(f). Accord-
ing to the Figure 1(f), there exists a reticular cellular net-
work structure and the cellular structure and shape dis-
tribution remain largely intact. We can clearly see that
the cellular structure consists of some lipid particles. The
SEM micrographs (Figure 1(d)—(f)) depict the surface of R-
CDs@Peanut has disordered microstructure, this structure
provides an ideal scattering medium so as the emission light
from the R-CDs can form closed loops within the porous
structures to produce positive feedback for the random las-
ing emission.

In our investigation, the injection method is used
to inject the R-CDs ethanol solutions into peanut kernel
to obtain R-CDs@Peanut. The schematic diagram of the

preparation is shown in Figure 2(a). Firstly, the peanut ker-
nel was sliced into a 6 mm X 5 mm X 2.3 mm sample with a
blade. Then, a syringe was used to inject the R-CDs ethanol
solution into the peanut kernel. Importantly, this process
requires multiple injections. The treated peanut kernel was
transferred to a heating stage and heated at 60 °C for
10 min to dispel solvents. Finally, the treated peanut ker-
nel was cooled down to room temperature to obtained the

R-CDs@Peanut.

The optical features of R-CDs, peanut, and
R-CDs@Peanut were elucidated through UV-Vis absorption
and fluorescence spectra. Figure1(g) presents the

absorption spectra of R-CDs. The R-CDs show characteristic
peaks at about 414 and 665 nm, which are identical to
previous publication [28]. The peanut kernel absorption
peaks appear in the spectra (Figure 1(h)), which is totally
different from that of R-CDs. Figure 1(i) presents the
absorption spectra of R-CDs@Peanut, the absorption
spectrum exhibits characteristic absorption peaks of both
R-CDs and peanut kernel. This proves that the R-CDs are
successfully dispersed inside the peanut.

As shown in Figure 2(b), the fluorescence spectrum of
R-CDs ethanol solution displays an emission peak occurs at
686 nm and a shoulder peak occurs at 722 nm under opti-
mal wavelength excitation (424 nm). Importantly, the emis-
sion spectrum of R-CDs@Peanut overlaps perfectly with
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Figure 2: Fabrication process and photoluminescence of R-CDs@Peanut. (a) Schematic diagram of the fabrication process of the R-CDs@Peanut.
(b) Fluorescence spectra of R-CDs ethanol solution, R-CDs@Peanut, and peanut kernel. (c) Photographs of R-CDs@Peanut under 405 nm light
excitation at different surfaces (Surface I to V). (d) Photographs of R-CDs@Peanut under daylight at different surfaces (Surface I to V).

that of R-CDs ethanol solution, indicating unchanged peak
locations. This result shows that the position of the
fluorescence peaks is unchanged, and the intensity of the
peaks is reduced by dispersing the R-CDs ethanol solution
into the peanut. Notably, when excited at 424 nm, the fluo-
rescence intensity of peanut kernel is negligible compared
to the dominant red emission of R-CDs ethanol solution
under the same excitation conditions. R-CDs@Peanut main-
tained the characteristic red emission profile of pristine
R-CDs with no detectable spectral overlap with peanut’s
autofluorescence (462—488 nm). These results conclusively
eliminate potential interference from peanut’s background
fluorescence. Therefore, the red emission in R-CDs@Peanut
is solely attributed to the R-CDs, with no observable influ-
ence from peanut.

Figure 2(c) and (d) show the photographs of five differ-
ent surfaces (Surface I to V) of R-CDs@Peanut under 405 nm
light illumination and daylight, respectively. As shown in
Figure 2(c), the as-obtained R-CDs@Peanut appeared pale
yellowish-white under daylight, and emitted red fluores-
cence under 405 nm laser excitation. The variation in fluo-
rescence intensity across these five surfaces may result from
the differential diffusion of the R-CDs solution within the
peanut kernel.

By leverage of the red emission from R-CDs@Peanut,
optical gain may achieve in peanut kernel to support ran-
dom lasing. In a random laser, where optical feedback

is facilitated by multiple light scattering instead of con-
ventional mirrors, the requisite scattering medium can be
derived from a diverse array of biological materials, such
as abalone shells, silk, eggshell membranes, leaves, butterfly
wings, as well as animal and human tissues, which collec-
tively provide the complex scattering environment neces-
sary for lasing action. Herein, the R-CDs@Peanut, in which
the R-CDs act as emission center and bio-tissues in peanut
kernel play the role of scattering medium, is excited by a
410 nm pulsed laser to achieve random lasing (Figure 4(c)).
The random lasing emission spectra obtained from
R-CDs@Peanut at surfaces I to V are shown in
Figure 3(a)—(e).

As shown in Figure 3(a)-(e), when the pump energy
density is lower, the lasing random emission spectra only
show a broad emission with the peak centered at 676 nm,
which is attribute to the fluorescence from the R-CDs. How-
ever, when the pump energy density exceeds a threshold,
multiple small spiked peaks are observed. The small spiked
peaks tend to grow more obvious and stronger as the pump
energy density increases, which is mainly result from form-
ing of more closed loops of light under higher excitation
power. A kink can be observed in each of the light-light
curve in Figure 3(a)—(e), indicating the threshold power
of each random laser. The threshold powers of Surface I,
II, III, IV, and I are located at 96.4 kW/cm?2, 120.4 kW/cm?,
150.3 kW/cm?, 132.4 kW/cm?, and 98.1 kW/cm?, respectively.
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Figure 3: Lasing spectra of R-CDs@Peanut collected at five different surfaces: (a) Surface I, (b) Surface II, (c) Surface III, (d) Surface IV, and
(e) Surface V. (f) Variation of the laser threshold with the diffusion distance of R-CDs.

The five surfaces exhibit different laser thresholds, with
Surface I showing the lowest value. This is attributed
to its proximity to the injection site, where the R-CDs
concentration is highest as a result of nonuniform diffusion
within the peanut kernel. In addition, the threshold energies
at different distance between different surfaces and injec-
tion point have been measured as shown in Figure 3(f). The
threshold energies as a function of distance can be fitted
by a linear line, and the threshold energies increase with
gradually increasing distance.

A comparison of the laser threshold between
biomaterial-based random lasers and previously reported
artificially designed laser cavities is presented in Table 1.
It is found that the threshold of our biomaterial-based
random laser is comparable with that artificially designed
laser cavities.

Unlike conventional lasers that rely on well-defined
optical cavities, random lasers achieve feedback through
multiple scattering in disordered gain media [33]. The
threshold behavior of such systems is governed by the com-
petition between scattering mean free path (#,) and gain
length (£,) [34], leading to a distinct power-law depen-
dence of the threshold excitation area (4,;) on pump
intensity (Py,). Theoretical studies predict A% 1/Py, for

three-dimensional random media, which serves as a finger-
print of random lasing action [35]. Figure 4(a) and (b) show
excitation area—threshold curves for the Surface I and III
of the R-CDs@Peanut, where the Ay, is the excitation area
and the Py is the laser threshold of the random laser. It
can be observed from Figure 4(a) and (b) that the laser
threshold decreases with increasing excitation area. Mean-
while, the Ay,%® and 1/P, present a linear relationship and
linear fitting of the data in Figure 4(a) and (b), indicating
the clear power-law scaling consistent with Ag,% o« 1/Py,.
The linear relationship between A;%° and 1/Py, is consis-
tent with random lasing theory, suggesting that the system’s
behavior aligns with the theoretical predictions of random
lasing phenomena [36].

Table 1: Comparison of the laser threshold between biomaterial-based
random lasers and previously reported artificially designed laser cavities.

Ref. Laser type Laser threshold
This work Biomaterial-based random laser 0.578-0.902 mJ/cm?
[29] Nonmetallic random laser 1.2 mJ/pulse

[30] Nonmetallic random laser 54.31 m}/cm?

[31] Metal plasma resonance laser 0.048 m)/cm?

[25] Fabry-Perot cavity laser 0.041 m)/cm?

[32] Microcavity laser 1.85 m)/cm?
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Figure 4: The plot of the excitation area Ay, %> versus laser threshold 1/P,, of the R-CDs@Peanut Surface I (a) and III (b). (c) Schematic diagram of the
R-CDs@Peanut biomaterial-based random laser. (d) and (e) Optical micrographs of the lasing areas on R-CDs@Peanut under different excitation power.

Figure 4(d)-(f) show three optical micrographs of
the emission areas of R-CDs@Peanut at difference pump
powers. At low excitation intensity (Figure 4(d)), no visible
bright spots are observed on the surface of the sample;
only the exaction light is presented. As the pump power
increases, when the pump power reaches the laser thresh-
old (Figure 4(e)), a large number of bright spots begin to
appear on the surface of R-CDs@Peanut. The bright spots
observed in the three optical micrographs of R-CDs@Peanut
represent localized scattering centers within the disordered
microstructure. These scattering sites play a fundamen-
tal role in the random lasing mechanism by providing
multiple light scattering events that enable the formation
of closed-loop optical paths. Through recurrent scattering
between these randomly distributed centers, photons can
complete round-trip trajectories while accumulating optical
gain from the surrounding medium. When the gain exceeds
the losses within these self-formed cavities, coherent feed-
back is achieved, leading to the characteristic random laser
emission [37]. This process differs fundamentally from con-
ventional lasing as it relies entirely on disorder-induced
scattering rather than predefined optical cavities, with the
scattering centers effectively serving as the distributed feed-
back elements of the system. As the pump power increases

further above the threshold (Figure 4(f)), more and brighter
random bright spots can be observed. This series of bright
spots provides evidence for the presence of random lasing
action on the surface of R-CDs@Peanut. The observation
of the threshold provides additional evidence for the las-
ing action and reinforces the importance of the scattering
effects caused by the random surface nanostructures of
R-CDs@Peanut.

Biomaterial-based random lasers exhibit unique ad-
vantages, opening up broad prospects for their applica-
tions in various fields. Compared to conventional lasers,
biomaterial-based random lasers demonstrate significantly
low spatial coherence. This characteristic effectively facil-
itates image formation and substantially reduces speckle
noise interference during imaging processes. Consequently,
biomaterial-based random lasers hold promises as ideal
replacements for traditional laser sources in speckle-free
biological laser imaging applications. Furthermore, the ran-
dom lasing modes (spectral “fingerprint”) of biomaterial-
based random lasers are highly dependent on their inter-
nal nanoscale scattering structures, which possess inher-
ent uniqueness and difficult-to-replicate complexity arising
from the self-assembly or processing of biological materials.
Consequently, biomaterial-based random lasers can serve
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as high-security, hard-to-clone optical anticounterfeiting
tags for authenticating high-value documents, luxury goods,
or electronic.

4 Conclusions

In conclusion, we have demonstrated a biomaterial-based
random laser through the integration of the peanut ker-
nel and R-CDs. The birch leaf-derived R-CDs were selected
as the emission center due to their exceptional lumines-
cent properties, combined with their low toxicity and bio-
compatibility, making them promising for biomedical and
optoelectronic applications. Peanut kernel, a widely avail-
able legume, was utilized as a naturally derived scatter-
ing medium. A simple surface treatment of peanuts gen-
erates a disordered structural morphology, where the ran-
dom spatial distribution of surface features enables effi-
cient light scattering, ultimately facilitating the formation
of coherent closed loops necessary for lasing. Key observa-
tions confirmed the presence of random lasing, including
the linear relationship between excitation area and las-
ing threshold, as well as the characteristic scattering pat-
terns observed on the peanut surface. Furthermore, the
intrinsic luminescence of the peanut was found to have
negligible interference with the emission from the R-CDs,
ensuring an unperturbed lasing mechanism. Finally, five
surfaces of these biomaterial-based random lasers were
investigated and found to have random lasing patterns
and different lasing thresholds. Collectively, these find-
ings provide robust evidence for the realization of ran-
dom lasing in a biocompatible and easily fabricated system,
highlighting the potential of natural materials in photonic
applications.
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