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Abstract: Space–time modulated systems have recently

emerged as a powerful platform for dynamic electromag-

netic processing in both space and time. Most of the related

research so far has assumed abrupt parameter profiles.

This paper extends the field to generalized graded-index

(GRIN) interfaces, which are both more practical than ideal

profiles and offer new avenues for wave manipulations. It

presents an exact solution forwave propagation across arbi-

trary space–time modulated GRIN interfaces and describes

versatile chirping effects. The solution is based on a gen-

eralization of the impulse response method from linear

time-invariant to linear space–time-varying systems. The

proposed framework shows that space–time GRIN systems

represent a novel approach for generating a new form of

chirping that is not inherently based on dispersion, with

promising applications in pulse shaping and signal process-

ing.

Keywords: space–time modulation; graded-index media;

generalized impulse response; instantaneous frequency;

chirping

1 Introduction

Space–time modulation systems – media whose parame-

ters vary dynamically in both space and time under the
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influence of an external traveling-wave modulation – have

recently enabled a range of novel applications, including

magnet-free nonreciprocity [1], frequency transitioning [2],

parametric amplification [3], [4], and the breaking of funda-

mental bounds [5].

Space–time interfaces are the fundamental building

blocks – or “meta-atoms” – of space–time modulation sys-

tems. Their understanding and control are, therefore, essen-

tial. These interfaces can be of two distinct types, as illus-

trated in Figure 1. The first is the step-index interfaces, where

the transitionwidth ismuch smaller than thewavelength, as

shown in Figure 1(a). Such interfaces have been extensively

studied in the literature [6], [7] and are known to induce

a uniform frequency shifting of the incoming wave. The

second type is the graded-index (GRIN) interfaces. These

interfaces, shown in Figure 1(b), may be considered more

practical, as physical modulations necessarily occur grad-

ually at the microscopic level [8]–[10], and can also sup-

port a broader range of wave transformations. In particular,

they induce nonuniform frequency transitions and produce

wave chirping. While some studies have addressed the lim-

iting case of pure-time GRIN interfaces [11]–[14], general

space–timeGRIN interfaces [15] remain an essentially unex-

plored topic.

This paper investigates the wave transformations

induced by space–time GRIN interfaces, introducing a gen-

eralization of the impulse response method from linear

time-invariant (LTI) to linear (space-) time-varying (LTV)

systems. Unlike the Wentzel–Kramers–Brillouin (WKB)

[11]–[13] or transfer-matrix method (TMM) [15] commonly

used in prior works, this approach provides an exact solu-

tion. We derive closed-form solutions for both the analy-

sis and synthesis problems and describe the corresponding

chirping effects. All the results are validated through full-

wave simulations.

For simplicity, we restrict our attention to systems

that are 1 + 1D, with dimensions z and t, involving GRINs

of uniform velocity, i.e., v = 𝑣ẑ = const., boundary and

intrinsic impedance matching, i.e., 𝜂i =
√
𝜇i∕𝜖i = const.

for i = 1, G, 2, and no dispersion, i.e., ni ≠ ni(𝜔) for i = 1,

G, 2.
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(a) (b)

Figure 1: Space–time modulation interfaces, with basic structures (top)

and space–time diagrams in the harmonic-wave regime (bottom).

(a) Step-index modulation, where the refractive index changes abruptly

from n1 to n2 at an interface initially located at z
0
b
and moving with

a constant velocity v. (b) Graded-index (GRIN) modulation, where

the refractive index traditions smoothly from n1 to n2 via nG over

the interval
[
z0
b1
, z0

b2

]
with width D = z0

b2
− z0

b1
. The subscripts G and b

denote the GRIN layer and the boundary, respectively.

2 Generalized impulse response

method

In this section, we shall derive the generalized impulse for

the GRIN system in Figure 1(b), which is generically repre-

sented in Figure 2.

In the frequency domain, the one-dimensional

Helmholtz equation may be expressed as

𝜕2Ẽ

𝜕z2
+ k2(𝜔)Ẽ = 0, (1)

where k(𝜔) = 𝜔
√
𝜇𝜖 = 𝜔n∕c is the wavenumber. The gen-

eral solution to Eq. (1) can be written as

Ẽ(z, 𝜔) = H(z, 𝜔)Ẽ(0, 𝜔), (2a)

where
H(z, 𝜔) = eik(𝜔)z (2b)

represents the frequency response of the system.

Applying the temporal inverse Fourier transform to

Eq. (2), as suggested in Figure 2(a),we obtain the correspond-

ing time-domain relation

E(z, t) =
∞

∫
−∞

h(z, t, t′ )E(0, t′ ) dt′, (3)

(a) (b)

Figure 2: Generalized impulse response method applied to the space–

time GRIN interface system in Figure 1(b). (a) Responses in the fre-

quency and time domains. (b) Response of an arbitrary space–time

GRIN modulation system. The top panel shows the space–time diagram

with the trajectory of the impulse 𝛿(t − t′) and its output 𝛿
[
t − tn(z, t

′ )
]
,

where p1,2 are the space–time intersection points of the impulse with

the two boundaries of the GRIN layer, initially located at z0
b1,2

. The bottom

panel shows the initial refractive index profile n(z, t = 0), which moves

at a uniform velocity v.

where h(z, t, t′) is the impulse response [16], representing

the system’s response to the impulse E(0, t) = 𝛿(t − t′).1

In LTI systems, the impulse response depends solely on

the time difference between the output and input signals,

following the time-shift invariance property h(z, t, t′) =
h(z, t − t′) [18]. Xiao et al. extended the impulse response

method from LTI to purely time-varying systems [19], where

the lack of time invariance – or nonstationarity – leads to

an impulse response that independently depends on t and

t′, i.e.,
h(z, t, t′ ) ≠ h(z, t − t′ ). (4)

In space–time varying systems, h(z, t, t′) also involves

the modulation velocity 𝑣, which further increases the

complexity of the analysis. We now introduce the gener-

alization of the impulse response method to space–time

GRIN systems, explicitly incorporating 𝑣, with the aid of

Figure 2(b), where a space–time diagram illustrates the

impulse trajectory.

As shown in the top panel of Figure 2(b), the input

impulse experiences a propagation delay as it propagates

through the system, resulting in the impulse response

1 The impulse response acts as a time-domain version of the Green’s

function in the space-domain relation E(r) = i𝜔𝜇∫
V
G(r, r′)J(r′) dV ′

[17], with E(0, t′) in Eq. (3) playing the role of the current source J(r′)
and h(z, t, t′) corresponding to the Green’s function G(r, r′).
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h(z, t, t′ ) = 𝛿
[
t − tn(z, t

′ )
]
, (5)

where tn(z, t
′) is the arrival time of the impulse at the posi-

tion z assuming an input time of t′ in the GRIN system with

space–time varying refractive indexn [brown line in the top

panel of Figure 2(b)].2 The function tn(z, t
′) is determined by

the wave trajectory equation

c
dtn
dz

= n(z, tn ), (6)

subject to the boundary conditions in different regions

tn(0) = t′ and tn(zb1,2 ) = tb1,2, (7)

where zb1,2 and tb1,2 are the coordinates of the intersection

points p1,2 of the impulse with the first and second modula-

tion interfaces, respectively [Figure 2(b)].

To derive the electromagnetic field in each region of the

space–time GRIN system, we will apply the following four

steps to each of the three regions in Figure 2(b): (i) deter-

mine the trajectory equation and corresponding boundary

condition for the concerned region; (ii) solve the trajectory

equation for the arrival time tn(z, t
′); (iii) substitute the

resulting tn(z) into Eq. (5) to obtain the impulse response

h(z, t, t′); and (iv) substitute that response into Eq. (3) to

evaluate the output field E(z, t).

3 Field solutions

In this section, we shall derive the general field solutions

for the GRIN system in Figure 2(b) using the generalized

impulse response derived in Section 2.

The refractive index profile along the impulse trajec-

tory is given by

n(z, t) =

⎧⎪⎪⎨⎪⎪⎩

n1, 0 < z < z0
b1
+ 𝑣t,

nG(z− 𝑣t), z0
b1
+ 𝑣t < z < z0

b2
+ 𝑣t,

n2, z > z0
b2
+ 𝑣t,

(8)

where n1 and n2 are the (constant) refractive indices of

media 1 and 2, respectively, and

z0
b2
= z0

b1
+ D. (9)

2 In a nondispersive system, the impulse response exhibits the form

of a delta function as all the frequency components propagate at the

same velocity, and the input impulse remains undistorted. In contrast,

in dispersive systems, not considered here, the frequency-dependent

group velocity causes temporal spreading, and the impulse response

becomes a more complex function of t′ [16].

The system can then be divided into the three corre-

sponding regions, which we will address one by one.

3.1 First-medium (n1) region

Substituting n(z, tn) = n1 into Eq. (6), we obtain the wave

trajectory equation

c
dtn
dz

= n1, (10a)

where the boundary condition is

tn(0) = t′. (10b)

Solving Eq. (10) for tn(z, t
′) yields then the impulse tra-

jectory function

tn(z, t
′ ) = t′ + n1

c
z, (11)

whose insertion into Eq. (5) provides the impulse response

h(z, t, t′ ) = 𝛿
(
t − t′ − n1

z

c

)
. (12)

Note that the argument of the impulse function in this

relation represents a traveling-wave, due to the uniform

nature of the propagation medium. Finally, substituting

Eq. (12) into (3) and solving for the output field E(z, t), we

get the field,

E1(z, t) = E
(
0, t − n1

z

c

)
, (13)

where E(⋅, ⋅) is an arbitrary field function (e.g., harmonic

plane wave or Gaussian pulse) of the space (first entry) and

time (second entry) variables.3

3.2 GRIN (nG) region

Substituting now n(z, tn) = nG(z− vtn) into Eq. (6), we

obtain the wave trajectory equation in the GRIN region,

c
dtn
dz

= nG(z− 𝑣tn ). (14)

The corresponding space–time boundary condition

with medium 1 corresponds to the intersection point p1 [see

Figure 2(b)], whose coordinates are related as

tb1 = t′ + n1
c
zb1 (15a)

and

3 In Eq. (13), the bracket (⋅) indicates a functional argument. At other
places in the paper, the argument may involve the square bracket

[⋅] or the curl bracket {⋅}, because we use the bracket precedence

order (⋅)− [⋅]− {⋅}. Whether the brackets indicate an argument or a

multiplicative factor should be clear everywhere from the context.
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zb1 = z0
b1
+ 𝑣tb1. (15b)

Solving Eq. (15) for zb1 and tb1, we find the coordinates

of p1 to be

zb1 =
𝑣t′ + z0

b1

1− n1𝑣∕c
and tb1 =

t′ + n1z
0
b1
∕c

1− n1𝑣∕c
. (16)

To solve Eq. (14) with the related boundary condition,

we let 𝜉 = z− vtn, which implies
d𝜉

dz
= 1− 𝑣

dtn
dz
, or

dtn
dz

= 1

𝑣

(
1− d𝜉

dz

)
. (17)

Substituting now Eq. (17) into (14), and separating the 𝜉

and z terms, leads to the differential equation

d𝜉

1− nG(𝜉 )𝑣∕c
= dz, (18)

which integrates to

∫
1

1− nG(𝜉 )𝑣∕c
d𝜉 = z+ CG, (19)

where CG is an integration constant. For generalization to

arbitrary GRIN profiles, we define the left-hand side term of

this relation as the function

F(𝜉 ) = ∫
1

1− nG(𝜉 )𝑣∕c
d𝜉, (20)

which allows to express Eq. (19) in the compact form

F(𝜉 ) = z+ CG. (21)

To determine the integration constant CG in this rela-

tion, we first apply the boundary condition tn(zb1) = tb1
(point p1), which yields

F(zb1 − 𝑣tb1 ) = zb1 + CG. (22)

Next substituting Eq. (16) into this relation and solve for

CG, we obtain

CG(t
′ ) = − 𝑣

1− n1𝑣∕c
t′ −

z0
b1

1− n1𝑣∕c
+ F
(
z0
b1

)
. (23)

Finally, substituting Eq. (23) and the relation 𝜉 = z− vtn
into Eq. (21), and solving for tn, we find

tn(z, t
′ ) = − 1

𝑣
F−1
[
z+ CG(t

′ )
]
+ z

𝑣
, (24)

where F−1(⋅) is the inverse function of F(⋅).
Substituting Eq. (24) into (5), we obtain now the impulse

response

h(z, t, t′ ) = 𝛿
{
t + 1

𝑣
F−1
[
z+ CG(t

′ )
]
− z

𝑣

}
, (25)

where CG(t
′) is given in Eq. (23) and F(⋅) is defined in Eq. (20).

Finally, substituting Eq. (25) into (3), and solving for the

output field E(z, t), yields (see Appendix A)

EG(z, t) =
|||| 1− n1𝑣∕c
1− nG(z− 𝑣t)𝑣∕c

||||
× E

⎡⎢⎢⎢⎣
0,− 1− n1𝑣∕c

𝑣

z

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′

− n1
z

c
+
z− z0

b1

𝑣

]
,

(26)

where E(⋅, ⋅) is the same field function of space and time as
in Eq. (13).

3.3 Second-medium (n2) region

Substituting now n(z, tn) = n2 into Eq. (6), we obtain

c
dtn
dz

= n2, (27)

where the space–time boundary condition with the GRIN

medium corresponding to the intersection point p2, whose

coordinates are related as

tb2 = − 1

𝑣
F−1
[
zb2 + CG(t

′ )
]
+ zb2

𝑣
(28a)

and

zb2 = z0
b2
+ 𝑣tb2, (28b)

and found by solving Eq. (28) for zb2 and tb2 as

zb2 = F
(
z0
b2

)
− CG(t

′ ) (29a)

and

tb2 =
F
(
z0
b2

)
− CG(t

′ )− z0
b2

𝑣
. (29b)

Solving next Eq. (27) for tn(z, t
′), we obtain the impulse

trajectory function

tn(z, t
′ ) = n2

c
z+ C2, (30a)

where C2 is a new integration constant, which is obtained

by applying the boundary condition tn(zb2) = tb2 [Eq. (29),

point p2] to Eq. (30a) and solving the resulting expression for

C2 as

C2(t
′ ) = 1− n2𝑣∕c

1− n1𝑣∕c
t′ + 1− n2𝑣∕c

𝑣

[
F
(
z0
b1
+ D
)

− F
(
z0
b1

)]
− n2 − n1
1− n1𝑣∕c

z0
b1

c
− D

𝑣
. (30b)
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Finally, substituting Eq. (30) into (5), we get the impulse

response

h(z, t, t′ ) = 𝛿
[
t − n2

c
z− C2(t

′ )
]
, (31)

where C2(t
′) is given in Eq. (30b).

Substituting Eq. (31) into (3) and solving for the output

field E(z, t) (see Appendix B), we obtain the field4

E2(z, t) =
|||| 1− n1𝑣∕c
1− n2𝑣∕c

||||
× E

{
0,
1− n1𝑣∕c
1− n2𝑣∕c

[
t − n2

c
z+ n2 − n1

1− n1𝑣∕c
z0
b1

c
+ D

𝑣

− 1− n2𝑣∕c
𝑣

z0
b1
+D+𝑣t

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭
.

(32)

Equations (13), (26), and (32) represent the key results

of this paper. They accommodate arbitrary field waveforms

E(0, t) and arbitrary GRIN profiles nG(z− vt).

4 Chirping physics

Due to the space- and time-varying properties of the GRIN

medium, the wave behavior in our system is fairly complex,

as evident in Eq. (26). In this section, we show that this

system produces a new type of wave chirping and compare

it with other chirping mechanisms.

4.1 Chirping in the GRIN layer

We consider a time-harmonic incident field, which reads at

z = 0,

E(0, t) = e−i𝜔0t, (33)

where𝜔0 is assumed to be constant. Other types of fields can

be treated similarly. Substituting Eq. (33) into (26) – specif-

ically, inserting the content of the second slot of E(⋅, ⋅) in
Eq. (26) into the relation𝜙G = −𝜔0t(z) – we obtain thewave

phase in the GRIN layer as

4 In Eq. (32), the denominator of the factor 1−n1𝑣∕c
1−n2𝑣∕c

vanishes when

𝑣 = c∕n2. This corresponds to one of the interluminal boundaries [20],
where the interface moves at the same velocity as the wave in the

secondmedium. In this regime, continuous “pushing” leads to extreme

wave compression and amplification, ultimately forming a shockwave.

Although theoretically valid, operation at modulation velocities close

to 𝑣 = c∕n2 should be avoided in practice to prevent nonlinearity-

induced distortion.

𝜙G = 𝜔0

1− n1𝑣∕c
𝑣

z

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′

+𝜔0

(
n1
z

c
−
z− z0

b1

𝑣

)
.

(34)

The related instantaneous frequency at a given position

in the GRIN layer is obtained by differentiating the phase in

Eq. (34) with respect to time, yielding

𝜔G = −𝜔0

1− n1𝑣∕c
𝑣

𝜕

𝜕t

⎡⎢⎢⎢⎣
z

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′

⎤⎥⎥⎥⎦
= 𝜔0

1− n1𝑣∕c
1− nG(z− 𝑣t)𝑣∕c ,

(35)

where we have used the Leibniz integral rule. Equation (35)

reveals that the wave frequency in the GRIN layer varies

with time, through the function nG(z− vt) in the denomi-

nator, indicating a space–time chirping effect. This effect is

fundamentally different from the group-velocity dispersion

(GVD) chirping effect occurring in dispersive media [18],

since no dispersion is present. It will be explained shortly.

Furthermore, the chirp parameter 𝛼, whose

sign determines whether the field is up-chirping (𝛼 > 0) or

down-chirping (𝛼 < 0), is obtained by time-differentiating

the instantaneous frequency in Eq. (35), which gives

𝛼 = 𝜕𝜔G

𝜕t
= −𝜔0

(1− n1𝑣∕c)
c[1− nG(z, t)𝑣∕c]2

𝜕nG(z, t)

𝜕z
. (36)

This result indicates that the sign of the chirp, 𝛼 ≷ 0,

depends on

(1− n1𝑣∕c)𝜕nG(z, t)∕𝜕z ≶ 0. (37)

According to Eq. (37), the up- or down-chirping behav-

ior of the system is governed by the velocity regime, which

may be subluminal [𝑣 < c∕max(n1, n2)] or superluminal

[𝑣 > c∕min(n1, n2)] [21]. To understand the chirping mecha-
nismwithin the GRIN layer, we now focus on the subluminal

case – the superluminal case can be analyzed analogously.

In the subluminal regime, where 𝑣 < c∕n1,5 Eq. (37) simpli-
fies to

𝜕nG(z, t)∕𝜕z ≶ 0, (38)

5 When n1 > n2, the subluminal regime is strictly defined by 𝑣 < c∕n1.
However, if n1 < n2, the subluminal regime becomes 𝑣 < c∕n2, which
still falls within the range 𝑣 < c∕n1 since c∕n2 < c∕n1.
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indicating that a decreasing refractive index slope leads to

an increase in the instantaneous frequency, i.e., up-chirping,

and vice versa, i.e., down-chirping.

For simplicity, but without loss of generality, we con-

sider the simplest GRIN profile, the linear profile.

nG(z− 𝑣t) = n1 +
n2 − n1

D

(
z− 𝑣t − z0

b1

)
. (39)

Figure 3 represents the corresponding trajectories for

the wave crests incident at z = 0 at the times ti1,2,3,4,5,

as derived from the analytical solutions in the different

regions, given by Eqs. (13), (26), and (32). Figure 3(a) con-

siders the case where the refractive index increases within

the GRIN layer, i.e., n2 > n1, corresponding to the positive

spatial gradient 𝜕nG(z, t)∕𝜕z > 0, which leads to a down-

chirping according to the condition in Eq. (38). For a fixed

observation position zo within the GRIN region, the arrival

times of the five incident crests are denoted as to1,2,3,4,5. Due

to the space–time variation of nG, each crest experiences a

different local refractive index at the observation point, as

indicated by the color-coded dots in the figure. The latest

crest (purple dot) propagates fastest, as it has just entered

(a) (b)

Figure 3: Space–time diagrams of a linearly varying GRIN medium

[Eq. (39)] in the subluminal velocity regime (𝑣 = 0.25c) used for

the chirping analysis, with (a) a positive nG slope, where n1 = 1, n2 = 2

and D = 1.2𝜆0 with 𝜆0 = cT0 being the free-space wavelength, and (b)

a negative nG slope, where n1 = 2, n2 = 1 and D = 1.2𝜆0. The bottom

panels show the corresponding initial refractive index profiles, n(z, t = 0).

the GRIN region and hence encounters the lowest refractive

index. In contrast, the earliest crest (red dot) travels slowest,

as it is near the exit of the GRIN region and hence sees the

highest refractive index. As a result, the later, faster crest

gradually catches up with the earlier, slower one, leading to

an increasing temporal separation between adjacent crests.

This corresponds to a decreasing frequency over time, i.e.,

down-chirping, consistent with the down-chirping condi-

tion in Eq. (38). A similar mechanism applies in the case

of a decreasing refractive index, i.e., n2 < n1, where the

crests compress in time, resulting in up-chirping [Eq. (38)],

as illustrated in Figure 3(b).

Note that the wave exiting the GRIN layer is no longer

chirped. This because, at the exit points, all the crest have

experienced the entire GRIN profile and find, therefore,

themselves resynchronized to the velocity of the second

medium.

The relation (35) offers a practical foundation for

designing systemswith a prescribed chirp profile,where the

frequency varies according to a desired function f (t),

𝜔G = f (t). (40)

To realize such a frequency evolution, one can tailor

the refractive index profile of the GRIN layer, by substituting

Eq. (35) into (40), and solving for nG, yielding

nG =
c

𝑣

[
1− 𝜔0(1− n1𝑣∕c)

f (t)

]
, (41)

which provides a closed-form expression for engineering a

GRIN profile generating the desired chirp. As an example,

for a linear chirp, where

f (t) = a+ b(z− 𝑣t) (42)

with a and b being constants, the refractive index profile

becomes

nG =
c

𝑣

[
1− 𝜔0(1− n1𝑣∕c)

a+ b(z− 𝑣t)

]
. (43)

4.2 Comparison with other chirping
mechanisms

In this section, we review the main chirping mecha-

nisms and compare them with the GRIN-based mechanism

described in the previous section.

Dispersive systems are the most common conven-

tional means of generating chirping. In these systems,

group-velocity dispersion (GVD) [18] causes a frequency-

dependent group delay, resulting in a quadratic (or higher-

order) spectral phase and corresponding variations in

the instantaneous frequency across the pulse. Since this
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process alters only the spectral phase while leaving the

spectral amplitude unchanged, the temporal waveform is

scaled without spectral alteration, which limits the achiev-

able chirp range for a given input bandwidth. Chirping can

also arise in nonlinear systems [22]. A common example

is self-phase modulation (SPM) [18], in which a high-

intensity pulse propagating through a Kerr medium expe-

riences an intensity-dependent refractive index change,

imprinting a corresponding nonlinear phase on the pulse.

The resulting time-varying phase produces instantaneous

frequency shifts that evolve along the propagation dis-

tance. Because the effect scales nonlinearly with the opti-

cal intensity and interaction length, SPM-induced chirp-

ing offers limited independent control over the chirp pro-

file and is less straightforward to tune than dispersive

methods.

Recently, other chirping mechanisms have been

explored in LTV systems. In these structures, chirping

arises from various effects at a time-varying interface,

which generate new frequency components and thereby

alters the magnitude spectrum – in both shape and

bandwidth – within the linear regime. For instance,

Shlivinski and Hadad demonstrated transient chirped-like

radiation from a lossy, dispersive time-varying slab

into air, attributed to the conservation of longitudinal

wavenumber at the temporal interface [23]. Another

example involves accelerated space–time step-index

interfaces [24]–[26], where nonuniform modulation

velocities induce Doppler-based time-dependent frequency

transitions and associated chirping effects.

The space–time GRIN-based chirping system presented

in this paper represents a new class of LTV chirping

mechanisms. In these systems, chirping arises from the

space–time variation ofmediumpropertieswithin themod-

ulation slab, which induces local wave velocity differences

that modify the instantaneous frequency. Compared to the

other two LTV structures, GRIN-based systems offer greater

design flexibility for chirping and do not require compli-

cated nonuniform modulation velocities.

5 Illustrative results

Figure 4 plots the electric field magnitudes across two

space–time GRIN interfaces computed by Eqs. (13), (26),

and (32). Figure 4(a) corresponds to a hyperbolic tangent

GRIN interface profile. It may be observed that the field

experiences a gradual down-chirping in the GRIN region,

as expected from 𝛼 < 0 [Eq. (38)], before reaching a steady

frequency in the second medium. Figure 4(b) corresponds

to a sinusoidal GRIN interface profile. In this case, the field

(a) (b)

Figure 4: Electric field magnitude |Ex| across space–time GRIN
interfaces, computed by Eqs. (13), (26), and (32), for the input pulse

E(0, ct ) = e
−( t−4T0 )2∕2T20 e−i𝜔0 t , interface velocity 𝑣 = 0.2c, and

different GRIN profiles, (a) a hyperbolic tangent profile, nG(z − 𝑣t ) =
n1 + [(n2 − n1 )∕2][1+ 10 tanh

(
z − 𝑣t − z0

b1
− D∕2

)
∕D], with

n1 = 1.5, n2 = 3 and D = 2𝜆0, and (b) a sine profile, nG(z − 𝑣t ) =
n1 + [0.8+ n2 − n1] sin

[
2𝜋
(
z − 𝑣t − z0

b1

)
∕D
]
, with n1 = n2 = 2

and D = 2𝜆0. The top panels show the space–time diagrams of

the normalized electric field magnitude [|Ex(z, ct )| = |Ex(z, ct )|∕
max(|Ex(0, ct )|)] under modulated Gaussian pulse excitation, where the
white solid lines mark the two boundaries of the GRIN region. The middle

panels show the refractive index profiles n(z, t) [Eq. (8)] at t = 0.

The bottom panels show the normalized spectrograms, |Ex(t, 𝜔)|2,
with the input pulse being replaced by the quasi-continuous wave

E(0, t ) = e−i𝜔0 trect(t∕𝜏 ) (with 𝜏 = 30T0), for easier visualization, across

the GRIN layer at z = 4.5𝜆0 between points Q1 and Q2. The dashed black

line corresponds to the instantaneous frequency𝜔G(t) given by

Eq. (35).

undergoes nonmonotonic, twisted chirpingwithin the GRIN

layer with varying alternating chirping sign [Eq. (38)], and

eventually recovers its original frequency after exiting the

modulated region. In both cases, the closed-formfield distri-

butions in the figure have been validated against full-wave

finite-difference time-domain (FDTD) simulations [15], [24]

(see Appendix C).

Figure 5 presents two linear-chirping GRIN designs

using Eq. (43). In Figure 5(a), the design is performed in a

co-moving (up-chirping) subluminal regime with 𝑣 = 0.3c,
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(a) (b)

Figure 5: Design of a linear-chirping [Eq. (42)] GRIN system,

corresponding to the refractive index profiles obtained from Eq. (43) and

shown in the top panels. The input pulse is the same quasi-continuous

wave as in the bottom panels of Figure 4. (a) Up-chirping system with

n1 = 2, n2 = 1.58, 𝑣 = 0.3c (subluminal regime), D = 2𝜆0, a = 1 and

b = −0.4. (b) Down-chirping system with n1 = 1.2, n2 = 2.22, 𝑣 = −0.85c
(superluminal regime), D = 5𝜆0, a = 1 and b = −0.2. The top and
bottom panels show the GRIN profiles at t = 0 and the corresponding

spectrograms, |Ex(t, 𝜔)|2, respectively. The dashed black lines represent
the target linear-chirp function f (t) [Eq. (42)].

while in Figure 5(b), it corresponds to a contra-moving

(down-chirping) superluminal regime with 𝑣 = −0.85c. The
spectrograms in the bottom panels, corresponding to the

GRIN profiles in the top panels, precisely match the theo-

retical predictions (see Appendix C).

6 Conclusion and discussion

We have presented an exact electromagnetic solution to the

problem of wave propagation across arbitrary space–time

modulated GRIN interfaces and a detailed description of

the related chirping effects. This solution offers a novel

approach to chirp generation, which can be realized

using artificial transmission lines atmicrowave frequencies

[27]–[29] and acoustic or optical wave-based modulation

techniques at optical frequencies [8]–[10], [30].

In the microwave regime, such interfaces can be real-

ized in the subluminal regime by injecting pump pulses

into transmission lines loaded with nonlinear capaci-

tive and inductive elements, such as varactors and fer-

rite cores [28]. The pump signal applied at the terminal

propagates along the line, inducing a dynamic, intensity-

dependent refractive index variation that forms a moving

GRIN interface between regions with different electromag-

netic properties. A linear probe signal interacting with this

modulation interface undergoes the designed chirping

effect. While achieving superluminal modulation velocities

is impossible with such a pump-probe platform, it could be

potentially realized using switched transmission lines com-

posed of subwavelength units spaced by Δz, each loaded

with a sequence of elements having different parameters

controlled by switches to create an effective spatial gradient,

nG(z). An external controller, such as a field-programmable

gate array (FPGA), actuates these switches with a time inter-

val Δt, enabling sequential time delays [27]. By adjusting

the ratio Δz∕Δt, this spatial gradient can propagate at an

effectively unlimited velocity 𝑣 = Δz∕Δt ∈ (0,∞), forming

an effective moving GRIN interface, nG(z− vt).

In the optical regime, similar pump–probe setup can be

achieved by launching a strong pump obliquely at an angle

𝜃 relative to the probe, producing a modulation velocity

𝑣 = c∕sin𝜃 ∈ (0,∞) that spans both subluminal and super-

luminal regimes [30]. Dynamic permittivity modulation can

be realized via surface or bulk acoustic waves in piezoelec-

tric crystals, ultrafast laser pulses in semiconductor slabs,

or epsilon-near-zero (ENZ) materials for higher refractive

index contrast [10]. Dynamic control of permeability can

be achieved through the magneto-optical response of gyro-

magnetic materials. Experimental challenges in realizing

arbitrary GRIN profiles may be addressed by employing

arbitrary waveform generators, enabling synthesis of the

desired modulation profiles with high precision. This paper

advances the modeling of space–time dispersive systems

and introduces a new paradigm for linear pulse shaping.

The approach can also be integrated with various platforms

for dispersion compensation, enabling enhanced control

over wave propagation in dynamic media.
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Appendix A Derivation of Eq. (26)

In this appendix, we provide a detailed derivation of Eq. (26)

given in Section 3.2. Substituting Eq. (25) into (3), we get

EG(z, t)

=
∞

∫
−∞

𝛿
{
t + 1

𝑣
F−1
[
z+ CG(t

′ )
]
− z

𝑣

}
E(0, t′ ) dt′.

(44)

To simplify the notation, we define the argument of the

delta function in Eq. (44) as

gG(t
′ ) = t + 1

𝑣
F−1
[
z+ CG(t

′ )
]
− z

𝑣
. (45)

Moreover, we use the following property of the delta

function [31]

∞

∫
−∞

𝛿
[
gG(t

′ )
]
f (0, t′ ) dt′ =

f (0, t′
G
)|g′

G

(
t′
G

)| , (46)

where gG
(
t′
G

)
= 0 and g′

G
(⋅) = dgG(⋅)∕dt′. Therefore, we

first solve for the root t′
G
of gG(t

′) = 0, i.e.,

t + 1

𝑣
F−1
[
z+ CG

(
t′
G

)]
− z

𝑣
= 0, (47)

which gives

CG
(
t′
G

)
= F(𝜉 )− z. (48)

Substituting Eq. (23) into the left-hand side of Eq. (48)

and solving for t′
G
, we find

t′
G
= − 1− n1𝑣∕c

𝑣

[
F(𝜉 )− F

(
z0
b1

)]
− n1

z

c
+
z− z0

b1

𝑣
. (49)

Applying Eq. (20) and performing the change of vari-

ables z′ = 𝜉 + vt, the difference in the square brackets of

Eq. (49) can be written as

F(𝜉 )− F
(
z0
b1

)
=

z

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′. (50)

Substituting Eq. (50) into (49) yields the final expression

t′
G
= − 1− n1𝑣∕c

𝑣

z

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′

− n1
z

c
+
z− z0

b1

𝑣
.

(51)

Next, we determine the derivative of gG(t
′) [Eq. (45)]

with respect to t′ by applying the chain rule and introducing

the substitution u = z+ CG(t
′), yielding

dgG(t
′ )

dt′
= 1

𝑣

dF−1(u)
du

dCG(t
′ )

dt′
. (52)

Let 𝑤 = F−1(u), i.e., u = F(𝑤). Then the derivative

dF−1(u)∕du on the right-hand side of Eq. (52) can be

expressed as

dF−1(u)
du

= d𝑤

du
= 1

du

d𝑤

= 1

F′(𝑤)
= 1

F′[F−1(u)]
, (53)

where F′(⋅) denotes the derivative of F with respect to its

argument. Using Eq. (23), the derivative dCG(t
′)∕dt′ on the

right-hand side of Eq. (52) is given by

dCG(t
′ )

dt′
= − 𝑣

1− n1𝑣∕c
. (54)

Substituting Eqs. (53) and (54) into (52), we obtain

dgG(t
′ )

dt′
= − 1

1− n1𝑣∕c
1

F′[F−1(u)]
. (55)

At the root t′
G
, using Eq. (47), we find

F−1
[
u
(
t′
G

)]
= z− 𝑣t = 𝜉. (56)

Then, applying the definition in Eq. (20), we get

F′
{
F−1
[
u
(
t′
G

)]}
= F′(𝜉 ) = 1

1− nG(𝜉 )𝑣∕c
. (57)

Substituting Eq. (57) into (55) and using the relation 𝜉 =
z− vt, we find the derivative of gG(t

′) evaluated at the root

dgG(t
′ )

dt′
||||t′
G

= − 1− nG(z− 𝑣t)𝑣∕c
1− n1𝑣∕c

. (58)

Finally, substituting Eqs. (45), (51), and (58), along with

the relation f (0, t′) = E(0, t′), into the delta function identity

[Eq. (46)], we evaluate the integral in Eq. (44) and find the

result in Eq. (26).

Appendix B Derivation of Eq. (32)

In this appendix, we provide a detailed derivation of Eq. (32)

given in Section 3.3. Substituting Eq. (31) into (3), we get

E2(z, t) =
∞

∫
−∞

𝛿
[
t − n2

c
z− C2(t

′ )
]
E(0, t′ ) dt′. (59)

We define the argument of the delta function in Eq. (59)

as

g2(t
′ ) = t − n2

c
z− C2(t

′ ), (60)

where C2(t
′) is given in Eq. (30b).

To evaluate the convolution in Eq. (59), we use again the

property [31]

∞

∫
−∞

𝛿
[
g2(t

′ )
]
f (0, t′ ) dt′ = f (0, t′

2
)|g′

2

(
t′
2

)| , (61)
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where g2
(
t′
2

)
= 0 and g′

2
(⋅) = dg2(⋅)∕dt′. Substituting

Eq. (30b) into (59) and solving g2(t
′) = 0 for t′

2
, we obtain

t′
2
= 1− n1𝑣∕c

1− n2𝑣∕c

{
t − n2

c
z+ n2 − n1

1− n1𝑣∕c
z0
b1

c
+ D

𝑣

− 1− n2𝑣∕c
𝑣

[
F
(
z0
b1
+ D
)
− F
(
z0
b1

)]}
.

(62)

Applying Eq. (20) and performing the substitution z′ =
𝜉 + vt, the difference in the square brackets of Eq. (62) can

be written as

F
(
z0
b1
+ D
)
− F
(
z0
b1

)
=

z0
b1
+D+𝑣t

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′.

(63)

Substituting Eq. (63) into (62) yields the final expression

t′
2
= 1− n1𝑣∕c

1− n2𝑣∕c

[
t − n2

c
z+ n2 − n1

1− n1𝑣∕c
z0
b1

c
+ D

𝑣

− 1− n2𝑣∕c
𝑣

z0
b1
+D+𝑣t

∫
z0
b1
+𝑣t

1

1− nG(z
′ − 𝑣t)𝑣∕c dz′

⎤⎥⎥⎥⎦
.

(64)

The derivative of g2(t
′) [Eq. (60)] with respect to t′,

evaluated at the root, is then found as

dg2(t
′ )

dt′
||||t′
2

= dg2(t
′ )

dt′
= − 1− n2𝑣∕c

1− n1𝑣∕c
. (65)

Finally, substituting Eqs. (60), (64), and (65), along with

the relation f (0, t′) = E(0, t′), into the delta function identity

[Eq. (61)], we evaluate the integral in Eq. (59) and find the

result in Eq. (32).

Appendix C FDTD validation

Figure 6 compares the results obtained by the theory in

Figure 4 and by the FDTD method presented in [15], [24].

Specifically, it plots the field (top panels) and spectrogram

(bottom panels) differences

𝛿E = |Ex − EFDTD|
max(Ex )

× 100 % (66a)

and

𝛿S =
|||||
|Ex|2 − |EFDTD|2
max

(|Ex|2)
||||| × 100 %, (66b)

between the theoretical and simulation results, where Ex
corresponds to the theoretical result and EFDTD corresponds

to the simulation result. As shown inFigure 6, the theoretical

(a) (b)

Figure 6: Difference between the exact theoretical results in Figure 4

and full-wave FDTD results, with difference attributed to simulation

(meshing) approximation errors.

(a) (b)

Figure 7: Same as in Figure 6 but for Figure 5.

results closely match the simulation results (less than 5%
difference). This qualitatively validates the theory, while the

fact that the theoretical results are exact (no approximation)

suggests that the difference is due to the simulation (mesh-

ing) approximation errors, as we could verify by decreasing

the mesh size up to the memory capability of our computer.

Figure 7 shows the corresponding difference for the

designed linear-chirping GRIN interfaces shown in Figure 5,

leading to the same conclusion.
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