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Abstract: Space—time modulated systems have recently
emerged as a powerful platform for dynamic electromag-
netic processing in both space and time. Most of the related
research so far has assumed abrupt parameter profiles.
This paper extends the field to generalized graded-index
(GRIN) interfaces, which are both more practical than ideal
profiles and offer new avenues for wave manipulations. It
presents an exact solution for wave propagation across arbi-
trary space—time modulated GRIN interfaces and describes
versatile chirping effects. The solution is based on a gen-
eralization of the impulse response method from linear
time-invariant to linear space-time-varying systems. The
proposed framework shows that space—time GRIN systems
represent a novel approach for generating a new form of
chirping that is not inherently based on dispersion, with
promising applications in pulse shaping and signal process-
ing.

Keywords: space—time modulation; graded-index media;
generalized impulse response; instantaneous frequency;
chirping

1 Introduction

Space-time modulation systems — media whose parame-
ters vary dynamically in both space and time under the
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influence of an external traveling-wave modulation — have
recently enabled a range of novel applications, including
magnet-free nonreciprocity [1], frequency transitioning [2],
parametric amplification [3], [4], and the breaking of funda-
mental bounds [5].

Space—time interfaces are the fundamental building
blocks - or “meta-atoms” — of space—time modulation sys-
tems. Their understanding and control are, therefore, essen-
tial. These interfaces can be of two distinct types, as illus-
trated in Figure 1. The first is the step-index interfaces, where
the transition width is much smaller than the wavelength, as
shown in Figure 1(a). Such interfaces have been extensively
studied in the literature [6], [7] and are known to induce
a uniform frequency shifting of the incoming wave. The
second type is the graded-index (GRIN) interfaces. These
interfaces, shown in Figure 1(b), may be considered more
practical, as physical modulations necessarily occur grad-
ually at the microscopic level [8]-[10], and can also sup-
port a broader range of wave transformations. In particular,
they induce nonuniform frequency transitions and produce
wave chirping. While some studies have addressed the lim-
iting case of pure-time GRIN interfaces [11]-[14], general
space—time GRIN interfaces [15] remain an essentially unex-
plored topic.

This paper investigates the wave transformations
induced by space-time GRIN interfaces, introducing a gen-
eralization of the impulse response method from linear
time-invariant (LTI) to linear (space-) time-varying (LTV)
systems. Unlike the Wentzel-Kramers—Brillouin (WKB)
[11]-13] or transfer-matrix method (TMM) [15] commonly
used in prior works, this approach provides an exact solu-
tion. We derive closed-form solutions for both the analy-
sis and synthesis problems and describe the corresponding
chirping effects. All the results are validated through full-
wave simulations.

For simplicity, we restrict our attention to systems
that are 1 + 1D, with dimensions z and ¢, involving GRINs
of uniform velocity, i.e., v = vZ = const., boundary and
intrinsic impedance matching, i.e., #; = 4/u;/€; = const.
for i=1, G,2, and no dispersion, i.e., n; # n;(w) for i =1,
G, 2.
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Figure 1: Space-time modulation interfaces, with basic structures (top)
and space-time diagrams in the harmonic-wave regime (bottom).

(a) Step-index modulation, where the refractive index changes abruptly
from n, to n, at an interface initially located at zg and moving with

a constant velocity v. (b) Graded-index (GRIN) modulation, where

the refractive index traditions smoothly from n, to n, via ng over

the interval [0, 2%, | with width D = 20, — 20, The subscripts G and b

denote the GRIN layer and the boundary, respectively.

2 Generalized impulse response
method

In this section, we shall derive the generalized impulse for
the GRIN system in Figure 1(b), which is generically repre-
sented in Figure 2.
In the frequency domain, the one-dimensional
Helmholtz equation may be expressed as
2F -

L | RwE =0, )

0z
where k(®) = w+/ue = wn/cis the wavenumber. The gen-
eral solution to Eq. (1) can be written as

E(z, w) = H(z, ®)E(0, w), (2a)

where

H(Z, CU) — eik(w)z (Zh)

represents the frequency response of the system.

Applying the temporal inverse Fourier transform to
Eq. (2), as suggested in Figure 2(a), we obtain the correspond-
ing time-domain relation

oo

E(z,t) = / h(z,t,t)E(0,t') dt’, (3)

—0o0
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Figure 2: Generalized impulse response method applied to the space-
time GRIN interface system in Figure 1(b). (a) Responses in the fre-
quency and time domains. (b) Response of an arbitrary space-time
GRIN modulation system. The top panel shows the space-time diagram
with the trajectory of the impulse 5(t — t') and its output 5[t — t,(z,t')],
where p, , are the space-time intersection points of the impulse with

the two boundaries of the GRIN layer, initially located at zfﬂ ,- The bottom

panel shows the initial refractive index profile n(z, t = 0), which moves
at a uniform velocity v.

where h(z, t,t') is the impulse response [16], representing
the system’s response to the impulse E(0, t) = 5(t — t').!

In LTI systems, the impulse response depends solely on
the time difference between the output and input signals,
following the time-shift invariance property h(z,t,t') =
h(z,t —t') [18]. Xiao et al. extended the impulse response
method from LTI to purely time-varying systems [19], where
the lack of time invariance — or nonstationarity — leads to
an impulse response that independently depends on ¢ and
t',ie.,

h(z,t,t') # h(z,t = t'). (@))]

In space—time varying systems, h(z, t, t') also involves
the modulation velocity v, which further increases the
complexity of the analysis. We now introduce the gener-
alization of the impulse response method to space—time
GRIN systems, explicitly incorporating v, with the aid of
Figure 2(b), where a space—time diagram illustrates the
impulse trajectory.

As shown in the top panel of Figure 2(b), the input
impulse experiences a propagation delay as it propagates
through the system, resulting in the impulse response

1 The impulse response acts as a time-domain version of the Green’s
function in the space-domain relation E(r) = iwu f /G, r)J@’) dv’
[17], with E(0,t') in Eq. (3) playing the role of the current source J(r’)
and h(z, t, t') corresponding to the Green’s function G(r, r’).
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h(Z, ta t/) = 6 [t - tn(Za t’)] s (5)

where t,(z, t') is the arrival time of the impulse at the posi-
tion z assuming an input time of ¢’ in the GRIN system with
space—time varying refractive index n [brown line in the top
panel of Figure 2(b)].2 The function ¢,(z, ') is determined by
the wave trajectory equation

dt
cd—z" =n(z,t,), (6)

subject to the boundary conditions in different regions

t0) =1t and t,(2y1,) = by, ™

where z,, and t;, , are the coordinates of the intersection
points p; , of the impulse with the first and second modula-
tion interfaces, respectively [Figure 2(b)].

To derive the electromagnetic field in each region of the
space—time GRIN system, we will apply the following four
steps to each of the three regions in Figure 2(b): (i) deter-
mine the trajectory equation and corresponding boundary
condition for the concerned region; (ii) solve the trajectory
equation for the arrival time t,(z,t'); (iii) substitute the
resulting ¢,(z) into Eq. (5) to obtain the impulse response
h(z,t,t'); and (iv) substitute that response into Eq. (3) to
evaluate the output field E(z, t).

3 Field solutions

In this section, we shall derive the general field solutions
for the GRIN system in Figure 2(b) using the generalized
impulse response derived in Section 2.

The refractive index profile along the impulse trajec-
tory is given by

0
n, O<z<zb1+vt,
nz, ) =qng(z—vt), z), +vt<z<z),+uvt, 6
n, z>z), +ut,

where n; and n, are the (constant) refractive indices of
media 1 and 2, respectively, and

0 _ 0
z,=2z,+ D. 9)

2 In a nondispersive system, the impulse response exhibits the form
of a delta function as all the frequency components propagate at the
same velocity, and the input impulse remains undistorted. In contrast,
in dispersive systems, not considered here, the frequency-dependent
group velocity causes temporal spreading, and the impulse response
becomes a more complex function of ¢’ [16].
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The system can then be divided into the three corre-
sponding regions, which we will address one by one.

3.1 First-medium (n,) region

Substituting n(z, t,) = n; into Eq. (6), we obtain the wave
trajectory equation

dt
cd—z" =ny, (10a)
where the boundary condition is
t,(0)=t. (10b)

Solving Eq. (10) for ¢t,(z, t') yields then the impulse tra-
jectory function

t(z,t)="t + %z, §%)

whose insertion into Eq. (5) provides the impulse response

h(z,t,t’):é(t—t’—nlﬁ). (12)
c

Note that the argument of the impulse function in this
relation represents a traveling-wave, due to the uniform
nature of the propagation medium. Finally, substituting
Eq. (12) into (3) and solving for the output field E(z, t), we
get the field,

E(zt) = E(o, t— nlg), (13)

where E(-,-) is an arbitrary field function (e.g., harmonic
plane wave or Gaussian pulse) of the space (first entry) and
time (second entry) variables.?

3.2 GRIN (ng) region

Substituting now n(z, t,) = n;(z —vt,) into Eq. (6), we
obtain the wave trajectory equation in the GRIN region,
dt
2 =ng(z —vt)).
dz ol n)
The corresponding space-time boundary condition
with medium 1 corresponds to the intersection point p, [see
Figure 2(b)], whose coordinates are related as

(14)

n
=t + ?lzbl (15a)

and

3 In Eq. (13), the bracket (-) indicates a functional argument. At other
places in the paper, the argument may involve the square bracket
[-]1 or the curl bracket {-}, because we use the bracket precedence
order (-) — [-] — {-}. Whether the brackets indicate an argument or a
multiplicative factor should be clear everywhere from the context.
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Zyy = 2, + Uty (15b)

Solving Eq. (15) for z,,; and t;;;, we find the coordinates
of p, tobe
vt + 27,

V4 — and t, =
bl = 1—Tlll)/C b1 =

' +nz) /c

1- 1U/c (16)

To solve Eq. (14) with the related boundary condition,
we let £ = z — vt,,, which implies & =1—- 052, or

g, _1(,_d¢
dz v dz )’

Substituting now Eq. (17) into (14), and separating the £
and z terms, leads to the differential equation

@an

dé
—— =z, 18
1—ng(&v/c 8)

which integrates to

1
/1— ng(év/c dé

where C; is an integration constant. For generalization to
arbitrary GRIN profiles, we define the left-hand side term of
this relation as the function

=Z+ CG’ (19)

1
F&)= [ ———— d¢é, 20
© /1_%(5)0/0 £ 20)
which allows to express Eq. (19) in the compact form
F(&) =z +C. (21

To determine the integration constant C in this rela-
tion, we first apply the boundary condition t,(z,,) = t;;
(point p,), which yields

F(Zbl - Utbl) = Zbl + CG' (22)

Next substituting Eq. (16) into this relation and solve for
C;, We obtain

ZO
Colt)=——0 ¢ — L4 F(2%). (23
o(t) 1-nov/c  1- nlu/c+ (201) 23

Finally, substituting Eq. (23) and the relation ¢ = z — vt,
into Eq. (21), and solving for t,, we find
t(z,1) = —%F‘l 2+ Co()] + 2 (24)
where F~(-) is the inverse function of F(-).
Substituting Eq. (24) into (5), we obtain now the impulse
response

M) =6{t+ T+ -2} @9

DE GRUYTER

where C(t') is given in Eq. (23) and F(-) is defined in Eq. (20).
Finally, substituting Eq. (25) into (3), and solving for the
output field E(z, ¢t), yields (see Appendix A)

1-nu/c
Ei(z,t) = |
o(z. 0 ‘1—nG(z—ut)v/c
zZ
X E 0,—1_"1”/6/ 1 dz/
v 1—ng(Z —vt)v/c
20 +ot

(26)
where E(-, -) is the same field function of space and time as
in Eq. (13).

3.3 Second-medium (n,) region

Substituting now n(z, t,) = n, into Eq. (6), we obtain

¢t =n,, 27

dz
where the space-time boundary condition with the GRIN
medium corresponding to the intersection point p,, whose
coordinates are related as

t, = —%F‘l [z, + C(t)] + Z% (282)
and
Zyy = 2, + Uty (28b)
and found by solving Eq. (28) for z;, and ¢, as
and
F(2) —C.(t') — 20
tyy = (2) = G =2, (29b)

v

Solving next Eq. (27) for t,(z, t'), we obtain the impulse
trajectory function

ty(z,t) = %z +G, (30a)

where C, is a new integration constant, which is obtained
by applying the boundary condition ¢,(z,,) = ¢, [Eq. (29),
point p,] to Eq. (30a) and solving the resulting expression for
C,as

1—n2v/ct,

C(t) =
At) 1-no/c

1-n,v/c
#1710 4 p)

n,—n 20 D
—F(2)] -2 T =

1-nv/c ¢ (30b)
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Finally, substituting Eq. (30) into (5), we get the impulse
response
hz,t,t') = 6|t — %z - Cz(t’)], 31)
where C,(t') is given in Eq. (30D).
Substituting Eq. (31) into (3) and solving for the output
field E(z, t) (see Appendix B), we obtain the field*

1-nu/c
E(z,t) = | — L~
2,0 ll—nzu/c
0
xpdo Lmb/el M,y Mmm Zy | D
1-nyv/c c 1-novfcc v
20, +D+ut
_1-nw/c / 1 iz’
v 1—-ng(Z —vt)v/c
20 +ut

(32)

Equations (13), (26), and (32) represent the key results

of this paper. They accommodate arbitrary field waveforms
E(0, ©) and arbitrary GRIN profiles n;(z — vt).

4 Chirping physics

Due to the space- and time-varying properties of the GRIN
medium, the wave behavior in our system is fairly complex,
as evident in Eq. (26). In this section, we show that this
system produces a new type of wave chirping and compare
it with other chirping mechanisms.

4.1 Chirping in the GRIN layer

We consider a time-harmonic incident field, which reads at
z=0,

E(0,t) = e~i@o (33)

where w, is assumed to be constant. Other types of fields can
be treated similarly. Substituting Eq. (33) into (26) — specif-
ically, inserting the content of the second slot of E(:,-) in
Eq. (26) into the relation ¢p; = —w,t(z) — we obtain the wave
phase in the GRIN layer as

4 In Eq. (32), the denominator of the factor I=mv/e yanishes when

v = ¢/n,. This corresponds to one of the interlumniﬁ)af boundaries [20],
where the interface moves at the same velocity as the wave in the
second medium. In this regime, continuous “pushing” leads to extreme
wave compression and amplification, ultimately forming a shock wave.
Although theoretically valid, operation at modulation velocities close
to v = c/n, should be avoided in practice to prevent nonlinearity-
induced distortion.

Z. Li et al.: Space-time graded-index interfaces and related chirping == 3215

V4

o L= n/c / 1 dz’
° 1—ng(Z — vt)v/c

0
z,, ot

0
VA Z—127
+C()0<nlc - Ubl>

The related instantaneous frequency at a given position
in the GRIN layer is obtained by differentiating the phase in
Eq. (34) with respect to time, yielding

¢ =
(34)

V4

1-nuv/c o / 1 '
L LV d
P ot 1—ng(Z —vt)v/c z

0
Zh1+l)t

COG=

—w 1-nuv/c
T %M —ngz-vtv/c’
(35
where we have used the Leibniz integral rule. Equation (35)
reveals that the wave frequency in the GRIN layer varies
with time, through the function ng(z — vt) in the denomi-
nator, indicating a space—time chirping effect. This effect is
fundamentally different from the group-velocity dispersion
(GVD) chirping effect occurring in dispersive media [18],
since no dispersion is present. It will be explained shortly.
Furthermore, the chirp parameter «, whose
sign determines whether the field is up-chirping (@ > 0) or
down-chirping (¢ < 0), is obtained by time-differentiating
the instantaneous frequency in Eq. (35), which gives
o= owg _ —w 1-nuv/c) dnglz,t)
ot Ocll—ng(z, v/c> o0z

(36)

This result indicates that the sign of the chirp, « 2 0,
depends on
(1—nyv/c)ong(z,t)/0z S 0. 37
According to Eq. (37), the up- or down-chirping behav-
ior of the system is governed by the velocity regime, which
may be subluminal [v < ¢/max(n;,n,)] or superluminal
[v > ¢/min(n,, n,)] [21]. To understand the chirping mecha-
nism within the GRIN layer, we now focus on the subluminal
case — the superluminal case can be analyzed analogously.
In the subluminal regime, where v < ¢/n,,> Eq. (37) simpli-
fies to

ong(z,t)/0z £ 0, (38)

5 Whenn, > n,, the subluminal regime is strictly defined by v < ¢/n,.
However, if n; < n,, the subluminal regime becomes v < c¢/n,, which
still falls within the range v < ¢/n, since ¢/n, < c/n.
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indicating that a decreasing refractive index slope leads to
anincrease in the instantaneous frequency, i.e., up-chirping,
and vice versa, i.e., down-chirping.

For simplicity, but without loss of generality, we con-
sider the simplest GRIN profile, the linear profile.

nez—ovt)=n, + 2= "M

(z—vt—12)). (39)

Figure 3 represents the corresponding trajectories for
the wave crests incident at z =0 at the times t;,34s,
as derived from the analytical solutions in the different
regions, given by Eqgs. (13), (26), and (32). Figure 3(a) con-
siders the case where the refractive index increases within
the GRIN layer, i.e, n, > n,, corresponding to the positive
spatial gradient ong(z,t)/0dz > 0, which leads to a down-
chirping according to the condition in Eq. (38). For a fixed
observation position z, within the GRIN region, the arrival
times of the five incident crests are denoted as ¢,y , 5 4 5. Due
to the space—time variation of ng, each crest experiences a
different local refractive index at the observation point, as
indicated by the color-coded dots in the figure. The latest
crest (purple dot) propagates fastest, as it has just entered

12¢T), 12¢Th T
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Figure 3: Space-time diagrams of a linearly varying GRIN medium

[Eqg. (39)] in the subluminal velocity regime (v = 0.25c) used for

the chirping analysis, with (a) a positive n; slope, wheren, =1,n, =2
and D = 1.24, with 4, = T, being the free-space wavelength, and (b)

a negative ng slope, where n, = 2,n, = 1and D = 1.24,. The bottom
panels show the corresponding initial refractive index profiles, n(z, t = 0).
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the GRIN region and hence encounters the lowest refractive
index. In contrast, the earliest crest (red dot) travels slowest,
as it is near the exit of the GRIN region and hence sees the
highest refractive index. As a result, the later, faster crest
gradually catches up with the earlier, slower one, leading to
an increasing temporal separation between adjacent crests.
This corresponds to a decreasing frequency over time, i.e.,
down-chirping, consistent with the down-chirping condi-
tion in Eq. (38). A similar mechanism applies in the case
of a decreasing refractive index, ie., n, < n;, where the
crests compress in time, resulting in up-chirping [Eq. (38)],
as illustrated in Figure 3(b).

Note that the wave exiting the GRIN layer is no longer
chirped. This because, at the exit points, all the crest have
experienced the entire GRIN profile and find, therefore,
themselves resynchronized to the velocity of the second
medium.

The relation (35) offers a practical foundation for
designing systems with a prescribed chirp profile, where the
frequency varies according to a desired function f(t),

wg = f(1). (40)

To realize such a frequency evolution, one can tailor
the refractive index profile of the GRIN layer, by substituting
Eq. (35) into (40), and solving for ng, yielding

ng = el w,(1—nv/c)

41
v 7o) , (41

which provides a closed-form expression for engineering a
GRIN profile generating the desired chirp. As an example,
for a linear chirp, where

f()=a+b(z - vt) 42)

with a and b being constants, the refractive index profile
becomes
n, = el wy(1—nv/c)

v a+biz—-ut) | 43)

4.2 Comparison with other chirping
mechanisms

In this section, we review the main chirping mecha-
nisms and compare them with the GRIN-based mechanism
described in the previous section.

Dispersive systems are the most common conven-
tional means of generating chirping. In these systems,
group-velocity dispersion (GVD) [18] causes a frequency-
dependent group delay, resulting in a quadratic (or higher-
order) spectral phase and corresponding variations in
the instantaneous frequency across the pulse. Since this
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process alters only the spectral phase while leaving the
spectral amplitude unchanged, the temporal waveform is
scaled without spectral alteration, which limits the achiev-
able chirp range for a given input bandwidth. Chirping can
also arise in nonlinear systems [22]. A common example
is self-phase modulation (SPM) [18], in which a high-
intensity pulse propagating through a Kerr medium expe-
riences an intensity-dependent refractive index change,
imprinting a corresponding nonlinear phase on the pulse.
The resulting time-varying phase produces instantaneous
frequency shifts that evolve along the propagation dis-
tance. Because the effect scales nonlinearly with the opti-
cal intensity and interaction length, SPM-induced chirp-
ing offers limited independent control over the chirp pro-
file and is less straightforward to tune than dispersive
methods.

Recently, other chirping mechanisms have been
explored in LTV systems. In these structures, chirping
arises from various effects at a time-varying interface,
which generate new frequency components and thereby
alters the magnitude spectrum - in both shape and
bandwidth - within the linear regime. For instance,
Shlivinski and Hadad demonstrated transient chirped-like
radiation from a lossy, dispersive time-varying slab
into air, attributed to the conservation of longitudinal
wavenumber at the temporal interface [23]. Another
example involves accelerated space-time step-index
interfaces [24]-[26], where nonuniform modulation
velocities induce Doppler-based time-dependent frequency
transitions and associated chirping effects.

The space—time GRIN-based chirping system presented
in this paper represents a new class of LTV chirping
mechanisms. In these systems, chirping arises from the
space—time variation of medium properties within the mod-
ulation slab, which induces local wave velocity differences
that modify the instantaneous frequency. Compared to the
other two LTV structures, GRIN-based systems offer greater
design flexibility for chirping and do not require compli-
cated nonuniform modulation velocities.

5 Illustrative results

Figure 4 plots the electric field magnitudes across two
space—time GRIN interfaces computed by Egs. (13), (26),
and (32). Figure 4(a) corresponds to a hyperbolic tangent
GRIN interface profile. It may be observed that the field
experiences a gradual down-chirping in the GRIN region,
as expected from a < 0 [Eq. (38)], before reaching a steady
frequency in the second medium. Figure 4(b) corresponds
to a sinusoidal GRIN interface profile. In this case, the field

Z. Li et al.: Space-time graded-index interfaces and related chirping = 3217
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Figure 4: Electric field magnitude |E, | across space-time GRIN
interfaces, computed by Egs. (13), (26), and (32), for the input pulse

E(0, ct) = e~/ g-iont interface velocity v = 0.2¢, and

different GRIN profiles, (a) a hyperbolic tangent profile, n5(z — vt) =

ny +[(n, —n;)/2][1 410 tanh(z — vt — 20, — D/2) /D], with

n, =15,n, =3 and D = 24, and (b) a sine profile, n5(z — vt) =

Ny +[0.8 + n, — nysin[27(z — vt — 22, ) /D], with n, = n, = 2

and D = 24,. The top panels show the space-time diagrams of

the normalized electric field magnitude [|FX(Z, ct)| = |E (z,ct)|/
max(|£, (0, ct)|)] under modulated Gaussian pulse excitation, where the
white solid lines mark the two boundaries of the GRIN region. The middle
panels show the refractive index profiles n(z, t) [Eq. (8)] at t = 0.

The bottom panels show the normalized spectrograms, |Ex(t, )%,

with the input pulse being replaced by the quasi-continuous wave
E(0,t) = e~i™otrect(t /) (with = = 30T,), for easier visualization, across
the GRIN layer at z = 4.54, between points Q, and Q,. The dashed black
line corresponds to the instantaneous frequency wg(t) given by

Eq. (35).

undergoes nonmonotonic, twisted chirping within the GRIN
layer with varying alternating chirping sign [Eq. (38)], and
eventually recovers its original frequency after exiting the
modulated region. In both cases, the closed-form field distri-
butions in the figure have been validated against full-wave
finite-difference time-domain (FDTD) simulations [15], [24]
(see Appendix C).

Figure 5 presents two linear-chirping GRIN designs
using Eq. (43). In Figure 5(a), the design is performed in a
co-moving (up-chirping) subluminal regime with v = 0.3c,
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Figure 5: Design of a linear-chirping [Eq. (42)] GRIN system,
corresponding to the refractive index profiles obtained from Eq. (43) and
shown in the top panels. The input pulse is the same quasi-continuous
wave as in the bottom panels of Figure 4. (a) Up-chirping system with

n, =2,n, =1.58, v = 0.3¢ (subluminal regime), D = 24y, a = 1and

b = —0.4. (b) Down-chirping system with n, = 1.2, n, = 2.22, v = —0.85¢
(superluminal regime), D = 54y, a = 1and b = —0.2. The top and
bottom panels show the GRIN profiles at t = 0 and the corresponding
spectrograms, |E'X(t, )|?, respectively. The dashed black lines represent
the target linear-chirp function £(t) [Eq. (42)].

while in Figure 5(b), it corresponds to a contra-moving
(down-chirping) superluminal regime with v = —0.85c. The
spectrograms in the bottom panels, corresponding to the
GRIN profiles in the top panels, precisely match the theo-
retical predictions (see Appendix C).

6 Conclusion and discussion

We have presented an exact electromagnetic solution to the
problem of wave propagation across arbitrary space—time
modulated GRIN interfaces and a detailed description of
the related chirping effects. This solution offers a novel
approach to chirp generation, which can be realized
using artificial transmission lines at microwave frequencies
[27]-[29] and acoustic or optical wave-based modulation
techniques at optical frequencies [8]-[10], [30].

In the microwave regime, such interfaces can be real-
ized in the subluminal regime by injecting pump pulses
into transmission lines loaded with nonlinear capaci-
tive and inductive elements, such as varactors and fer-
rite cores [28]. The pump signal applied at the terminal
propagates along the line, inducing a dynamic, intensity-
dependent refractive index variation that forms a moving
GRIN interface between regions with different electromag-
netic properties. A linear probe signal interacting with this

DE GRUYTER

modulation interface undergoes the designed chirping
effect. While achieving superluminal modulation velocities
is impossible with such a pump-probe platform, it could be
potentially realized using switched transmission lines com-
posed of subwavelength units spaced by Az, each loaded
with a sequence of elements having different parameters
controlled by switches to create an effective spatial gradient,
n;(2). An external controller, such as a field-programmable
gate array (FPGA), actuates these switches with a time inter-
val At, enabling sequential time delays [27]. By adjusting
the ratio Az/At, this spatial gradient can propagate at an
effectively unlimited velocity v = Az/At € (0, o0), forming
an effective moving GRIN interface, ng(z — vt).

In the optical regime, similar pump-probe setup can be
achieved by launching a strong pump obliquely at an angle
0 relative to the probe, producing a modulation velocity
v = ¢/sinéd € (0, o) that spans both subluminal and super-
luminal regimes [30]. Dynamic permittivity modulation can
be realized via surface or bulk acoustic waves in piezoelec-
tric crystals, ultrafast laser pulses in semiconductor slabs,
or epsilon-near-zero (ENZ) materials for higher refractive
index contrast [10]. Dynamic control of permeability can
be achieved through the magneto-optical response of gyro-
magnetic materials. Experimental challenges in realizing
arbitrary GRIN profiles may be addressed by employing
arbitrary waveform generators, enabling synthesis of the
desired modulation profiles with high precision. This paper
advances the modeling of space—time dispersive systems
and introduces a new paradigm for linear pulse shaping.
The approach can also be integrated with various platforms
for dispersion compensation, enabling enhanced control
over wave propagation in dynamic media.
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Appendix A Derivation of Eq. (26)

In this appendix, we provide a detailed derivation of Eq. (26)
given in Section 3.2. Substituting Eq. (25) into (3), we get

Eq(z,t)
= 1.4 N4 ’ ’
_/5{t+UF [z + Ce(t))] U}E(O,t)dt.

—0o0

(44)

To simplify the notation, we define the argument of the
delta function in Eq. (44) as

1

got) = t+ F[z+C(0)] - 2. 45)

Moreover, we use the following property of the delta
function [31]

¥ £(0,¢.)
Slg-(] f(o,t) dt’ = G 46
_/oo [ge(t)] f(0,1) TAGA] (46)

where g¢(t.) =0 and g/.(-) = dgs(-)/dt’. Therefore, we
first solve for the root té of go(t") =0,1ie,

V4

t+ %F‘l [z+Co(t)] — =0 “n

which gives
Co(th) = F(&) -z

Substituting Eq. (23) into the left-hand side of Eq. (48)
and solving for ., we find

(48)

1-nv/c

7z z—=20
o [F@) = Flzy)] —m + — 2

te=— (49)
Applying Eq. (20) and performing the change of vari-
ables z’ = & + vt, the difference in the square brackets of

Eq. (49) can be written as

V4

1
F&—-F(2) = az'. 50
(&)= Flzy) / 1—ng(z —vt)v/c z 0
2 +ut
Substituting Eq. (50) into (49) yields the final expression
z
1-nv/c 1
. =— 1 dz’
¢ v / 1—ng(z —vtv/c z
zgl+vt (51)
0
- nlg + ﬂ
c v

Next, we determine the derivative of g;(t') [Eq. (45)]
with respect to t’ by applying the chain rule and introducing
the substitution u = z + C4(t'), yielding

dge(t) _ 1dF-'(w dcg(t)

d ~ v du de’ (52)
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Let w=F (), ie., u= F(w). Then the derivative
dF'(w)/du on the right-hand side of Eq. (52) can be
expressed as

dr-'(u) _dw _ 1 1 1

du =~ du

a "~ Fw)  FIFWl

(53)

where F'(-) denotes the derivative of F with respect to its
argument. Using Eq. (23), the derivative dC;(t')/dt’ on the
right-hand side of Eq. (52) is given by

dée(t) _ v
d/ ~ 1-nuv/c’ 54
Substituting Eqgs. (53) and (54) into (52), we obtain
dge(t) _ 1 1
d/ — 1-nwo/cFIF Wl 9
At the root tg, using Eq. (47), we find
FHu(t))] =z—vt=¢. (56)
Then, applying the definition in Eq. (20), we get
/ —1 ! —r — 1
PP} =F O =1 e 6

Substituting Eq. (57) into (55) and using the relation & =
z — vt, we find the derivative of g;(¢') evaluated at the root
_ _1-ngz—vtv/c

dge()| _
ac’ gy 1-nv/c

(58)

Finally, substituting Eqs. (45), (51), and (58), along with
the relation (0, t') = E(0, t'), into the delta function identity
[Eq. (46)], we evaluate the integral in Eq. (44) and find the
result in Eq. (26).

Appendix B Derivation of Eq. (32)

In this appendix, we provide a detailed derivation of Eq. (32)
given in Section 3.3. Substituting Eq. (31) into (3), we get

Ey(z,t) = / 5 [t - %z —C()|E©, ¢y de.  (59)
We define the_argument of the delta function in Eq. (59)
as

gt =t— %z — (1), (60)

where C,(t') is given in Eq. (30b).
To evaluate the convolution in Eq. (59), we use again the
property [31]

f(0,t)

R 61
FACA] ©v

/ 8|g, ()] f(0, ") dt' =
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where g,(t)) =0 and g(-)=dg,(-)/dt’. Substituting
Eq. (30b) into (59) and solving g,(t") = 0 for ¢, we obtain

0
t;=1—n1U/C t—&Z'F nL=-n Z£+Q
1-n,w/c 1-nu/c ¢

(62)

L UL ERY)

-] -

Applying Eq. (20) and performing the substitution z’ =
& + vt, the difference in the square brackets of Eq. (62) can
be written as

0
z, +D+ot

- F(Z}[;1) =

1 /

1—ng(Z' —vt)v/c
2 +ut

F(Zlgl +D)

(63)
Substituting Eq. (63) into (62) yields the final expression

2 1-nw/c c

0
t,=1—nlv/c t—nzz+ n, —n, @_i_g
c 1-novfcc v

(64)

0
z,+D+ut

_1-nw/c / 1 47’
v 1—ng(z' —vt)v/c '

0
z,, ot

The derivative of g,(t') [Eq. (60)] with respect to t/,
evaluated at the root, is then found as

dgy(t)| _ dgy(®)
dtl t; dt/

_ _1-mpu/c
T 1-nu/c (65)

Finally, substituting Eqgs. (60), (64), and (65), along with
the relation f(0, t') = E(0, t’), into the delta function identity
[Eq. (61)], we evaluate the integral in Eq. (59) and find the
result in Eq. (32).

Appendix C FDTD validation

Figure 6 compares the results obtained by the theory in
Figure 4 and by the FDTD method presented in [15], [24].
Specifically, it plots the field (top panels) and spectrogram
(bottom panels) differences

sk = Ex=Eroml 490

max(E,) (66a)
and
2 _ 2
55 = |IBE = Eoml| 1000 aen)
max (|E,|*)

between the theoretical and simulation results, where E,
corresponds to the theoretical result and Eppyp, corresponds
to the simulation result. As shown in Figure 6, the theoretical
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Figure 6: Difference between the exact theoretical results in Figure 4
and full-wave FDTD results, with difference attributed to simulation
(meshing) approximation errors.
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Figure 7: Same as in Figure 6 but for Figure 5.

results closely match the simulation results (less than 5 %
difference). This qualitatively validates the theory, while the
fact that the theoretical results are exact (no approximation)
suggests that the difference is due to the simulation (mesh-
ing) approximation errors, as we could verify by decreasing
the mesh size up to the memory capability of our computer.

Figure 7 shows the corresponding difference for the
designed linear-chirping GRIN interfaces shown in Figure 5,
leading to the same conclusion.
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