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Abstract: Temporal modulation of material parameters

offers unprecedented control overwave dynamics, enabling

phenomena beyond the capabilities of static systems. Here

we introduce and analyze a robust mechanism for time

rewinding, whereby a temporally evolved wave is fully

restored to its original state through a carefully engi-

neered sequence of temporal modulations. In electromag-

netic systems, time rewinding emerges from impedance-

matched or anti-matched hierarchical bilayer structures

with matched modulation durations, exploiting total trans-

mission or reflection and reversed phase accumulation. In

Dirac systems, it arises via complete interband transition

driven by time-dependent vector potentials. Unlike time-

reversal holography or quantum time mirrors, which pro-

duce wave echoes but only partial waveform recovery, our

approach achieves deterministic and complete reconstruc-

tion of the entire wave state, including both amplitude

and phase. Analytical conditions for robust amplitude and

phase restoration are derived and validated through sim-

ulations of discrete and continuous modulations, demon-

strating resilience to modulation complexity and tempo-

ral asymmetry. These findings establish a versatile plat-

form for secure information retrieval, temporal cloak-

ing, programmable metamaterials, and wave-based logic

devices.
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1 Introduction

Temporal modulation of material parameters provides a

powerful means of controlling wave dynamics, enabling

phenomena unattainable in static systems [1]–[6]. Time-

dependent variations in material properties give rise to

scattering at temporal interfaces, generating forward- and

backward-propagating spatial modes. With careful design,

these processes facilitate precise manipulation of wave

propagation, including deterministic time rewinding.

Recent advances in time-varying metamaterials have

revealed a wide range of novel effects – such as momentum

band gaps, temporal Anderson localization, nonreciprocal

transport, and temporal analogs of Brewster phenomena

[7]–[39]. Building on this foundation, we investigate a dis-

tinct and highly tunable process: time rewinding, whereby

a temporally evolved wave is fully restored to its original

state through a tailored sequence of temporal modulations.

In electromagnetic systems, time rewinding arises from

impedance-matched or anti-matched hierarchical bilayer

structures with carefully matched modulation durations,

leveraging total transmission or total reflection between

time layers accompanied by reversed phase accumulation.

In contrast, in Dirac systems where pseudospin dynam-

ics and interband transitions are crucial [40]–[44], time

rewinding is achieved through complete interband transi-

tions between matched temporal layers, driven by time-

dependent vector potentials. Despite these differing phys-

ical mechanisms, both systems exhibit structurally analo-

gous time-rewinding dynamics.

Notably, this process is fundamentally distinct from

time-reversal holography [11] and the quantum timemirror

[40], which generates wave echoes through time reversal

but only partially reconstruct the originalwaveform. In con-

trast, the mechanism described here enables deterministic

and complete restoration of the entire wave state, includ-

ing both amplitude and phase. The term time rewinding

is inspired by the analogy of rewinding a video, in which

previously recorded scenes are sequentially retrieved in

reverse order.
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To this end, we develop a general temporal scatter-

ing formalism for multilayer and continuous modulations,

derive analytical criteria for full amplitude andphase recov-

ery, and validate these predictions through numerical simu-

lations of both discrete and continuousmodulations, includ-

ing full-field electromagnetic pulses. These results establish

a robust and versatile platform for wave-based information

retrieval, temporal cloaking, and programmable quantum

and photonic devices.

2 Temporal scattering formalism

We present a general scattering formalism for wave prop-

agation in time-varying media, as schematically illustrated

in Figure 1. In both electromagnetic and Dirac systems,

temporal interfaces act analogously to spatial boundaries,

inducing scattering into forward- and backward-propa-

gating spatial modes. For multiple temporal interfaces –

such as those in slabs, bilayers, or periodic configurations –

the total scattering amplitudes are constructed from indi-

vidual interface coefficients and the phase accumulations

between them.

Consider two successive temporal interfaces at t = t1

and t = t2 = t1 + 𝜏 , dividing the time axis into three regions.
The total forward (s) and backward (r) scattering ampli-

tudes are given by

s = s21s32e
−i𝜔2𝜏 + r21r32e

i𝜔2𝜏 ,

r = s21r32e
−i𝜔2𝜏 + r21s32e

i𝜔2𝜏 , (1)

where sij and rij denote the transmission and reflection coef-

ficients at the temporal interface from region j to region i,

and𝜔2 is thewave frequency in the intermediate region (see

Figure 1: Temporal interface physics: reflection, transmission, and waveform recovery. (a) Schematic of a temporal interface: a sudden change in

material parameters induces temporal scattering, generating reflected and transmitted waves. (b) Scattering at a temporal slab: total scattering is

determined by interface coefficients and phase accumulation between interfaces. (c) Temporal bilayer: impedance matching leads to total temporal

transmission, while anti-matching results in total reflection. When applied sequentially with matched durations, scattering and phase effects cancel,

restoring the initial wave state.
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Figure 1(b)). This formalism forms the basis for analyzing

temporalmultilayer structures andunderstanding phenom-

ena such as time rewinding and temporal localization.

2.1 Electromagnetic waves

For electromagnetic waves propagating along the x axis in

uniform isotropic media, the displacement field D(t) satis-

fies
d

dt

[
𝜇(t)

d

dt
D(t)

]
+ c2k2

x

𝜖(t)
D(t) = 0. (2)

Assuming harmonic solutions in each temporal region,

the frequency is given by 𝜔i = ckx∕ni, where ni =
√
𝜖i

√
𝜇i

is the refractive index, kx is the constant wave vector along

the x axis, and c is the speed of light in vacuum. The corre-

sponding wave impedance is 𝜂i =
√
𝜇i∕

√
𝜖i.

At a temporal boundary from region 1 to region 2, the

scattering coefficients are

s21 =
1

2

(
1+ 𝜂1

𝜂2

)
, r21 =

1

2

(
1− 𝜂1

𝜂2

)
. (3)

These expressions can be directly used in Eq. (1), with

the phase accumulation between interfaces determined by

the corresponding frequency 𝜔i in each region.

2.2 Dirac waves

We consider the two-dimensional massless Dirac equation

for a pseudospin-1/2 system with a two-component wave-

function Ψ = (𝜓1, 𝜓2 )
T, subject to time-dependent scalar

and vector potentials [42]:

iℏ
d

dt
Ψ(t) =

(
U(t) ℏ𝑣Fq(t)

ℏ𝑣Fq
∗(t) U(t)

)
Ψ(t), (4)

where

q(t) = kx +
eAx(t)

ℏ
− i

(
ky +

eAy(t)

ℏ

)
(5)

depends on the time-dependent vector potential A(t). Here,

k = (kx, ky) is the conserved wave vector associated with

the spatial part of the solution, and 𝑣F denotes the Fermi

velocity.

At each temporal interface, scattering occurs between

particle-like (p) and hole-like (h) states. The corresponding

scattering coefficients sij (i, j = p, h), representing transi-

tions from state j to i, are independent of the scalar potential

U(t) and given by

s p p = shh =
1

2

(
1+ f2

f1

)
,

s ph = sh p =
1

2

(
1− f2

f1

)
, (6)

where fi = qi∕|qi| in region i, with region 1 denoting the

incident and region 2 the transmitted side [42]. These coeffi-

cients can be inserted into the general formalism (Eq. (1))

to compute total scattering amplitudes across multilayer

configurations, with phase accumulation governed by the

frequency 𝜔i = 𝑣F|qi| in each region.
3 Time-rewinding mechanism

Time rewinding refers to the complete restoration of a

wave that has undergone evolution due to temporal modu-

lation, achieved through an engineered sequence of tempo-

ral medium transitions. In both electromagnetic and Dirac

systems, this effect can be realized using temporal bilay-

ers – pairs of conjugate temporal domains designed to

cancel each other’s scattering and phase effects. This con-

cept naturally extends to multilayer configurations, where

a sequence of temporal layers is followed by its conjugate

counterparts arranged in reverse order.

We consider a representative bilayer configuration,

illustrated in Figure 1(c), where the temporal evolution of

the medium follows the sequence

A
at t1
←←←←←←←←←←←←←←←←←←←→B

𝜏B

←←←←←←←←←←←←←→C
𝜏C

←←←←←←←←←←←←←→D.

The system initially resides in medium A, transitions to

B at time t1, remains in B for a duration 𝜏B, then switches to

C for 𝜏C , and finally enters medium D. The bilayer – com-

prising regions B and C – is designed so that the scattering

and phase effects induced by one layer are exactly canceled

by those of the other, thereby acting as a temporal rewinder

that restores the wave to its original state.

Although the specific conditions for time rewinding

vary depending on the physical system, the underlying

principle is universal: the second layer (C) must precisely

reverse the dynamical effects introduced by the first layer

(B). This evolution can be schematically summarized as

Wave evolution: A→ B→ C→ D ≡ A→ D.

In the following, we derive the explicit time-rewinding

conditions for both electromagnetic and Dirac wave

systems.

3.1 Electromagnetic waves

We now identify the specific conditions under which time

rewinding can be achieved in electromagnetic systems. This

effect can arise through two distinct mechanisms: total
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transmission enabled by impedance matching, and total

reflection enabled by impedance anti-matching.

Case 1: Transmission-based time rewinding

Transmission-based time rewinding occurs when total

transmission is achieved at the interface between media B

and C, which requires matched impedances:

𝜂B = 𝜂C ⇒ sCB = 1, rCB = 0. (7)

Additionally, the refractive indices must have opposite

signs, sgn(nB) = −sgn(nC), and the durations must satisfy

the condition

𝜏B =
||||nBnC ||||𝜏C . (8)

When these conditions aremet, the total phase accumu-

lated in regions B and C cancels exactly, restoring the wave

to its initial state. In isotropic media, this corresponds to

a transition between a positive-index and a negative-index

medium – that is, a case where both 𝜖 and 𝜇 are positive

in one region and negative in the other. Notably, the mag-

nitudes of nB and nC need not be equal; time rewinding

is achieved by appropriately adjusting 𝜏C relative to 𝜏B
according to Eq. (8). We emphasize that this case represents

a form of temporal perfect lensing, serving as the time-

domain counterpart of spatial perfect lensing realized using

negative-index media [45].

It is important to note that transmission-based time

rewinding is not equivalent to temporal matching phenom-

ena studied in refs. [13], [46], [47], which refer to the absence

of scattering at a temporal interface due to impedance

matching. In our case, while impedance matching is nec-

essary, it is not sufficient. Time rewinding additionally

requires a sign change in the refractive index and must

satisfy the duration constraint of Eq. (8). These stricter con-

ditions enable active reversal of the wave’s temporal evolu-

tion, distinguishing ourmechanism fromstandard temporal

matching.

Case 2: Reflection-based time rewinding

Reflection-based time rewinding relies on total reflec-

tion at the B→ C interface, which occurs when the

impedances have equal magnitudes but opposite signs:

𝜂B = −𝜂C ⇒ sCB = 0, rCB = 1. (9)

In addition, the refractive indices must have the same

sign. As in the transmission-based case, the duration con-

dition given by Eq. (8) must also be satisfied to achieve

complete time rewinding. Although the wave is reflected

rather than transmitted, the accumulated phase is exactly

reversed, resulting in complete restoration of the initial

wave state. This case corresponds to media in which 𝜖 is

positive and 𝜇 is negative in region B, and 𝜖 is negative

and 𝜇 is positive in region C, or vice versa. In such cases,

both the impedance and refractive index become purely

imaginary: the impedances have opposite signs, while the

refractive indices share the same sign. A spatial analog of

this configuration has previously been studied in the con-

text of tunneling through conjugate-matched pairs [48].

In both mechanisms, once the time-rewinding condi-

tions are satisfied, the total scattering coefficients for the

four-region structure reduce to those of a direct transition

from medium A to medium D:

stotal =
1

2

(
1+ 𝜂A

𝜂D

)
, rtotal =

1

2

(
1− 𝜂A

𝜂D

)
. (10)

Thus, the presence of the bilayer B and C has no effect

on the scattering coefficients. These two mechanisms –

impedancematching and anti-matching – serve as temporal

analogs of spatialwave phenomena such as omnidirectional

surface wave excitation and super-Klein tunneling between

two distinct bi-isotropic media [49].

3.2 Dirac waves

It is instructive to explore formal analogies between the

electromagnetic and Dirac cases. The pseudospin-1/2 Dirac

equation, Eq. (4), consists of two coupled first-order differ-

ential equations in time. By eliminating 𝜓 2, we obtain a

second-order equation for 𝜓 1:

d

dt

[
1

q(t)

d

dt
𝜓1(t)

]
+ 𝑣2

F
q∗(t)𝜓1(t) = 0. (11)

Comparing this with the electromagnetic wave

equation, Eq. (2), we identify the following correspond-

ences:

𝜓1(t) ↔ D(t),
1

q(t)
↔ 𝜇(t), 𝑣2

F
q∗(t) ↔

c2k2
x

𝜖(t)
. (12)

These analogies lead to expressions for the effective

impedance and refractive index in the Dirac case:

𝜂 =
√
𝜇√
𝜖
↔

√
q∗

q
, n =

√
𝜖
√
𝜇 ↔

1|q| . (13)

Within this framework, total transmission under

impedance matching and total reflection under impedance

anti-matching correspond to complete intraband and

interband transitions, respectively, in the Dirac system

[42]. However, a crucial distinction arises: the effective

refractive index in the Dirac case, given by 1∕|q|, is
always a positive real number and cannot change sign.

This prohibits time rewinding via transmission, which

in electromagnetic systems relies on both impedance
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matching and sign reversal of the refractive index. As a

result, while perfect transmission is theoretically possible

in the Dirac case through impedance matching, it does

not constitute time rewinding due to the absence of index

inversion. In contrast, perfect time rewinding remains

achievable in both electromagnetic and Dirac systems via

total reflection enabled by impedance anti-matching.

We now examine the specific conditions under which

temporal scattering in Dirac systems can be reversed. A

key requirement is complete interband conversion, which

occurs when the direction of the complex wave vector q(t)

is inverted, i.e., when fC∕ fB = −1. Under this condition, the
interband transition coefficients between B and C, sph and

shp, become unity, while the intraband terms spp and shh
vanish. As a result, a p-band state is fully converted into a

h-band state, and vice versa.

In the absence of a scalar potential, time rewinding is

achieved when the durations satisfy

𝜏B =
||||qCqB ||||𝜏C, (14)

ensuring that the phases accumulated in regions B and C

cancel exactly. This condition is directly analogous to the

impedance anti-matching condition in electromagnetic sys-

tems, as seen by comparing Eqs. (3) and (6).

When a scalar potential U(t) is present, the effective

scattering coefficients for the full four-region sequence are

stotal
p p

= stotal
hh

= 1

2

(
1+ fD

fA

)
e−i(UB𝜏B+UC𝜏C )∕ℏ,

stotal
ph

= stotal
h p

= 1

2

(
1− fD

fA

)
e−i(UB𝜏B+UC𝜏C )∕ℏ. (15)

If UB = −UC , these expressions reduce to those of a

single interface between regions A and D, indicating full

restoration of the wavefunction in both amplitude and

phase. Even when the scalar potential varies arbitrarily,

only the global phase is affected, and the probability density

remains unchanged.

3.3 Time rewinding in multilayers

Regardless of whether the underlying mechanism involves

total transmission, total reflection, or complete interband

transition, the core principle remains the same: the second

temporal medium in a bilayer is engineered to precisely

cancel the scattering and phase effects introduced by the

first, resulting in full restoration of the wave state, includ-

ing both amplitude and phase. This approach is analyti-

cally tractable, robust against perturbations, and naturally

extends to multilayer temporal configurations.

Figure 2: Schematic illustration of time rewinding in a temporal

multilayer system. Each conjugate pair – (A, A′), (B, B′), (C, C′), and (D,D′)

– is designed to satisfy the time-rewinding matching conditions.

The cancellation mechanisms described above are

not limited to individual bilayers but can be systemati-

cally extended to complex multilayer configurations. When

each temporal modulation is followed by its conjugate

counterpart – with matched or anti-matched impedances

in electromagnetic systems, or conjugate wave vectors q

in Dirac systems, and appropriately scaled durations – the

entire structure functions as an effective time-rewinding

operator. For instance, consider the sequence illustrated in

Figure 2:

A→ B→ C→ D→ D′ → C′ → B′ → A′. (16)

If each conjugate pair (A,A′), (B,B′), (C, C′), and (D,D′)

satisfies the corresponding time-rewinding matching con-

ditions, the cumulative effects of all intermediate layers

cancel. The overall evolution is then equivalent to a direct

transition from the initial to final state, enabling complete

recovery of the original wave state even in complex tempo-

rally modulated systems.

We emphasize that the media before t = 0 and after

t = T need not be identical. The ability to time-rewind does

not rely on identical input/output layers; it is achieved

when the intermediate temporal multilayer implements the

inverse temporal evolution of the forward process. In a

spatially uniform, time-varyingmedium the temporal layers

exchange energy with the fields, so the instantaneous ener-

gies in two conjugate layers within the rewinding segment

(say A and A′) need not be equal, even if the fields are

the same. What the rewinding segment guarantees is that

the field state just before the final jump equals the time-

reversed field at the start of the segment. The energy at

these two instants can differ because it is evaluated with

the material parameters of the layer. If the initial and final

layers are identical and rewinding is exact, then after the

last jump the energy equals the initial energy; just before

that jump, no such equality is implied.

Although the analysis above assumes abrupt tempo-

ral transitions, the formalism naturally extends to media
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with smoothly varying temporal profiles. In such cases, the

same time-rewinding conditions apply, provided that the

modulation sequence and its conjugate counterpart satisfy

the appropriate cancellation criteria. Explicit calculations

for smoothly varying media can be performed using the

invariant imbedding method, as detailed in Appendix for

both electromagnetic and Dirac systems.

4 Numerical results

We validate the proposed time-rewinding mechanisms

through numerical simulations of wave propagation in both

electromagnetic andDirac systems. The results demonstrate

complete recovery of the initial wave state – even in mul-

tilayer configurations, under continuous temporal modula-

tion, and in the presence of additional perturbations. All

simulations were performed using a Fortran code devel-

oped by the authors, based on a generalized invariant

imbedding method capable of handling arbitrary temporal

variations.

4.1 Time rewinding of electromagnetic
waves

We investigate time rewinding in electromagnetic systems

using the theoretical framework developed above. Simu-

lations are performed in a multilayer medium with tem-

porally modulated permittivity and permeability, focusing

on the reversal of a propagating pulse in a dispersionless

regime. Complete time rewinding is verified through the full

recovery of both wave amplitude and phase.

As an initial demonstration, we show that wave evolu-

tion can be reversed using a simple temporal bilayer satis-

fying the impedance anti-matching condition. As noted in

ref. [50], wave propagation is suppressed and the amplitude

grows exponentially when the refractive index becomes

imaginary. Leveraging this effect, we consider the following

temporal profiles:

𝜖(t) =

⎧⎪⎪⎨⎪⎪⎩
−2, 𝜏 < t ≤ 4𝜏,

2, 4𝜏 < t ≤ 7𝜏

1, otherwise,

,

𝜇(t) =
⎧⎪⎨⎪⎩
−1, 4𝜏 < t ≤ 7𝜏,

1, otherwise.
(17)

These profiles, shown in Figure 3(a), produce imag-

inary refractive indices and impedances during both

Figure 3: Impedance anti-matching and temporal localization of wave

intensity. (a) Temporal profiles of permittivity 𝜖(t) and permeability 𝜇(t)

in a simple bilayer time-varying medium, with 𝜏 = (ckx )
−1. (b) Formation

of a temporally localized wave: the wave intensity grows exponentially in

the first slab and decays in the second, due to identical refractive indices

but anti-matched impedances, producing a localized peak at t = 4𝜏 .

intervals 𝜏 < t ≤ 4𝜏 and 4𝜏 < t ≤ 7𝜏 , with the impedances

equal inmagnitude but opposite in sign – i.e., anti-matched.

As a result, the wave undergoes exponential amplification

in the first slab and symmetric exponential decay in the

second. This creates a temporally localizedwave centered at

t = 4𝜏 , characterized by an exponential temporal envelope,

as shown in Figure 3(b). Full recovery of both amplitude

and phase confirms successful time rewinding. The emer-

gence of a temporal surface wave during the intermediate

stage, a large-amplitude waveform confined to a narrow

time window, is a distinctive feature of the reflection-based

time-rewinding mechanism.

As noted earlier, the time-rewinding effect is not limited

to a single bilayer system but can be generalized tomultilay-

ered structures, provided each constituent bilayer satisfies

the necessary conditions for time rewinding. To demon-

strate the generality of this mechanism, we consider a four-

layer temporal structure designed to satisfy two distinct

Figure 4: Time rewinding and waveform restoration in a four-layer

temporal medium. (a) Temporal profiles of permittivity 𝜖(t) and

permeability 𝜇(t) in a four-layer time-varying medium, with 𝜏 = (ckx )
−1.

(b) The electric displacement field, amplified by temporal scattering,

is fully restored at t = 9𝜏 through the time-rewinding mechanism.
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impedance-matching time-rewinding conditions, as illus-

trated in Figure 4(a). The time intervals 𝜏 < t ≤ 3𝜏 and 7𝜏 <

t ≤ 9𝜏 , as well as 3𝜏 < t ≤ 5𝜏 and 5𝜏 < t ≤ 7𝜏 , each form

a matched bilayer: they exhibit equal impedances, oppo-

site refractive indices, and equal durations. As a result, the

amplified electric displacement field generated by temporal

scattering is fully restored at t = 9𝜏 via the time-rewinding

mechanism, as shown in Figure 4(b).

In the absence of dispersion, a pulse can be fully

reversed, with all momentum components recovering their

original amplitude and phase. Figure 5 shows the evolution

of a Gaussian pulse propagating through the temporal mul-

tilayer structure of Figure 4. The initial pulse is given by

Figure 5: Complete waveform restoration via temportal rewinding

of a Gaussian pulse. (a) Contour plot of a Gaussian pulse with spectral

width 𝜎k and central wavenumber kc = 10𝜎k , shown as a function

of space and time while propagating through the temporal structure in

Figure 4(a). The pulse retraces its trajectory, demonstrating complete

waveform restoration via time rewinding. The characteristic time scale is

defined as 𝜏 = (c𝜎k )
−1. (b) Spatial profiles of the pulse at selected times.

The normalized displacement field intensity is given by|D̄|2 = |D|2∕∫ ∞
−∞|u(x, 0)|2dx.

u(x, 0) =
∞

∫
−∞

exp

[
− (kx − kc )

2

2𝜎2
k

+ ikxx

]
dkx, (18)

where 𝜎k is the spectral width and kc = 10𝜎k is the cen-

tral wavenumber. The parameters are chosen such that

c𝜎kτ = 1.

For t < 5𝜏 , the pulse travels in the +x direction. After
t = 5𝜏 , negative refraction in the subsequent time layers

reverses the group velocity, redirecting the pulse toward

−x. Although the medium is spatially homogeneous and

momentum is conserved, both group and phase velocities

reverse. Figure 5(a) presents a space-time contour plot of

the pulse, showing that it retraces its trajectory and is

fully restored at t = 9𝜏 , i.e., u(x, 9𝜏) = u(x, 𝜏). The normal-

ized displacement field intensity is defined as |D̄(t)|2 =|D(t)|2∕∫ ∞
−∞|u(x, 0)|2dx. Figure 5(b) confirms time rewind-

ing, with matching profiles at t = 𝜏 and 9𝜏 , and at 3𝜏 and
7𝜏 , demonstrating complete waveform recovery.

4.2 Time rewinding of Dirac waves

We now turn to Dirac waves. Figure 6 illustrates time

rewinding achieved through a temporal multilayer

sequence. In Figure 6(a), the normalized vector potential

Figure 6: Time rewinding of Dirac waves in a multilayer temporal

structure. (a) Temporal profiles of the normalized vector potential

components 𝛼x and 𝛼 y from t = 𝜏 to t = 7.5𝜏 across six layers with

durations 𝜏 , 𝜏 , 𝜏 , 𝜏 , 2𝜏 , and 0.5𝜏 , where 𝜏 = 0.1∕(kvF ). (b, c) Probability
densities (F p, Fh) and phases (𝜙p, 𝜙h) of the wavefunction in each band.

The modulations in the first three layers are precisely compensated by

those in the last three, resulting in complete recovery of the initial wave

state.
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components 𝛼x = eAx∕(ℏk) and 𝛼y = eAy∕(ℏk), with k

denoting the magnitude of the wave vector, are modulated

from t = 𝜏 to t = 7.5𝜏 . The sequence comprises six layers

with nonuniform durations: 𝜏 , 𝜏 , 𝜏 , 𝜏 , 2𝜏 , and 0.5𝜏 , where

𝜏 = 0.1∕(kvF). These results demonstrate that symmetric

layer durations are not necessary for time rewinding,

provided the matching conditions are satisfied. Each layer’s

duration can be adjusted relative to the vector potential

magnitude, or vice versa, according to Eq. (14). Figure 6(b)

and (c) show the resulting probability densities

Fp = |s p p|2, Fh = |sh p|2, (19)

and phase angles 𝜙p and 𝜙h associated with spp and shp,

respectively. These results confirm that the temporal evolu-

tion induced by the first three layers is exactly compensated

by the last three, leading to complete restoration of the

initial wave state. At the final time t = 7.5𝜏 , the system sat-

isfies Fp(7.5𝜏) = Fp(𝜏), Fh(7.5𝜏) = Fh(𝜏), 𝜙p(7.5𝜏) = 𝜙p(𝜏),

and 𝜙h(7.5𝜏) = 𝜙h(𝜏), indicating perfect recovery of both

amplitude and phase.

To evaluate the robustness of the time-rewindingmech-

anism, we introduce a normalized time-dependent scalar

potential Un = U∕(ℏkvF) while keeping the vector poten-

tial profile unchanged, as shown in Figure 7(a). Despite

Figure 7: Time rewinding of Dirac waves across multiple temporal layers

with time-dependent scalar and vector potentials. (a) Temporal profiles

of the normalized scalar (Un) and vector (𝛼x , 𝛼 y ) potentials over six layers

from t = 𝜏 to t = 7.5𝜏 . (b) Probability density of the wavefunction in each

band, showing that the effects of the first three modulations are fully

compensated by the subsequent three, despite the presence of the scalar

potential. (c) Phase of the wavefunction, which fails to recover due to

the additional scalar potential, indicating a loss of phase coherence.

this perturbation, the probability densities remain fully

restored (Figure 7(b)), confirming that complete interband

transitions continue to enable amplitude recovery. How-

ever, phase coherence is no longer preserved: Figure 7(c)

shows that 𝜙p(7.5𝜏) ≠ 𝜙p(𝜏) and 𝜙h(7.5𝜏) ≠ 𝜙h(𝜏), indicat-

ing that the scalar potential induces a global phase shift.

Thus, while amplitude recovery is robust to scalar potential

perturbations, the phase is sensitive, and coherence is lost

in the more general case.

As discussed earlier, time rewinding is not limited to

systems with discrete temporal discontinuities – it can also

occur in media with continuously varying properties. To

illustrate this, we consider a smoothly time-dependent vec-

tor potential defined as

𝛼x(t) =
⎧⎪⎨⎪⎩
1

3

(
1− t

𝜏

)
, if 𝜏 < t ≤ 7𝜏,

0, otherwise,

(20)

𝛼y(t) =
⎧⎪⎨⎪⎩
2 sin

[
𝜋

3

(
t

𝜏
− 1

)]
, if 𝜏 < t ≤ 7𝜏,

0, otherwise.

(21)

As shown in Figure 8, the vector potential starts at

zero, varies smoothly from t = 𝜏 , and returns to zero at t =
7𝜏 . This continuous modulation drives a gradual evolution

Figure 8: Time rewinding under continuous temporal modulation of

the vector potential. (a) Temporal profile of the vector potential, which

evolves smoothly from t = 𝜏 and returns to zero at t = 7𝜏 . (b) Probability

density of the wavefunction in each band, showing full recovery of

the initial values at t = 7𝜏 . (c) Phase of the wavefunction, also restored

to its initial value, confirming that both amplitude and phase are fully

recovered through the continuous modulation.
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of the band populations Fp and Fh. A complete interband

transition occurs at t = 4𝜏 , after which the system retraces

its prior evolution. At the final time t = 7𝜏 , both ampli-

tude and phase are fully restored, satisfying Fp(7𝜏) = Fp(𝜏),

Fh(7𝜏) = Fh(𝜏), 𝜙p(7𝜏) = 𝜙p(𝜏), and 𝜙h(7𝜏) = 𝜙h(𝜏). These

results confirm that time rewinding can be achieved even

under continuous temporal modulation.

5 Discussion

We have developed a unified framework for deterministic

time rewinding in electromagnetic and Dirac systems using

temporally engineered structures. In both cases, carefully

designed modulations cancel accumulated scattering and

phase, enabling complete recovery of the initial wave state,

including both amplitude and phase. This effect extends

beyond discrete transitions to smoothly varyingmodulation

profiles, highlighting the robustness and generality of the

mechanism.

In photonic systems, time rewinding is achieved

through impedance-matched or anti-matched temporal lay-

ers. We demonstrate that temporally localized surface

waves can emerge in media with imaginary refractive

indices, establishing a temporal analog of spatial boundary

phenomena. Broadband pulses in dispersionless regimes

can also be fully rewound, allowing for coherent temporal

shaping and waveform correction.

This mechanism enables applications in secure com-

munications, temporal cloaking, programmable nanopho-

tonic circuits, and wave-based logic devices. Its analytical

transparency and compatibility with dynamic media posi-

tion it as a promising approach for reconfigurable, next-

generation photonic and quantum platforms.

Looking ahead, integrating temporal modulation with

nonlinear, dissipative, and non-Hermitian effects could

unlock entirely new classes of adaptive photonic devices.
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Appendix: Invariant imbedding

method for electromagnetic and

Dirac waves in time-varying media

In this Appendix, we present the invariant imbedding

method as a framework for analyzing wave scattering

induced by continuous temporal variations in the medium.

While widely applied to spatially varying systems [51],

[52], we extend its formulation here to accommodate time-

dependent media [44].

Electromagnetic waves

We begin with the case of electromagnetic waves. In a sta-

tionarymedium, the field components evolve as exp[i(kxx ∓
𝜔t)]. When the medium parameters vary in time, scatter-

ing occurs at temporal interfaces, generating reflected and

transmitted components. Consider a unit-amplitude plane

wave incident from the past (t < 0) in the +x direction. If
the permittivity 𝜖(t) and permeability 𝜇(t) vary within the

interval 0 ≤ t ≤ T , the electric displacement field takes the

form

D(t) =
⎧⎪⎨⎪⎩
e−i𝜔1t, t < 0,

s(T )e−i𝜔2(t−T ) + r(T )ei𝜔2(t−T ), t > T,
(A1)

where 𝜔1 = ckx∕
√
𝜖1𝜇1 and 𝜔2 = ckx∕

√
𝜖2𝜇2, with 𝜖1,2 and

𝜇1,2 denoting the initial and final material parameters,

respectively.

To derive the invariant imbedding equations, we intro-

duce an auxiliary field u1(t) = D(t)∕s(T), leading to

u1(t) =
⎧⎪⎨⎪⎩
𝜌i(T )e

−i𝜔1t, t < 0,

e−i𝜔2(t−T ) + 𝜌r(T )ei𝜔2(t−T ), t > T,
(A2)

where

𝜌i(T ) =
1

s(T )
, 𝜌r(T ) =

r(T )

s(T )
. (A3)

The wave equation can then be expressed in first-order

matrix form:

d

dt

(
u1(t)

u2(t)

)
= B(t)

(
u1(t)

u2(t)

)
, (A4)
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with

B(t) =
⎛⎜⎜⎜⎝

0
1

𝜇(t)

−c2k2
x

𝜖(t)
0

⎞⎟⎟⎟⎠, u2(t) = 𝜇(t)
du1
dt

. (A5)

Boundary conditions at t = 0 and t = T are obtained by

matching u1 and u2:

u1(0, T ) = 𝜌i(T ), u2(0, T ) = −i𝜔1𝜇1𝜌i(T ),

u1(T, T ) = 1+ 𝜌r(T ), u2(T, T ) = i𝜔2𝜇2[𝜌r(T )− 1]. (A6)

These conditions combine into a linear system:

GS+ HR = v, (A7)

where

S =
(
u1(0, T )

u2(0, T )

)
, R =

(
u1(T, T )

u2(T, T )

)
,

G =
(
i𝜔1𝜇1 1

0 0

)
, H =

(
0 0

i𝜔2𝜇2 −1

)
,

v =
(

0

2i𝜔2𝜇2

)
. (A8)

The vectors R and S depend linearly on v:

R = R̃v, S = S̃v, (A9)

with matrix elements such as

R̃12 =
1+ 𝜌r
2i𝜔2𝜇2

, R̃22 =
𝜌r − 1

2
, S̃12 =

𝜌i

2i𝜔2𝜇2

. (A10)

Applying the invariant imbedding framework, the dif-

ferential equations for R̃ and S̃ are [52]:

d

d𝜏
R̃(𝜏 ) = B(𝜏 )R̃(𝜏 )− R̃(𝜏 )HB(𝜏 )R̃(𝜏 ),

d

d𝜏
S̃(𝜏 ) = −S̃(𝜏 )HB(𝜏 )R̃(𝜏 ), (A11)

integrated from 𝜏 = 0 to 𝜏 = T with

R̃(0) = S̃(0) = (G+ H )−1. (A12)

Finally, the evolution equations for 𝜌i and 𝜌r are

1

ckx

d𝜌i
d𝜏

= i𝛽𝜌i + i𝛾𝜌i𝜌r,

1

ckx

d𝜌r
d𝜏

= 2i𝛽𝜌r + i𝛾
(
𝜌
2
r
+ 1

)
, (A13)

where

𝛽 = 1

2n2

[
𝜖2

𝜖(𝜏 )
+ 𝜇2

𝜇(𝜏 )

]
, 𝛾 = 1

2n2

[
𝜖2

𝜖(𝜏 )
− 𝜇2

𝜇(𝜏 )

]
,

n2 =
√
𝜖2𝜇2. (A14)

Alternatively, the temporal transmission and reflection

amplitudes s(𝜏) and r(𝜏) satisfy

1

ckx

ds

d𝜏
= −s2 1

ckx

d𝜌i
d𝜏

= −i𝛾r − i𝛽s,

1

ckx

dr

d𝜏
= s

1

ckx

d𝜌r
d𝜏

+ 𝜌r
1

ckx

ds

d𝜏
= i𝛽r + i𝛾s, (A15)

with initial conditions

r(0) = 1

2

(
1−

√
𝜖2𝜇1

𝜖1𝜇2

)
, s(0) = 1

2

(
1+

√
𝜖2𝜇1

𝜖1𝜇2

)
. (A16)

Defining the temporal transmittance S and reflectance

R as

S =
√
𝜖1𝜇2

𝜖2𝜇1

|s|2, R =
√
𝜖1𝜇2

𝜖2𝜇1

|r|2, (A17)

it follows directly from Eqs. (A15) and (A16) that S − R =
1, regardless of the temporal variations in 𝜖 and 𝜇. This

relation embodies themomentum conservation law in time-

varying electromagnetic systems.

Dirac waves

We next extend the formulation to Dirac waves. Consider a

p-band Dirac wave of unit amplitude, 𝜓1(t) = e−i𝜔1t for t <

0, with spatial dependence eikxx . When the vector potential

A(t) varies within 0 ≤ t ≤ T , the wavefunction evolves as

𝜓1(t, T ) =
⎧⎪⎨⎪⎩
e−i𝜔1t, t < 0,

s(T )e−i𝜔2(t−T ) + r(T )ei𝜔2(t−T ), t > T,
(A18)

where 𝜔i = 𝑣F|qi|, and qi is defined in Eq. (5). The coeffi-

cients s and r correspond to intraband (p→ p) and inter-

band (p→ h) scattering, interpreted as temporal transmis-

sion and reflection.

The invariant imbedding equations for r and s are

derived analogously to the electromagnetic case and take

the form [44]

1

𝑣Fkx

dr

d𝜏
= i𝛽̃r + 𝛾̃s, 1

𝑣Fkx

ds

d𝜏
= −𝛾̃r − i𝛽̃s, (A19)

where

𝛽̃ = 1+ 𝛼𝛼2 + (𝛼 + 𝛼2 ) cos 𝜃
𝜖̃2

, 𝛾̃ = (𝛼 − 𝛼2 ) sin 𝜃
𝜖̃2

, (A20)

and

𝛼 = eA

ℏk
, 𝜖̃ =

√
1+ 𝛼2 + 2𝛼 cos 𝜃. (A21)
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Here, 𝜃 denotes the angle between the wave vector and

the vector potential, while 𝜖̃2 and 𝛼2 represent the final

values of 𝜖̃ and 𝛼, respectively. The initial conditions at 𝜏 =
0 are

r(0) = 1

2

(
1− f2

f1

)
, s(0) = 1

2

(
1+ f2

f1

)
, (A22)

where fi = qi∕|qi| denotes the normalized complex wave

vector in region i. The reflectance R and transmittance S,

defined as the probability densities of the reflected and

transmitted waves relative to the incident wave, are

R = |r|2, S = |s|2. (A23)

From Eqs. (A19) and (A22), it can be shown that S + R =
1, throughout the temporal evolution of 𝛼(t) [44]. This rela-

tion reflects the simultaneous conservation of momentum

and charge in Dirac systems. Accordingly, the fundamen-

tal distinction between Dirac and electromagnetic waves

is expressed in their respective conservation laws: S + R =
1 in the Dirac case, and S − R = 1 in the electromagnetic

case.
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