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Abstract: Temporal modulation of material parameters
offers unprecedented control over wave dynamics, enabling
phenomena beyond the capabilities of static systems. Here
we introduce and analyze a robust mechanism for time
rewinding, whereby a temporally evolved wave is fully
restored to its original state through a carefully engi-
neered sequence of temporal modulations. In electromag-
netic systems, time rewinding emerges from impedance-
matched or anti-matched hierarchical bilayer structures
with matched modulation durations, exploiting total trans-
mission or reflection and reversed phase accumulation. In
Dirac systems, it arises via complete interband transition
driven by time-dependent vector potentials. Unlike time-
reversal holography or quantum time mirrors, which pro-
duce wave echoes but only partial waveform recovery, our
approach achieves deterministic and complete reconstruc-
tion of the entire wave state, including both amplitude
and phase. Analytical conditions for robust amplitude and
phase restoration are derived and validated through sim-
ulations of discrete and continuous modulations, demon-
strating resilience to modulation complexity and tempo-
ral asymmetry. These findings establish a versatile plat-
form for secure information retrieval, temporal cloak-
ing, programmable metamaterials, and wave-based logic
devices.

Keywords: time-varying media; time rewinding; temporal
metamaterials; wave restoration; Dirac materials

*Corresponding author: Kihong Kim, Department of Physics, Ajou
University, Suwon 16499, Korea; and School of Physics, Korea Insti-
tute for Advanced Study, Seoul 02455, Korea, E-mail: khkim@ajou.ac.kr.
https://orcid.org/0000-0001-9965-3535

Seulong Kim, Research Institute of Basic Sciences, Ajou University, Suwon
16499, Korea, E-mail: cjswokso@ajou.ac.kr.
https://orcid.org/0000-0002-6559-6074

1 Introduction

Temporal modulation of material parameters provides a
powerful means of controlling wave dynamics, enabling
phenomena unattainable in static systems [1]-[6]. Time-
dependent variations in material properties give rise to
scattering at temporal interfaces, generating forward- and
backward-propagating spatial modes. With careful design,
these processes facilitate precise manipulation of wave
propagation, including deterministic time rewinding.

Recent advances in time-varying metamaterials have
revealed a wide range of novel effects — such as momentum
band gaps, temporal Anderson localization, nonreciprocal
transport, and temporal analogs of Brewster phenomena
[71-[39]. Building on this foundation, we investigate a dis-
tinct and highly tunable process: time rewinding, whereby
a temporally evolved wave is fully restored to its original
state through a tailored sequence of temporal modulations.

In electromagnetic systems, time rewinding arises from
impedance-matched or anti-matched hierarchical bilayer
structures with carefully matched modulation durations,
leveraging total transmission or total reflection hetween
time layers accompanied by reversed phase accumulation.
In contrast, in Dirac systems where pseudospin dynam-
ics and interband transitions are crucial [40]-[44], time
rewinding is achieved through complete interband transi-
tions between matched temporal layers, driven by time-
dependent vector potentials. Despite these differing phys-
ical mechanisms, both systems exhibit structurally analo-
gous time-rewinding dynamics.

Notably, this process is fundamentally distinct from
time-reversal holography [11] and the quantum time mirror
[40], which generates wave echoes through time reversal
but only partially reconstruct the original waveform. In con-
trast, the mechanism described here enables deterministic
and complete restoration of the entire wave state, includ-
ing both amplitude and phase. The term time rewinding
is inspired by the analogy of rewinding a video, in which
previously recorded scenes are sequentially retrieved in
reverse order.
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To this end, we develop a general temporal scatter-
ing formalism for multilayer and continuous modulations,
derive analytical criteria for full amplitude and phase recov-
ery, and validate these predictions through numerical simu-
lations of both discrete and continuous modulations, includ-
ing full-field electromagnetic pulses. These results establish
arobust and versatile platform for wave-based information
retrieval, temporal cloaking, and programmable quantum
and photonic devices.

2 Temporal scattering formalism

We present a general scattering formalism for wave prop-
agation in time-varying media, as schematically illustrated
in Figurel. In both electromagnetic and Dirac systems,
temporal interfaces act analogously to spatial boundaries,
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inducing scattering into forward- and backward-propa-
gating spatial modes. For multiple temporal interfaces —
such as those in slabs, bilayers, or periodic configurations —
the total scattering amplitudes are constructed from indi-
vidual interface coefficients and the phase accumulations
between them.

Consider two successive temporal interfaces at t = t;
andt = t, = t; + 7, dividing the time axis into three regions.
The total forward (s) and backward (r) scattering ampli-
tudes are given by

S = 55153,€ 727 4 1y 75,0127
= Sy T5e 7 41, 55,0107 D

where s; and r; denote the transmission and reflection coef-
ficients at the temporal interface from region j to region i,
and w, is the wave frequency in the intermediate region (see
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Figure 1: Temporal interface physics: reflection, transmission, and waveform recovery. (a) Schematic of a temporal interface: a sudden change in
material parameters induces temporal scattering, generating reflected and transmitted waves. (b) Scattering at a temporal slab: total scattering is
determined by interface coefficients and phase accumulation between interfaces. (c) Temporal bilayer: impedance matching leads to total temporal
transmission, while anti-matching results in total reflection. When applied sequentially with matched durations, scattering and phase effects cancel,

restoring the initial wave state.
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Figure 1(b)). This formalism forms the basis for analyzing
temporal multilayer structures and understanding phenom-
ena such as time rewinding and temporal localization.

2.1 Electromagnetic waves

For electromagnetic waves propagating along the x axis in
uniform isotropic media, the displacement field D(¢) satis-

fies
e
e(t)

2 [M(t)éltD(t)] + Ly =o. @

Assuming harmonic solutions in each temporal region,
the frequency is given by w; = ck, /n;, where n; = \/€;1/u;
is the refractive index, k, is the constant wave vector along
the x axis, and c is the speed of light in vacuum. The corre-
sponding wave impedance is 7; = /u;/\/€;.

At a temporal boundary from region 1 to region 2, the
scattering coefficients are

1 ’11> 1< ’11>
Sy==(1+= |, ry=2(1——=|. 3
A 2( n) R T2\

These expressions can be directly used in Eq. (1), with
the phase accumulation between interfaces determined by
the corresponding frequency w; in each region.

2.2 Dirac waves

We consider the two-dimensional massless Dirac equation
for a pseudospin-1/2 system with a two-component wave-
function ¥ = (y;, )T, subject to time-dependent scalar
and vector potentials [42]:

U

.. d hopq(t)
h—=Y(t) = (1), 4
i at (t) (thq*(t) > (® 4)

u(t)

where

A (t
q0 =k, + eA;l(t) —i(ky+ e ;l( )) ©)

depends on the time-dependent vector potential A(¢). Here,
k = (k,, k) is the conserved wave vector associated with
the spatial part of the solution, and v, denotes the Fermi
velocity.

At each temporal interface, scattering occurs between
particle-like (p) and hole-like (h) states. The corresponding
scattering coefficients s; (i, j = p, h), representing transi-
tions from state j to i, are independent of the scalar potential
U(t) and given by

1 f
= =-(1 J4
Spp = Sm 2( +fl>,
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1
Sph=shp=2< _%)’ (6)

where f; = ¢;/|g;| in region i, with region 1 denoting the
incident and region 2 the transmitted side [42]. These coeffi-
cients can be inserted into the general formalism (Eq. (1))
to compute total scattering amplitudes across multilayer
configurations, with phase accumulation governed by the
frequency w; = vr|gq;| in each region.

3 Time-rewinding mechanism

Time rewinding refers to the complete restoration of a
wave that has undergone evolution due to temporal modu-
lation, achieved through an engineered sequence of tempo-
ral medium transitions. In both electromagnetic and Dirac
systems, this effect can be realized using temporal bilay-
ers — pairs of conjugate temporal domains designed to
cancel each other’s scattering and phase effects. This con-
cept naturally extends to multilayer configurations, where
a sequence of temporal layers is followed by its conjugate
counterparts arranged in reverse order.

We consider a representative bilayer configuration,
illustrated in Figure 1(c), where the temporal evolution of
the medium follows the sequence

att; Tp T
A——B—C—>D.

The system initially resides in medium A, transitions to
B at time t;, remains in B for a duration z, then switches to
C for 7., and finally enters medium D. The bilayer — com-
prising regions B and C - is designed so that the scattering
and phase effects induced by one layer are exactly canceled
by those of the other, thereby acting as a temporal rewinder
that restores the wave to its original state.

Although the specific conditions for time rewinding
vary depending on the physical system, the underlying
principle is universal: the second layer (C) must precisely
reverse the dynamical effects introduced by the first layer
(B). This evolution can be schematically summarized as

Wave evolutiont A-B—-C—-D = A—-D.

In the following, we derive the explicit time-rewinding
conditions for both electromagnetic and Dirac wave
systems.

3.1 Electromagnetic waves

We now identify the specific conditions under which time
rewinding can be achieved in electromagnetic systems. This
effect can arise through two distinct mechanisms: total
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transmission enabled by impedance matching, and total
reflection enabled by impedance anti-matching.

Case 1: Transmission-based time rewinding

Transmission-based time rewinding occurs when total
transmission is achieved at the interface between media B
and C, which requires matched impedances:

Np="c = Scg=1 Tep=0. ™

Additionally, the refractive indices must have opposite
signs, sgn(ng) = —sgn(n.), and the durations must satisfy
the condition
Np

C

Tg = Te. ®

When these conditions are met, the total phase accumu-
lated in regions B and C cancels exactly, restoring the wave
to its initial state. In isotropic media, this corresponds to
a transition between a positive-index and a negative-index
medium - that is, a case where both e and u are positive
in one region and negative in the other. Notably, the mag-
nitudes of n; and n, need not be equal; time rewinding
is achieved by appropriately adjusting r. relative to 7,
according to Eq. (8). We emphasize that this case represents
a form of temporal perfect lensing, serving as the time-
domain counterpart of spatial perfect lensing realized using
negative-index media [45].

It is important to note that transmission-based time
rewinding is not equivalent to temporal matching phenom-
ena studied in refs. [13], [46], [47], which refer to the absence
of scattering at a temporal interface due to impedance
matching. In our case, while impedance matching is nec-
essary, it is not sufficient. Time rewinding additionally
requires a sign change in the refractive index and must
satisfy the duration constraint of Eq. (8). These stricter con-
ditions enable active reversal of the wave’s temporal evolu-
tion, distinguishing our mechanism from standard temporal
matching.

Case 2: Reflection-based time rewinding

Reflection-based time rewinding relies on total reflec-
tion at the B— C interface, which occurs when the
impedances have equal magnitudes but opposite signs:

ng=—Nc = Se=0, =L )

In addition, the refractive indices must have the same
sign. As in the transmission-based case, the duration con-
dition given by Eq. (8) must also be satisfied to achieve
complete time rewinding. Although the wave is reflected
rather than transmitted, the accumulated phase is exactly
reversed, resulting in complete restoration of the initial
wave state. This case corresponds to media in which € is
positive and u is negative in region B, and € is negative

DE GRUYTER

and y is positive in region C, or vice versa. In such cases,
both the impedance and refractive index become purely
imaginary: the impedances have opposite signs, while the
refractive indices share the same sign. A spatial analog of
this configuration has previously been studied in the con-
text of tunneling through conjugate-matched pairs [48].

In both mechanisms, once the time-rewinding condi-
tions are satisfied, the total scattering coefficients for the
four-region structure reduce to those of a direct transition
from medium A to medium D:

1 a 1 Ha
Sl = 1+ A ), T =~ (1= 4 ).
total 2 ( + ’7D> total 2 < o

Thus, the presence of the bilayer B and C has no effect
on the scattering coefficients. These two mechanisms —
impedance matching and anti-matching — serve as temporal
analogs of spatial wave phenomena such as omnidirectional
surface wave excitation and super-Klein tunneling between
two distinct bi-isotropic media [49].

(10)

3.2 Dirac waves

It is instructive to explore formal analogies between the
electromagnetic and Dirac cases. The pseudospin-1/2 Dirac
equation, Eq. (4), consists of two coupled first-order differ-
ential equations in time. By eliminating y,, we obtain a
second-order equation for y;:

d{ 1 d 2 %

— | ===yt Oy, (t) = 0. 1

dt[q(t) dtllll( )] + Upq (O (1) (1
Comparing this with the electromagnetic wave

equation, Eq. (2), we identify the following correspond-

ences:

1 2k

o — o 2a*(t) <
V(0 < D). i = 0. 0 = S

(12)

These analogies lead to expressions for the effective
impedance and refractive index in the Dirac case:

(13)

_VE e, 1
1= T TV g

Within this framework, total transmission under
impedance matching and total reflection under impedance
anti-matching correspond to complete intraband and
interband transitions, respectively, in the Dirac system
[42]. However, a crucial distinction arises: the effective
refractive index in the Dirac case, given by 1/|q|, is
always a positive real number and cannot change sign.
This prohibits time rewinding via transmission, which
in electromagnetic systems relies on both impedance
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matching and sign reversal of the refractive index. As a
result, while perfect transmission is theoretically possible
in the Dirac case through impedance matching, it does
not constitute time rewinding due to the absence of index
inversion. In contrast, perfect time rewinding remains
achievable in both electromagnetic and Dirac systems via
total reflection enabled by impedance anti-matching.

We now examine the specific conditions under which
temporal scattering in Dirac systems can be reversed. A
key requirement is complete interband conversion, which
occurs when the direction of the complex wave vector q(t)
is inverted, i.e., when f./fz; = —1. Under this condition, the
interband transition coefficients between B and C, s,, and
Spp» become unity, while the intraband terms s,, and sy,
vanish. As a result, a p-band state is fully converted into a
h-band state, and vice versa.

In the absence of a scalar potential, time rewinding is
achieved when the durations satisfy

75 = |7, (149

s

ensuring that the phases accumulated in regions B and C
cancel exactly. This condition is directly analogous to the
impedance anti-matching condition in electromagnetic sys-
tems, as seen by comparing Egs. (3) and (6).

When a scalar potential U(¢) is present, the effective
scattering coefficients for the full four-region sequence are

total __ ototal __ 1 fb —i(Uptp+Ucte) /R
S =S = 1+ e .
pp hh 2 a

st;}tlal _ s;lo;al _ ;(1 _ % )e—i(UBrB+UCTC)/h' 15)

If Uy = —U,, these expressions reduce to those of a
single interface between regions A and D, indicating full
restoration of the wavefunction in both amplitude and
phase. Even when the scalar potential varies arbitrarily,
only the global phase is affected, and the probability density
remains unchanged.

3.3 Time rewinding in multilayers

Regardless of whether the underlying mechanism involves
total transmission, total reflection, or complete interband
transition, the core principle remains the same: the second
temporal medium in a bilayer is engineered to precisely
cancel the scattering and phase effects introduced by the
first, resulting in full restoration of the wave state, includ-
ing both amplitude and phase. This approach is analyti-
cally tractable, robust against perturbations, and naturally
extends to multilayer temporal configurations.
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Figure 2: Schematic illustration of time rewinding in a temporal
multilayer system. Each conjugate pair - (4,A’), (B,B8'), (C, '), and (D, D)
- is designed to satisfy the time-rewinding matching conditions.

The cancellation mechanisms described above are
not limited to individual bilayers but can be systemati-
cally extended to complex multilayer configurations. When
each temporal modulation is followed by its conjugate
counterpart — with matched or anti-matched impedances
in electromagnetic systems, or conjugate wave vectors q
in Dirac systems, and appropriately scaled durations — the
entire structure functions as an effective time-rewinding
operator. For instance, consider the sequence illustrated in
Figure 2:

A-B->C->D->D —>C ->B -4 16)

If each conjugate pair (4,4), (B,B), (C,C’), and (D, D’)
satisfies the corresponding time-rewinding matching con-
ditions, the cumulative effects of all intermediate layers
cancel. The overall evolution is then equivalent to a direct
transition from the initial to final state, enabling complete
recovery of the original wave state even in complex tempo-
rally modulated systems.

We emphasize that the media before ¢t = 0 and after
t = T need not be identical. The ability to time-rewind does
not rely on identical input/output layers; it is achieved
when the intermediate temporal multilayer implements the
inverse temporal evolution of the forward process. In a
spatially uniform, time-varying medium the temporal layers
exchange energy with the fields, so the instantaneous ener-
gies in two conjugate layers within the rewinding segment
(say A and A’) need not be equal, even if the fields are
the same. What the rewinding segment guarantees is that
the field state just before the final jump equals the time-
reversed field at the start of the segment. The energy at
these two instants can differ because it is evaluated with
the material parameters of the layer. If the initial and final
layers are identical and rewinding is exact, then after the
last jump the energy equals the initial energy; just before
that jump, no such equality is implied.

Although the analysis above assumes abrupt tempo-
ral transitions, the formalism naturally extends to media
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with smoothly varying temporal profiles. In such cases, the
same time-rewinding conditions apply, provided that the
modulation sequence and its conjugate counterpart satisfy
the appropriate cancellation criteria. Explicit calculations
for smoothly varying media can be performed using the
invariant imbedding method, as detailed in Appendix for
both electromagnetic and Dirac systems.

4 Numerical results

We validate the proposed time-rewinding mechanisms
through numerical simulations of wave propagation in both
electromagnetic and Dirac systems. The results demonstrate
complete recovery of the initial wave state — even in mul-
tilayer configurations, under continuous temporal modula-
tion, and in the presence of additional perturbations. All
simulations were performed using a Fortran code devel-
oped by the authors, based on a generalized invariant
imbedding method capable of handling arbitrary temporal
variations.

4.1 Time rewinding of electromagnetic
waves

We investigate time rewinding in electromagnetic systems
using the theoretical framework developed above. Simu-
lations are performed in a multilayer medium with tem-
porally modulated permittivity and permeability, focusing
on the reversal of a propagating pulse in a dispersionless
regime. Complete time rewinding is verified through the full
recovery of both wave amplitude and phase.

As an initial demonstration, we show that wave evolu-
tion can be reversed using a simple temporal bilayer satis-
fying the impedance anti-matching condition. As noted in
ref. [50], wave propagation is suppressed and the amplitude
grows exponentially when the refractive index becomes
imaginary. Leveraging this effect, we consider the following
temporal profiles:
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Figure 3: Impedance anti-matching and temporal localization of wave
intensity. (a) Temporal profiles of permittivity e(t) and permeability (t)
in a simple bilayer time-varying medium, with = = (ck,)~". (b) Formation
of a temporally localized wave: the wave intensity grows exponentially in
the first slab and decays in the second, due to identical refractive indices
but anti-matched impedances, producing a localized peak at t = 4z.

intervals 7 < t < 47 and 47 < t < 77, with the impedances
equal in magnitude but opposite in sign - i.e., anti-matched.
As a result, the wave undergoes exponential amplification
in the first slab and symmetric exponential decay in the
second. This creates a temporally localized wave centered at
t = 4, characterized by an exponential temporal envelope,
as shown in Figure 3(b). Full recovery of both amplitude
and phase confirms successful time rewinding. The emer-
gence of a temporal surface wave during the intermediate
stage, a large-amplitude waveform confined to a narrow
time window, is a distinctive feature of the reflection-based
time-rewinding mechanism.

Asnoted earlier, the time-rewinding effect is not limited
to a single bilayer system but can be generalized to multilay-
ered structures, provided each constituent bilayer satisfies
the necessary conditions for time rewinding. To demon-
strate the generality of this mechanism, we consider a four-
layer temporal structure designed to satisfy two distinct

-2, T<t<A4r,
e(t) =42, 4t <t <71,
1, otherwise,
-1, 4t <t <7t,
u(t) =4 9]
1, otherwise.

These profiles, shown in Figure 3(a), produce imag-
inary refractive indices and impedances during both

6 T 3 T
(a) e [(b)
3l —u] L
— 2t ]
of {1 «
o |
1
3t 4 3
_6 P R T T O P TS RS
0 5 10 0 5 10
t/x tix

Figure 4: Time rewinding and waveform restoration in a four-layer
temporal medium. (a) Temporal profiles of permittivity e(t) and
permeability x(t) in a four-layer time-varying medium, with = = (ck,)™".
(b) The electric displacement field, amplified by temporal scattering,

is fully restored at t = 97 through the time-rewinding mechanism.
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impedance-matching time-rewinding conditions, as illus-
trated in Figure 4(a). The time intervals 7 < t < 3r and 77 <
t <97, as well as 37 < t <57 and 57 < t < 77, each form
a matched bilayer: they exhibit equal impedances, oppo-
site refractive indices, and equal durations. As a result, the
amplified electric displacement field generated by temporal
scattering is fully restored at ¢t = 97 via the time-rewinding
mechanism, as shown in Figure 4(b).

In the absence of dispersion, a pulse can be fully
reversed, with all momentum components recovering their
original amplitude and phase. Figure 5 shows the evolution
of a Gaussian pulse propagating through the temporal mul-
tilayer structure of Figure 4. The initial pulse is given by

0.00
(a) "
1.00
5 ®500
.‘"%'
g

0 2 4 6 8 10
time (t/)

(b)

1.0}

0.0

Figure 5: Complete waveform restoration via temportal rewinding

of a Gaussian pulse. (a) Contour plot of a Gaussian pulse with spectral
width o, and central wavenumber k. = 100, shown as a function

of space and time while propagating through the temporal structure in
Figure 4(a). The pulse retraces its trajectory, demonstrating complete
waveform restoration via time rewinding. The characteristic time scale is
defined as = = (coy)™". (b) Spatial profiles of the pulse at selected times.
The normalized displacement field intensity is given by

IDI2 = 1D/ /3, lu(x, 0)[dx.
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[se]

k)
u(x,O):/ exp[—(k"zkc)+ikxx dk,,
20,

(18)

where o, is the spectral width and k. = 100, is the cen-
tral wavenumber. The parameters are chosen such that
cot =1

For t < 57, the pulse travels in the +x direction. After
t = 57, negative refraction in the subsequent time layers
reverses the group velocity, redirecting the pulse toward
—x. Although the medium is spatially homogeneous and
momentum is conserved, both group and phase velocities
reverse. Figure 5(a) presents a space-time contour plot of
the pulse, showing that it retraces its trajectory and is
fully restored at t = 97, i.e., u(x, 97) = u(x, r). The normal-
ized displacement field intensity is defined as |D(t)|? =
ID(0)?/ /3, lu(x, 0)]dx. Figure 5(b) confirms time rewind-
ing, with matching profiles at t = 7 and 9z, and at 3z and
77, demonstrating complete waveform recovery.

4.2 Time rewinding of Dirac waves

We now turn to Dirac waves. Figure 6 illustrates time
rewinding achieved through a temporal multilayer
sequence. In Figure 6(a), the normalized vector potential

t/t

Figure 6: Time rewinding of Dirac waves in a multilayer temporal
structure. (a) Temporal profiles of the normalized vector potential
components a, and a, from ¢ = 7 to t = 7.57 across six layers with
durations 7, 7, 7, 7, 27, and 0.5z, where 7 = 0.1/(kv;). (b, c) Probability
densities (Fp, Fp) and phases (d)p, ¢,,) of the wavefunction in each band.
The modulations in the first three layers are precisely compensated by
those in the last three, resulting in complete recovery of the initial wave
state.
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components a, = eA,/(hk) and a, = €A, /(hk), with k
denoting the magnitude of the wave vector, are modulated
from t = 7 to t = 7.57. The sequence comprises six layers
with nonuniform durations: z, 7, 7, 7, 27, and 0.5z, where
7 = 0.1/(kvp). These results demonstrate that symmetric
layer durations are not necessary for time rewinding,
provided the matching conditions are satisfied. Each layer’s
duration can be adjusted relative to the vector potential
magnitude, or vice versa, according to Eq. (14). Figure 6(b)
and (c) show the resulting probability densities

Fp = |spp|29 Fh = |shp|29 (19)

and phase angles ¢, and ¢, associated with s,, and sy,
respectively. These results confirm that the temporal evolu-
tion induced by the first three layers is exactly compensated
by the last three, leading to complete restoration of the
initial wave state. At the final time ¢ = 7.57, the system sat-
isfies Fp(7.5'r) = Fp(r), Fy(7.57) = Fy,(7), q’)p(7.51) = q’)p(r),
and ¢,(7.57) = ¢,,(7), indicating perfect recovery of both
amplitude and phase.

To evaluate the robustness of the time-rewinding mech-
anism, we introduce a normalized time-dependent scalar
potential U, = U/(hkvy) while keeping the vector poten-
tial profile unchanged, as shown in Figure 7(a). Despite

Figure 7: Time rewinding of Dirac waves across multiple temporal layers
with time-dependent scalar and vector potentials. (a) Temporal profiles
of the normalized scalar (U,) and vector (a,, a,) potentials over six layers
fromt = 7 tot = 7.57. (b) Probability density of the wavefunction in each
band, showing that the effects of the first three modulations are fully
compensated by the subsequent three, despite the presence of the scalar
potential. (c) Phase of the wavefunction, which fails to recover due to

the additional scalar potential, indicating a loss of phase coherence.
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this perturbation, the probability densities remain fully
restored (Figure 7(b)), confirming that complete interband
transitions continue to enable amplitude recovery. How-
ever, phase coherence is no longer preserved: Figure 7(c)
shows that ¢,(7.57) # ¢ ,(z) and ¢,(7.57) # ¢, (), indicat-
ing that the scalar potential induces a global phase shift.
Thus, while amplitude recovery is robust to scalar potential
perturbations, the phase is sensitive, and coherence is lost
in the more general case.

As discussed earlier, time rewinding is not limited to
systems with discrete temporal discontinuities — it can also
occur in media with continuously varying properties. To
illustrate this, we consider a smoothly time-dependent vec-
tor potential defined as

1(1—£>, ifr<t<7r,

a,(t)=33 T (20)
0, otherwise,
2sin[5(5—1)], ifr <t<7r,

a,(t) = 3\t @D
0, otherwise.

As shown in Figure 8, the vector potential starts at
zero, varies smoothly from ¢ = 7, and returns to zero at t =
77. This continuous modulation drives a gradual evolution

2Ha) % 1

Figure 8: Time rewinding under continuous temporal modulation of

the vector potential. (a) Temporal profile of the vector potential, which
evolves smoothly from t = 7 and returns to zero at t = 77. (b) Probability
density of the wavefunction in each band, showing full recovery of

the initial values at t = 77. (c) Phase of the wavefunction, also restored
to its initial value, confirming that both amplitude and phase are fully
recovered through the continuous modulation.
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of the band populations F, and F;. A complete interband
transition occurs at t = 4, after which the system retraces
its prior evolution. At the final time t = 7z, both ampli-
tude and phase are fully restored, satisfying F ,(77) = F ,(z),
F(7t) = Fy(7), ¢p(7r) = d)p(r), and ¢, (77) = ¢, (7). These
results confirm that time rewinding can be achieved even
under continuous temporal modulation.

5 Discussion

We have developed a unified framework for deterministic
time rewinding in electromagnetic and Dirac systems using
temporally engineered structures. In both cases, carefully
designed modulations cancel accumulated scattering and
phase, enabling complete recovery of the initial wave state,
including both amplitude and phase. This effect extends
beyond discrete transitions to smoothly varying modulation
profiles, highlighting the robustness and generality of the
mechanism.

In photonic systems, time rewinding is achieved
through impedance-matched or anti-matched temporal lay-
ers. We demonstrate that temporally localized surface
waves can emerge in media with imaginary refractive
indices, establishing a temporal analog of spatial boundary
phenomena. Broadband pulses in dispersionless regimes
can also be fully rewound, allowing for coherent temporal
shaping and waveform correction.

This mechanism enables applications in secure com-
munications, temporal cloaking, programmable nanopho-
tonic circuits, and wave-based logic devices. Its analytical
transparency and compatibility with dynamic media posi-
tion it as a promising approach for reconfigurable, next-
generation photonic and quantum platforms.

Looking ahead, integrating temporal modulation with
nonlinear, dissipative, and non-Hermitian effects could
unlock entirely new classes of adaptive photonic devices.

Research funding: This research was supported by the Basic
Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Edu-
cation (RS-2021-NR060141). It was also supported by the NRF
grant funded by the Korean Government (RS-2025-16071339).
Author contributions: KK conceived the project and devel-
oped the theoretical formulation. SK contributed to the the-
oretical formulation and performed the numerical calcula-
tions. Both authors participated in drafting the manuscript.
All authors have accepted responsibility for the entire
content of this manuscript and consented to its submission
to the journal, reviewed all the results and approved the
final version of the manuscript.

S. Kim and K. Kim: Deterministic time rewinding of waves in time-varying media = 3295

Conflict of interest: Authors state no conflict of interest.
Data availability: The datasets generated during and/or
analyzed during the current study are available from the
corresponding author on reasonable request.

Appendix: Invariantimbedding
method for electromagnetic and
Dirac waves in time-varying media

In this Appendix, we present the invariant imbedding
method as a framework for analyzing wave scattering
induced by continuous temporal variations in the medium.
While widely applied to spatially varying systems [51],
[52], we extend its formulation here to accommodate time-
dependent media [44].

Electromagnetic waves

We begin with the case of electromagnetic waves. In a sta-
tionary medium, the field components evolve as expl[i(k,x F
wt)]. When the medium parameters vary in time, scatter-
ing occurs at temporal interfaces, generating reflected and
transmitted components. Consider a unit-amplitude plane
wave incident from the past (¢t < 0) in the +x direction. If
the permittivity e(f) and permeability u(t) vary within the
interval 0 < t < T, the electric displacement field takes the
form

e—iwlt
D(t) =
S(T)e™it=1) 4 p(T)elwlt=D),

bl < 2

(AD)
t>T,

where @; = ck,/ /€y and w, = ck, / /€, 45, With €7, and
My, denoting the initial and final material parameters,
respectively.

To derive the invariant imbedding equations, we intro-
duce an auxiliary field u,(¢) = D(¢)/s(T), leading to

pi(T)e_iwlt, t<o,
w0 =1{" , (A2)
e—lwz(t—T) + pr(T)elwz(t_T), t> T,
where 1 1)
r
(T)= —, T)= ——-. A3
pi(T) ST p(T) S(T) (A3)

The wave equation can then be expressed in first-order

matrix form:
a (O g (WO, (A4)
de\ uy(t) u,(t)
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with
1
u(t) du
BO=| . O =p0GL (49)
- 0
e(t)

Boundary conditions att = 0 and ¢t = T are obtained by
matching u; and u,:

(0, T) = p(T), uy(0,T) = —icw; pty p(T),

w(T,T) =1+ p(T), uy(T,T) = iw,p,[p,(T) —1]. (A6)
These conditions combine into a linear system:
GS+ HR =V, (A7)
where
ul(O, T) ul(Ts T)
S = s R = ’
u,(0,T) (T, T)
i® 1 0 0
G= 1M1 JH=( ’
0 0 iy py, —1
0
v=| . . (A8)
21y
The vectors R and S depend linearly on v:
R =Rv, S =3y, (A9)
with matrix elements such as
po—1te 5 _ Pl g Pi
Ry = L Ry="— §,= L. A10
27 iy, 2 2T 2iw,u, (A10)

Applying the invariant imbedding framework, the dif-
ferential equations for R and S are [52]:

d%_f?(r) = B(r)R(r) — R(O)HB(D)R(7),

d%S(r) = —S(7)HB(7)R(7), (A11)
integrated from 7 = 0 to 7 = T with
RO)=30)=(G+H)™ (A12)
Finally, the evolution equations for p; and p, are
c%x % = ifp; + iy pipr,
L A2 i, + iy (p2 +1), (A13)

ok, dr
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where
1] & Ha ] 1]& Ha ]
= — | —= 4+ —= s = —|—= - ==,
s 2n, |e(z)  u(r) 4 2n, le(z)  u(r)
Ny, = \/€;1s. (A14)

Alternatively, the temporal transmission and reflection
amplitudes s(z) and r(z) satisfy

1ds__o1dp_

ko - Sk dr T TS
1 dr 1 dp, 1 ds _ . ;

_ ds _ Al
k.dr = Sok dr T Prak ar T Prrus (A1)

with initial conditions

ezm>, 5(0) = 1<1+ . /62”1>. (A16)
€1Hy 2 €My

Defining the temporal transmittance S and reflectance
Ras

_1(;_
r(O)—2<1

S= /9252, R=, [Tt

€1y €t

it follows directly from Eqs. (A15) and (A16) that S— R =

1, regardless of the temporal variations in € and . This

relation embodies the momentum conservation law in time-
varying electromagnetic systems.

Ir[%, (A17)

Dirac waves

We next extend the formulation to Dirac waves. Consider a
p-band Dirac wave of unit amplitude, y;(t) = e™! for t <
0, with spatial dependence e’**, When the vector potential
A(t) varies within 0 < t < T, the wavefunction evolves as

e—iwlt 0,
(A18)
t>T,

ll/1(ta T) =
S(T)e—i(oz(t—T) + r(T)ein(t—T)’

where w; = vp|q;|, and g; is defined in Eq. (5). The coeffi-
cients s and r correspond to intraband (p — p) and inter-
band (p — h) scattering, interpreted as temporal transmis-
sion and reflection.

The invariant imbedding equations for r and s are
derived analogously to the electromagnetic case and take
the form [44]

1 dr .- N 1 ds - .~
= , —— — =—jr—ifs,  (A19
ok dr - PTRTS g TS (A19)
where
ﬁ=1+aa2+((~x+a2)cost9’ 7=(a—o?)31n9’ (A20)
€ €
and
eA . \/2—
a=ﬁ,e= 14+ a®+ 2a cos 6. (A21)
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Here, 8 denotes the angle between the wave vector and
the vector potential, while &, and «a, represent the final
values of € and a, respectively. The initial conditions at 7 =

0 are
_1 fz) _1< fz)
0)==(1-22), s(0)==(1+4+ 2|,
r(0) 2< f s(0) 5 7,

where f; = q;/|q;| denotes the normalized complex wave
vector in region i. The reflectance R and transmittance S,
defined as the probability densities of the reflected and
transmitted waves relative to the incident wave, are

(A22)

R=1Ir% S=|s~ (A23)

From Egs. (A19) and (A22), it can be shown that S+ R =
1, throughout the temporal evolution of a(t) [44]. This rela-
tion reflects the simultaneous conservation of momentum
and charge in Dirac systems. Accordingly, the fundamen-
tal distinction between Dirac and electromagnetic waves
is expressed in their respective conservation laws: S+ R =
1 in the Dirac case, and S — R =1 in the electromagnetic
case.
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