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1- Optical modes of the polymer/gold fiber

To construct the optical modes of the system, we employ the vector potential approach in the
cylindrical coordinate system, with o, ¢, and z being the radius in xy-plane, azimuthal angle,

and the z-axis respectively [1]. Optical modes in fibers exhibit a hybrid nature; that is, the modes

are not purely transverse except when N =0, where n represents the azimuthal degree of freedom
[2]. The fiber is composed of a polymer core with the permittivity &4 =2.63 within the region

specified by p<a and a gold thin cladding with the permittivity &, [3] within the region
a< p<b, whereas the region p >b is considered to be vacuum with ¢,5 =1. The solution Ansatz
constitutes spatial distributions of the magnetic vector potential, as
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and the electric vector potential, as
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where C;and D; are unknown coefficients to be obtained via satisfying the boundary
conditions. k, is the propagation constant of the waves propagating along the z — axis, and the

characteristic equations in all three regions are —«? +k2 = g;k3, with i =1, 2, and 3. 1,and K,
are the modified Bessel functions of the first and second kinds with order n.

The electric and magnetic field coefficients are obtained as
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H(F)=+Vx A+ (i) (VxVxF), (S4)

Respectively, with both Aand F vectors composed of only z-components. After obtaining the
field coefficients by using equations (S1) to (S2), the tangential boundary conditions are
satisfied, and therefore the following 4 coupled equations are obtained that relates C,, C;, D,

, and Djas
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Equations (S5) to (S8) defines a nonlinear Eigenvalue problem, for obtaining the propagation
constant k, and the eigenvectors C,, C;, D,, and D;.The unknown coefficients C,, C4, Dy,

and D, are obtained as
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Which are used to calculate the spatial distribution of the electric and magnetic fields in all

regions.

2. Images of the helical waveguide and sample holder

20 um

FIG. S1. (a) The setup, consisting of a sample holder inside a scanning electron microscope
and a parabolic mirror positioned below the sample. (b) The same setup with the parabolic

mirror positioned above the sample. (¢) A scanning electron (SE) image of the sample,

showing a series of microhelices arranged on top of a plateau. (d) A high-magnification top-
view image of a single helix, demonstrating the alignment of the helix axis parallel to the

electron trajectory.



3. Dependence of the emission wavelength on the electron’s Kkinetic energy

The phase-matching condition defined in Eq. (1) of the main text enables control over the
photon energy and intensity for a specific helix through various parameters, including the
electron's group velocity and the diffraction order m. Fig. S2 illustrates that the emitted photon
energy is indeed dependent on the electron's kinetic energy. For an electron with the kinetic
energy of 15 keV (v, =0.24c, where cis the light speed in vacuum), only a faint emission is
observed, which is two orders of magnitude weaker than the emission from a 17 keV electron
beam. For the latter, the emission occurs at the peak photon energy of E = 2.2 eV, in a good
agreement with the phase-matching condition. For an electron beam with the kinetic energy of
20 keV (v, =0.27¢), the peak photon energy occurs at E = 2.4 eV, whereas the phase-matching
condition specifies an emission at the energy of 2.65 eV. The emission angle is higher than that
observed for an electron with a kinetic energy of 17 keV. Both observations indicate that the
emission corresponds to the m = 1 diffraction order. This condition results in an emission at a
photon energy of 2.5 eV, which aligns better with the experimental observations.
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FIG. 3. (a) Dispersion diagram of the fundamental mode (Solid purple line) and the second
mode (solid blue line) of the optical fiber. Dashed-dotted lines display the optical lines in
vacuum and in the polymer. The colored dashed lines exhibit the phase-matching condition for
an electron with depicted kinetic energies propagating parallel to the helix axis. (b) CL spectra
and (b) CL angle-resolved spectral maps for an electron with the kinetic energies of 15 keV
(left), 17 keV (middle), and 20 keV (right) propagating parallel to the helix.
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