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1- Optical modes of the polymer/gold fiber 

 

To construct the optical modes of the system, we employ the vector potential approach in the 

cylindrical coordinate system, with  ,  , and z  being the radius in xy-plane, azimuthal angle, 

and the z-axis respectively [1]. Optical modes in fibers exhibit a hybrid nature; that is, the modes 

are not purely transverse except when 0n = , where n represents the azimuthal degree of freedom 

[2]. The fiber is composed of a polymer core with the permittivity 1 2.63r =  within the region 

specified by a   and a gold thin cladding with the permittivity 2r  [3] within the region 

a b  , whereas the region b   is considered to be vacuum with 3 1r = . The solution Ansatz 

constitutes spatial distributions of the magnetic vector potential, as 
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and the electric vector potential, as  
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where iC and iD  are unknown coefficients to be obtained via satisfying the boundary 

conditions. zk is the propagation constant of the waves propagating along the z – axis, and the 

characteristic equations in all three regions are 2 2 2
0i z rik k − + = , with i = 1, 2, and 3. nI and nK

are the modified Bessel functions of the first and second kinds with order n . 

 

The electric and magnetic field coefficients are obtained as 
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and 
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Respectively, with both A and F vectors composed of only z-components. After obtaining the 

field coefficients by using equations (S1) to (S2), the tangential boundary conditions are 

satisfied, and therefore the following 4 coupled equations are obtained that relates 2C , 3C , 2D

, and 3D as  
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and 
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Equations (S5) to (S8) defines a nonlinear Eigenvalue problem, for obtaining the propagation 

constant zk  and the eigenvectors 2C , 3C , 2D , and 3D .The unknown coefficients 1C , 4C , 1D , 

and 4D are obtained as 
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Which are used to calculate the spatial distribution of the electric and magnetic fields in all 

regions. 

 

 

 

 

2. Images of the helical waveguide and sample holder 

 

 

 

FIG. S1. (a) The setup, consisting of a sample holder inside a scanning electron microscope 

and a parabolic mirror positioned below the sample. (b) The same setup with the parabolic 

mirror positioned above the sample. (c) A scanning electron (SE) image of the sample, 

showing a series of microhelices arranged on top of a plateau. (d) A high-magnification top-

view image of a single helix, demonstrating the alignment of the helix axis parallel to the 

electron trajectory. 

 

 

 



3. Dependence of the emission wavelength on the electron’s kinetic energy 

 

The phase-matching condition defined in Eq. (1) of the main text enables control over the 

photon energy and intensity for a specific helix through various parameters, including the 

electron's group velocity and the diffraction order m. Fig. S2 illustrates that the emitted photon 

energy is indeed dependent on the electron's kinetic energy. For an electron with the kinetic 

energy of 15 keV ( 0.24ev c= , where c is the light speed in vacuum), only a faint emission is 

observed, which is two orders of magnitude weaker than the emission from a 17 keV electron 

beam. For the latter, the emission occurs at the peak photon energy of E = 2.2 eV, in a good 

agreement with the phase-matching condition. For an electron beam with the kinetic energy of 

20 keV ( 0.27ev c= ), the peak photon energy occurs at E = 2.4 eV, whereas the phase-matching 

condition specifies an emission at the energy of 2.65 eV. The emission angle is higher than that 

observed for an electron with a kinetic energy of 17 keV. Both observations indicate that the 

emission corresponds to the m = 1 diffraction order. This condition results in an emission at a 

photon energy of 2.5 eV, which aligns better with the experimental observations. 

 

 

 
FIG. 3. (a) Dispersion diagram of the fundamental mode (Solid purple line) and the second 

mode (solid blue line) of the optical fiber. Dashed-dotted lines display the optical lines in 

vacuum and in the polymer. The colored dashed lines exhibit the phase-matching condition for 

an electron with depicted kinetic energies propagating parallel to the helix axis. (b) CL spectra 

and (b) CL angle-resolved spectral maps for an electron with the kinetic energies of 15 keV 

(left), 17 keV (middle), and 20 keV (right) propagating parallel to the helix.  
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