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Abstract: CMOS-compatible photonic integrated circuits

(PICs) are emerging as a promising platform in artificial

intelligence (AI) computing. Owing to the compact footprint

of microring resonators (MRRs) and the enhanced intercon-

nect efficiency enabled bywavelength divisionmultiplexing

(WDM), MRR-based photonic neural networks (PNNs) are

particularly promising for large-scale integration. However,

the scalability and energy efficiency of such systems are

fundamentally limited by the MRR resonance wavelength

variations induced by fabrication process variations (FPVs)

and environmental fluctuations. Existing solutions use post-

fabrication approaches or thermo-optic tuning, incurring

high control power and additional process complexity. In

this work, we introduce an online training and pruning

method that addresses this challenge, adapting to FPV-

induced and thermally induced shifts in MRR resonance

wavelength. By incorporating a power-aware pruning term

into the conventional loss function, our approach simulta-

neously optimizes the PNN accuracy and the total power
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consumption for MRR tuning. In proof-of-concept on-chip

experiments on the Iris dataset, our system PNNs can adap-

tively train to maintain above 90 % classification accuracy

in a wide temperature range of 26–40 ◦C while achiev-

ing a 44.7 % reduction in tuning power via pruning. Addi-

tionally, our approach reduces the power consumption by

orders-of-magnitude on larger datasets. By addressing chip-

to-chip variation and minimizing power requirements, our

approach significantly improves the scalability and energy

efficiency of MRR-based integrated analog photonic proces-

sors, paving the way for large-scale PICs to enable versatile

applications including neural networks, photonic switching,

LiDAR, and radio-frequency beamforming.

Keywords:microring resonators; photonic neural

networks; resonance variations; online training; pruning

1 Introduction

Large neural networks (NNs) have demonstrated excep-

tional performance in edge computing [1], natural lan-

guage processing [2], and autonomous systems [3]. CMOS-

compatible silicon photonic integrated circuits (PICs) are

emerging as a promising platform in artificial intelli-

gence (AI) computing [4], [5], offering significant advan-

tages including low latency, high bandwidth, and fully pro-

grammability [5]–[7]. Integrated photonic neural networks

(PNNs) generally fall into two major categories: coherent

PNNs based on interferometricmeshes (e.g.,Mach–Zehnder

interferometers [MZIs]) [4], [6] and wavelength-division

multiplexed (WDM) PNNs based onwavelength-selective fil-

ters (e.g., microring resonators [MRRs]) [8], [9]. Owing to the

compact footprint of MRRs and the enhanced interconnect

efficiency enabled byWDM, MRR-based PNNs can be imple-

mented with significantly less chip area than their coherent

equivalents [10], and are promising for large-scale integra-

tion using CMOS-compatible silicon photonic foundry pro-

cesses [11]–[13]. In addition to NN inference [5], [14], such

MRR-based integrated analog photonic processors have also

found important applications in photonic switching [15],
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LiDAR [16], [17], RF beamforming [18], [19], and data inter-

connects [20], [21].

However, a key challenge in realizing large-scale MRR-

based analog photonic processors is the functional varia-

tion of MRRs caused by unavoidable fabrication process

variations (FPVs) and dynamic environmental fluctuations

(e.g., thermal crosstalk and polarization drifts), which can

induce significant random shifts in the MRR resonance

wavelengths. This shift can be expressed as [22]:

𝛿𝜆0 =
𝛿(env)neff ⋅ 𝜆0

ng
, (1)

where 𝜆0 is the MRR resonance wavelength, 𝛿
(env)neff is the

effective index shift due to environmental changes, and ng
is the group index accounting forwaveguide dispersion. The

effective index shift can be further expressed as [23]

𝛿(env)neff = c∫ Δ𝜀E𝑣 ⋅ E∗𝑣dxdy, (2)

where c is the speed of light,Δ𝜀(x, y) denotes a local change
in the dielectric constant, and E𝑣(x, y) is the normalized

modal electric field vector of the waveguide mode. All the

static and dynamic variations – including sub-wavelength

FPVs in geometric parameters, ambient temperature distur-

bances, and thermal crosstalk – can alterΔ𝜀(x, y), resulting
in a resonance shift 𝛿𝜆0 comparable to the free spectral

range (FSR) ofMRRs [24]. For example, in a recent study [25],

measurements of 371 identically designed racetrack-shaped

resonators, revealed resonance shifts ranging from 1.76 nm

(median) to 6 nm (maximum), as a result of inherent silicon

thickness variations (±5 nm fluctuations in 220 nm layers)

across wafers and fabrication batches. It is also shown that

fluctuations in ambient temperature can lead to a drift in

the MRR resonance wavelength of tens of pm, resulting

in a degradation of the accuracy of an MRR-based pho-

tonic neural network (PNN) to 67 % from 99 % for a two-

layer MNIST classification [26]. While previous work has

explored various post-fabrication strategies to counteract

these variations – including germanium (Ge) ion implanta-

tion [27], [28], integration of phase change materials (PCMs)

[29]–[32], and deposition of photochromic materials [33],

[34] – these techniques are only effective at correcting

static FPVs, and they require additional post-fabrication

processing complexity and precise control over the mate-

rials involved. Alternatively, thermo-optic tuning remains

widely used method due to its broad tuning range, but it

is power-intensive; consuming 28 mW/FSR using an embed-

ded N-doped heater [35], [36]. Consequently, the scalability

and energy efficiency ofMRR-based analog photonic proces-

sors are fundamentally constrained, hindering their appli-

cations to large-scale networks such as large AI models and

WDM transceivers.

To address fundamental limitation, we propose online

training and pruning in MRR-based PNNs that adapt to

FPV-induced and thermally induced shifts in MRR reso-

nance wavelength. Based on perturbation-based gradient

descent algorithm, we develop an online training frame-

work that maps the trainable NN parameters to MRR-based

PNN chips without the need of look-up tables (LUTs). We

further incorporate a power-aware pruning term into the

conventional loss function, which simultaneously optimizes

the PNN accuracy and the total power consumption for

MRR tuning. In proof-of-concept on-chip experiments, we

demonstrate online training with an iterative feedback

system with a PIC performing fast analog matrix-vector

multiplications (MVMs), combined with a central process-

ing unit (CPU) digitally computing gradients at a slower

timescale. Using a 3 × 2 PNN on the Iris dataset, our system

PNNs can adaptively train to maintain above 90 % classi-

fication accuracy across static (FPV) or dynamic (thermal

drifts) variations, while achieving a 44.7 % reduction in

tuning power via pruning. Additionally, simulations with

larger and deeper convolutional neutral networks (CNNs)

on standard datasets – including MNIST [37], CIFAR-10 [38],

and Fashion-MNIST [39] – validate the scalability of our

method, showing orders-of-magnitude reductions in power

consumption. By addressing chip-to-chip variation andmin-

imizing power requirements, our approach significantly

improves the scalability and energy efficiency ofMRR-based

integrated analog photonic processors, paving the way for

large-scale PICs to enable versatile applications including

NNs, photonic switching, LiDAR, and RF beamforming.

2 Results

2.1 Concept and principle

2.1.1 Offline training

While PNNs can operate with picosecond latency for real-

time applications [40]–[42], they rely on slower digital com-

puters (i.e. CPU or GPU) for training, a process called offline

training [40], [43]. As shown in Figure 1a, in this approach,

NN parameters (e.g., neuron weights and biases) are opti-

mized in software using backpropagation (BP) based gradi-

ent descent algorithm:
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w
k+1 ←w

k − 𝛼∇
w
k, (3)

where w
k denotes the weight matrix in the kth training

epoch, 𝛼 is the learning rate,  is the loss function. The

parameters are then mapped onto the physical hardware

(PNN chips) using highly accurate calibration models (also

called look-up table (LUT)). For the MRR in the ith row, the

jth column of anM × N MRR weight bank, it writes as

Ii j = fi j(wi j ) = f j(wi j ). (4)

Herewij denotes theweight to be executed on the i, jthMRR,

and Iij is the required tuning current. The LUT, denoted as a

mapping function fij, is determined by the relative position

of the jth laser wavelength and the MRR resonant state.

Ideally, theMRRs operating at the same laserwavelength are

expected to exhibit identical resonant wavelengths, simpli-

fying the LUT to f j.

However, in practice, theMRRs in the same columnmay

exhibit significantly different resonant wavelengths due to

static and dynamic variations. As derived in Supplemen-

tary Note 1, an LUT for the i, jth MRR – accounting for FPVs,

ambient temperature variations, input optical power, and

the self-heating effect – is approximately given by

Ii j = f̃ i j(wi j, 𝜎i j, T, Popt ), (5)

where 𝜎ij denotes the deviation of resonant wavelength due

to FPVs, T is the time-varying ambient temperature, Popt is

the input optical power. Based on Eq. (5), it remains com-

plicated to generate an LUT that accounts for all the non-

idealities across large-scale MRR weight banks. Any inaccu-

racies in LUTswill directly introduce arbitrary deviations in

the mapped weight parameters, leading to significant per-

formance degradation across NN system benchmarks such

as classification tasks.

In an MRR-based weight bank using thermo-optic tun-

ing to counteract these non-idealities, the required electrical

power for actively programming weights of the i, jth MRR

can be written as [24]:

P
weight

i j
= I

2
i j
R = Plock

i j
+ Pconf

i j
, (6)

where R is the resistance of the metal heater. The power

breaks down into a static weight locking power that locks

the MRR resonance to the desired wavelength, and a config-

uration power to program the weight value [24]. Therefore,

the total power for the weight configuration consumed by

anM × N MRR weight bank is

P
weight = Σi, jP

weight

i j
. (7)

For simplicity, we denote P
weight as P in the following

sections except Section 2.3.

2.1.2 Online training

Online training, also known as “in situ” or “chip-in-the-loop”

training, was originally proposed to alleviate the intensive

use required of CPU/GPUs for training non Von-Neumann

architecture based computing hardware [44], where the

training occurs on the same hardware used for inference.

It was also recognized that online training can mitigate

hardware nonidealities, and promise for iterative weight

updates in real-time [45]. The state-of-the-art online train-

ing algorithms for PNNs [6], [45]–[48] can be classified

into twomajor categories: gradient-based and gradient-free

algorithms. Gradient-free algorithms, such as genetic algo-

rithms [47], are straightforward to implement in practice

but often face inherent challenges with convergence and

scalability. In contrast, gradient-based algorithms are typ-

ically more efficient and, therefore, more widely adopted.

Themost commonly used gradient-based training algorithm

for software-based NNs, backpropagation, analytically com-

putes gradients by back-propagating errors using the chain

rule [37].While significant progress has beenmade in exper-

imentally realizing BP on photonic hardware [48]–[50], the

process typically requires global optical power monitor-

ing and evaluation of nonlinear activation function gradi-

ents in software. This approach introduces additional sys-

tem complexity and latency overhead. Other gradient-based

algorithms, such as direct feedback alignment [45], replace

the chain rule in back-propagation with a random weight

matrix, but their validation has been limited to small, shal-

low NNs.

In our approach, the online training of our MRR-based

PNNs is implemented by a perturbation-based gradient

descent algorithm, which estimates gradients only based

on forward inference running on PNN chips. Here, the NN

parameters to be optimized are set to be MRR tuning cur-

rents instead of neuron weights:

I
k+1 ← I

k − 𝛼∇
I
k. (8)

The gradient of loss function with respect to MRR tuning

currents (Ik) is approximately given by perturbation mea-

surement:

∇
I
k ≈ Δ

ΔIk
, (9)

where ΔIk is the perturbation rate of the MRR tuning cur-

rents in the kth training epoch, and Δ is the measured

change of loss function induced by the perturbation. In

practice, ΔIk should be sufficiently small to preserve the

validity of approximation in Eq. (9), while remaining large

enough to produce measurable Δ above experimental

noise.
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(a)

(b)

Figure 1: Comparison of offline training with online training and pruning approach. (a) Conventional offline training method supporting only

small-scale PNN chips. In this approach, NN parameters are calculated in software and mapped onto the PNN chips. The resonance variations of MRRs

necessitate complicated look-up tables, and lead to higher power consumption for MRR control. (b) Online training and pruning method compatible

for large-scale PNN chips. The training of PNNs occurs on the same chip used for inference, accounting for any chip-to-chip variations and

environmental fluctuations. Our approach simultaneously optimizes the PNN accuracy and the total power consumption for tuning all the MRRs.

2.1.3 Pruning

In software-based NNs, pruning is a model compression

technique that removes redundant weight parameters (by

setting their values to zero) whilst maintaining accuracy.

While the implementation of pruning has also been inves-

tigated in PNNs, prior approaches either lack robustness

against nonidealities [51], [52] or require extensive offline

training [26]. As shown in Figure 1b, our proposed approach

accounts for the total MRR tuning power in the “chip-in-the-

loop” process, by incorporating a power-aware “pruning”

term into the conventional loss function:

̃ = + 𝛾P, (10)

where ̃ is themodified loss function given by the sumof the

conventional loss function  and the power-aware pruning

term 𝛾P, 𝛾 is an empirically determined hyperparameter

that defines pruning strength. According to Eqs. (6) and (7),

̃ can also be expressed as

̃ = + 𝛾Σi, jPi j = (I)+ 𝛾Σi, jI
2
i j
R. (11)

The selection of the hyperparameter 𝛾 is critical in this

framework, as it explicitly parameterizes the trade-off

between the NN accuracy and energy efficiency. Depending
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on the demand of the end users, minimizing this modified

loss function can enable concurrent optimization of both the

NNaccuracy and the total power consumption. For example,

in a power-constrained environment, the training problem

becomes

min+ 𝛾P s.t. P ≤ Pmax (12)

with a relatively larger value of 𝛾 , where Pmax denotes the

maximumpower available forweight configurations. Oppo-

sitely, in scenarios prioritizing high accuracies, it becomes

min+ 𝛾P s.t.  ≤ max (13)

with a relatively smaller value of 𝛾 , wheremax denotes the

upper bound of the conventional loss function permitted

under a given accuracy constraint.

2.2 Experiment

2.2.1 Setup

Recently, integrated PNNs have been extensively investi-

gated and experimentally validated across various on-chip

scales, achieving low latencies of hundreds of picoseconds

at diverse applications [6], [41], [53]. Notable demonstrations

include a 3-layer PNN with 9 neurons for image classifica-

tion [53], a 3-layer 6 × 6 PNN for vowel classification task [6],

and a single-layer 4 × 2 PNN for fiber nonlinearity compen-

sation [40]. In our proof-of-concept experiment, a 3 × 2MRR

weight bank is used to demonstrate our proposed online

training and pruning approach and the associated energy

savings.

Our experimental setup is illustrated in Figure 2a.

First, three channels of input data (denoted as x1, x2, x3)

are generated from a high sampling rate signal generator

(Keysight M8196A), and modulated onto laser 1, 2, and 3

(Pure-Photonics, PPCL500) respectively via Mach–Zehnder

modulators (MZMs). The lights from these three lasers, each

at a distinct wavelength, are combined using a wavelength-

division multiplexer (MUX) and then split equally between

two MRR weight banks. Each MRR weight bank consists of

three MRRs, which are designed with slightly different radii

(8 μm, 8.012 μm, 8.024 μm). The MRRs at the same column
(i.e.,MRR1 andMRR4,MRR2 andMRR5,MRR3 andMRR6) are

expected to share the same corresponding resonance wave-

lengths, alignedwith 200 GHz spaced ITU grids (1,546.92 nm,

1,548.51 nm, 1,550.12 nm, respectively). However, as shown

in Figure 2b, the measured weight bank spectrum indicates

that the resonancewavelengths of all sixMRRs deviate from

the designed values due to FPVs and temperature changes.

To counteract FPVs, the wavelengths of three lasers are

further tuned (1,547.24 nm, 1,548.60 nm, and 1,550.40 nm)

to align with the deviated resonance wavelengths. More-

over, all MRRs are thermally tuned via embedded N-doped

heaters to actively program and configure weights (denoted

asw11,w12,w13,w21,w22,w23), allowing for individualweight-

ing of input analog data in the three wavelength channels.

The thermal tuning characteristics of six MRRs at 30 ◦C, are

illustrated in Figure 2c.

Our proof-of-concept experiment is validated on a stan-

dard Iris dataset, where three species of Iris flowers (Setosa,

Versicolour, Virginica) are classified using only three out

of four input features (sepal length, petal length, and petal

width), as shown in Figure 2d. This three-class classification

problem is converted into a two-step binary classification

(Figure 2e) mapped to the on-chip PNN, which utilizes eight

trainable parameters. The parameters include the tuning

currents of six MRRs – I11, I12, I13, I21, I22, I23 (corresponding

to six weights) – and two biases, b1 and b2. The 150 samples

are split into 120 for training and 30 for testing.

The analog optical signals from the drop and through

port are then captured and differentiated by two balanced

photodetectors (BPDs), which gives the electrical output of

the weighted summations, Σiw1ixi and Σiw2ixi. The output

is further read by an oscilloscope and demodulated in a CPU,

which evaluates the power-aware loss function (Eq. (10))

and calculates gradients based on perturbation (Eq. (9)).

Finally, the CPU updates the MRR tuning currents for the

next training epoch (Eq. (8)) and commands theMRR driver,

which is equipped on a customized printed circuit board

(PCB) (Supplementary Note 2). As shown in Figure 2f, the

training of our PNN occurs with the photonic chip in the

loop, iteratively optimizing the loss function and reducing

the total power consumption.

2.2.2 Demonstration on 3× 2 PNN

PNN training is conducted under three conditions: conven-

tional offline training, online training without pruning, and

online training with pruning. Each training configuration

is repeated 10 times to ensure consistency. The perturba-

tion rate of MRR tuning currents (ΔIk) is set to 0.05 mA.

To evaluate the gradients with respect to the MRR tuning

currents
(
∇

I
k), each training epoch batches the training

data seven times through the PNN: six times perturbing

each tuning current
(
I
k
i j
+ΔIk

i j

)
and one time to measure

̃ with non-perturbed currents Ik
i j
. The plots in Figure 3a

show the average of both categorical cross-entropy loss

() and power-aware loss (̃) versus training epoch. It is
observed that the PNN can quickly converge to the optimal

weights within 25 epochs using perturbation-based online

training.
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(a)

(b)

(d) (e)

(f)

(c)

Figure 2: System setup of online training and pruning. (a) Schematic of our experimental setup. MZM, Mach–Zehnder modulator. MUX, wavelength

multiplexer. PIC, photonic integrated circuit. MRR, microring resonator. BPD, balanced photodetector. ADC, analog-to-digital converter. CPU, central

processing unit. 𝜎(z) denotes the nonlinear activation function performed on software. The inset shows the micrograph of the two MRR weight banks

and BPDs. (b) Normalized weight spectrum of two MRR weight banks at 30 ◦C. The MRRs at the same colors (i.e., MRR1 and MRR4, MRR2 and MRR5,

MRR3 and MRR6) are designed to share the same resonance wavelengths, aligned with 200 GHz spaced ITU grids (1,546.92 nm, 1,548.51 nm,

1,550.12 nm). (c) Tuning characteristics of six MRRs at 30 ◦C. (d) Scatterplot of Iris flower dataset. (e) Schematic of a simple 3 × 2 neural network

for Iris classification. (f) Online training and pruning procedure. At each iteration, the PIC performs matrix-vector multiplication without and with

perturbations, while the CPU evaluates the gradients of power-aware loss function, and updates the MRR tuning currents for the next iteration.
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(a)

(c) (d) (e)

(b)

Figure 3: Online training results without, or with pruning method. (a) Experimental results of online training losses without, or with the pruning

method. (b) Simulated result indicating the tradeoff between the prediction accuracy and power efficiency. (c–e) Confusion matrices for the 150

samples, obtained by the conventional offline training, online training without, or with the pruning method, respectively.

We also simulate the trade-off between the NN accu-

racy and the associated energy savings (Figure 3b). The sim-

ulation indicates that the trade-off is optimized at 𝛾opt =
0.01 mW−1, where significant reduction of overall tuning

power (exceeding 70 %) canbe achievedbefore the accuracy

drops off. As predicted in Section 2.1.3, in scenarios prior-

itizing high accuracies where 𝛾 < 𝛾opt, the loss function ̃
is dominated by the conventional loss function , such that
the PNN maintains a high accuracy of >93 %. Contrarily, in

scenarios constraining overall power consumption where

𝛾 > 𝛾opt, the power-aware loss function ̃ is dominated by

the pruning term 𝛾P, leading to a larger amount of energy

savings butmay degrade the PNN accuracy. As shown by the

confusion matrix in Figure 3c, the offline training experi-

ment only produces 82 %accuracy on the 150 samples. In the

accuracy-prioritized online training experiment (without

pruning, 𝛾 set to 0) (Figure 3d), the overall classification of

the Iris flower task is improved to 96 %, with a total MRR

tuning power of 9.54 mW. In the online training experiment

constraining power consumption (with pruning, 𝛾 set to

0.0075 mW−1) (Figure 3e), we observe a 44.7 % reduction

(from 9.54 mW to 5.28 mW) of total tuning power while the

PNN maintains a classification accuracy of 95.33 %.

Furthermore, to demonstrate the adaptability of our

online training method to temperature drifts, additional

experiments are conducted at multiple different tempera-

tures ranging from 26 ◦C to 40 ◦C. Before online training,

the MRR tuning currents are randomly initialized within

the tuning range of 0–1.5 mA (only weights w11 and w21 are

plotted, Figure 4a), producing untrained classification out-

putswith only 33.33 % accuracy. After online training for 100

epochs (Figure 4b), the PNN can be trained to the optimal

weights, regardless of the changes of MRR tuning charac-

teristics due to temperature drifts. As a result, high clas-

sification accuracies is consistently achieved at both 30 ◦C

(99.33 %, upper row of Figure 4a and b) and 34 ◦C (96.67 %,
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(a) (b)

(c) (d)

Figure 4: Adaptive PNN training at different temperatures. (a, b) Illustrate two of the six MRR tuning currents (weights I11 and I21) before and after

online training, respectively, at 30 ◦C (the upper plots) and 34 ◦C (the lower plots). (c) Experimental obtained Iris classification accuracies at different

temperatures. (d) Online training experiment performed with thermal disturbances. The temperature is changed from 27 ◦C to 32 ◦C at the 100th

epoch, and from 32 ◦C to 30 ◦C at the 200th epoch.

lower row of Figure 4a and b). As shown in Figure 4c, the

classification accuracies maintain above 90 % even if the

external temperature changes from 26 ◦C to 40 ◦C. We also

evaluate the resilience of our PNN training to intentional

thermal disturbances. In Figure 4d, it is shown that the PNN

can quickly recover its classification performance within

about 25 epochs even if the external temperature is dis-

turbed from 27 ◦C to 32 ◦C (at the 100th epoch), and from

32 ◦C to 30 ◦C (at the 200th epoch). These proof-of-concept

experimental results further confirm that our online train-

ing and pruning method can handle any PNN hardware

non-idealities, including chip-to-chip FPVs, temperature
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disturbances, and evennonlinearities inducedby input opti-

cal power.

2.3 Energy savings in large-scale NNs via
pruning

In addition to the MRR tuning power for configuring

weights, the overall power consumed by a multiwavelength

PNN also includes the power needed for laser pumping and

O-E/E-O data conversions (e.g., modulators, photodetectors,

and analog-to-digital converters [ADCs]). For a multiwave-

length PNNwithN neurons andN2 MRRs, the overall power

can be expressed by [24]:

P
total = N2 × P

weight + N × P
laser + N × BW × E

OEO, (14)

where Plaser is the power needed for laser pumps, BW rep-

resents the bandwidth of the signal modulated on the opti-

cal carriers, and EOEO = E
mod + E

det + E
ADC is the energy of

O/E/O data conversion, associated with modulation, detec-

tion, and ADCs. The MRR tuning power Pweight is shown to

scale quadratically with the number of neurons, whereas

the power use of laser pumps and data conversions scales

linearly. While various technologies have been demon-

strated to address different power contributors [33], [54],

[55], we specifically look into MRR tuning power dominated

scenarios and the energy savings in larger-scale multiwave-

length PNNs via online pruning.

We extend the simulations to larger, deeper feedfor-

ward and CNN architectures for various classification tasks

with standard datasets, including scikit-learn Moons, scikit-

learn Wine dataset, MNIST, CIFAR-10, and Fashion-MNIST.

The FPVs in the MRRs are simulated by inducing Gaussian-

distributed variations (with a standard deviation of 𝜎) to

their resonance wavelengths (Supplementary Note 4) [24].

We quantify the impact of online pruning on inference

power consumption, defined as the control power for all the

weighting MRRs. Consistent with the theoretical framework

in Section 2.1.3, the accuracy-power trade-off for large-scale

NNs is governed by the pruning strength 𝛾 , as exempli-

fied by the Iris dataset results in Figure 3b. As shown in

Figure 5, the baseline unpruned PNNs (blue line) exhibit

a linear increase in total MRR tuning power with the

PNN scale (number of MRRs), prioritizing accuracy under

unlimited power budgets (𝛾 = 0). In contrast, for power-

constrained systems tolerating specific classification errors,

our method reduces power consumption by orders of mag-

nitude. For instance, in the simulation using the scikit-

learnWine dataset (featuring a three-layer feedforward NN

with 2,976 weights), our method achieves total MRR tuning

Figure 5: Simulated results on reducing overall power consumption

enabled by online pruning across different size MRR-based PNNs.

power reductions of 10.8×, 65.2×, and 1,133.4× under val-

idation accuracy drops of 1 %, 5 %, and 15 %, respectively.

It is also observed that the total MRR tuning power with

15 % accuracy drop remains almost constant across small-

scale datasets (the number of MRRs is below 104), primarily

resulting from the redundancies of fully-connected feedfor-

ward NNs compared to CNNs (Supplementary Note 4.3). The

simulation results support that the scale ofMRR-based PNNs

that can be trained with our online training and pruning

method can be up to onemillionMRRweights, far exceeding

the current fabrication capability and available channels in

100 GHz spaced ITU grids, which is up to 72 different wave-

lengths. Nevertheless, our findings significantly improve

the scalability and energy efficiency of MRR-based PNNs,

particularly paving the way for their operations in power-

constrained scenarios such as edge computing, wearable

devices, and autonomous driving systems.

3 Discussion

With the emergence of new AI computing paradigms, such

as brain-inspired neuromorphic computing and quantum

computing, online training has been proposed that revolu-

tionizes the definitions of unconventional hardware com-

puting architecture and AI training algorithms. In this

work, we focus on online training and pruning for inte-

grated silicon photonic neural networks, which among the

new computing paradigms appear attractive for their full-

programmability and CMOS-compatibility. Our proposed

approach provides a methodology that breaks one funda-

mental limiting factor on scalability due to chip-to-chip
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variations, and simultaneously optimizes overall power

consumption in thermally controlled MRR-based PICs.

Recent advances in photonic AI hardware systems

demonstrate features that go beyond the performance of

traditional digital electronics. In diffractive free-space opti-

cal systems, PNNs at the million-neuron scale have been

realized [56], with efficient online training for compensat-

ing alignment errors and device non-idealities [57], [58]. In

coherent PNNs based onMZIs, a single-chip, fully-integrated

PNN with six neurons and three cascaded layers achieves

end-to-end (410 ps) processing with online training improv-

ing the data throughput [6]. Additionally, a system-on-chip

microwave photonic processor using MRR weight banks is

developed to solve dynamic radio-frequency (RF) interfer-

ence [41], showing real-time adaptability enabled by online

learning and weight adjustments. We envision that the

online training and pruning method presented in this study

is also generalizable to other PNNs being actively investi-

gated. For example, the generalized loss function (L )writes

as

L = + Σi𝛾iΘi, (15)

where L is given by the sum of the conventional loss func-

tion and all the parameter-aware pruning term 𝛾 iΘi, Θi

denotes any hardware parameter related terms to be opti-

mized, such as power consumption, DC electrical control

currents/voltages, and modulator biases.

Taking advantage of low-latency photonic processing,

online PNN training can benefit applications that necessi-

tate real-time adaptability, including RF interference cancel-

lation [41], fiber nonlinearity compensation [40], and edge

computing [1]. In our experiment on Iris dataset, the total

average time for running each training epoch is about 13.1 s,

including all the latencies induced by the inter-device com-

munications, MRRweight actuating, and digital calculations

(the breakdown latency analysis is presented in Supplemen-

tary Note 5). The system training latency is currently domi-

nated by the slow single-thread CPUprocessing and the com-

munication time between equipments (for example, it takes

an average of 0.726 s to download the analog waveforms

from the oscilloscope to the CPU). This can be significantly

reduced tomillisecond level by speeding upwith high-speed

analog-to-digital converters and high-parallelism FPGA pro-

cessors [41]. Further improvements of the system training

latency include the exploration of more efficient training

algorithms [6], [59] to reduce the perturbation runs. The

exploitation of using faster MRR modulators [60], [61] for

rapid weight updates can also potentially reduce the sys-

tem latency from millisecond to microsecond level, despite

that the proposed pruning technique remains critical for

reducing the power consumption caused by thermal tuning.

A comprehensive comparative analysis of our work with

other literatures on the online training of PNNs, together

with the positioning of our pruning method in different

tuningmechanismsused in integrated siliconphotonics, can

be found in Supplementary Note 6.

4 Conclusions

To summarize, we have proposed and demonstrated an

online training and pruning method on multi-wavelength

PNNs withMRRweight banks that addresses the fundamen-

tal issue on scalability and energy efficiency due to MRR

resonance variations.We experimentally validate our train-

ing framework with an iterative feedback system, and show

that superior performances of PNNs can be attainedwithout

any software-based pre-training involved. By incorporat-

ing the power-aware pruning term into the conventional

loss function, our approach significantly optimizes over-

all power consumption in thermally controlled MRR-based

PNNs. This study serves as a fundamental methodology for

addressing the chip-to-chip variations in PICs, and repre-

sents a significant milestone towards building large-scale,

energy-efficient MRR-based integrated analog photonic pro-

cessors for versatile applications including NNs, LiDAR, RF

beamforming, and data interconnects.
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