DE GRUYTER

Nanophotonics 2025; aop a

Research Article

Jiawei Zhang*, Weipeng Zhang, Tengji Xu, Lei Xu, Eli A. Doris, Bhavin J. Shastri, Chaoran Huang and

Paul R. Prucnal

Online training and pruning of multi-wavelength

photonic neural networks

https://doi.org/10.1515/nanoph-2025-0296
Received June 23, 2025; accepted October 28, 2025;
published online November 10, 2025

Abstract: CMOS-compatible photonic integrated circuits
(PICs) are emerging as a promising platform in artificial
intelligence (AI) computing. Owing to the compact footprint
of microring resonators (MRRs) and the enhanced intercon-
nect efficiency enabled by wavelength division multiplexing
(WDM), MRR-based photonic neural networks (PNNs) are
particularly promising for large-scale integration. However,
the scalability and energy efficiency of such systems are
fundamentally limited by the MRR resonance wavelength
variations induced by fabrication process variations (FPVs)
and environmental fluctuations. Existing solutions use post-
fabrication approaches or thermo-optic tuning, incurring
high control power and additional process complexity. In
this work, we introduce an online training and pruning
method that addresses this challenge, adapting to FPV-
induced and thermally induced shifts in MRR resonance
wavelength. By incorporating a power-aware pruning term
into the conventional loss function, our approach simulta-
neously optimizes the PNN accuracy and the total power
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consumption for MRR tuning. In proof-of-concept on-chip
experiments on the Iris dataset, our system PNNs can adap-
tively train to maintain above 90 % classification accuracy
in a wide temperature range of 26—40 °C while achiev-
ing a 44.7 % reduction in tuning power via pruning. Addi-
tionally, our approach reduces the power consumption by
orders-of-magnitude on larger datasets. By addressing chip-
to-chip variation and minimizing power requirements, our
approach significantly improves the scalability and energy
efficiency of MRR-based integrated analog photonic proces-
sors, paving the way for large-scale PICs to enable versatile
applications including neural networks, photonic switching,
LiDAR, and radio-frequency beamforming.

Keywords: microring  resonators;  photonic  neural
networks; resonance variations; online training; pruning

1 Introduction

Large neural networks (NNs) have demonstrated excep-
tional performance in edge computing [1], natural lan-
guage processing [2], and autonomous systems [3]. CMOS-
compatible silicon photonic integrated circuits (PICs) are
emerging as a promising platform in artificial intelli-
gence (AI) computing [4], [5], offering significant advan-
tages including low latency, high bandwidth, and fully pro-
grammability [5]-[7]. Integrated photonic neural networks
(PNNs) generally fall into two major categories: coherent
PNNsbased on interferometric meshes (e.g., Mach-Zehnder
interferometers [MZIs]) [4], [6] and wavelength-division
multiplexed (WDM) PNNs based on wavelength-selective fil-
ters (e.g., microring resonators [MRRs]) [8], [9]. Owing to the
compact footprint of MRRs and the enhanced interconnect
efficiency enabled by WDM, MRR-based PNNs can be imple-
mented with significantly less chip area than their coherent
equivalents [10], and are promising for large-scale integra-
tion using CMOS-compatible silicon photonic foundry pro-
cesses [11]-[13]. In addition to NN inference [5], [14], such
MRR-based integrated analog photonic processors have also
found important applications in photonic switching [15],
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LiDAR [16], [17], RF beamforming [18], [19], and data inter-
connects [20], [21].

However, a key challenge in realizing large-scale MRR-
based analog photonic processors is the functional varia-
tion of MRRs caused by unavoidable fabrication process
variations (FPVs) and dynamic environmental fluctuations
(e.g., thermal crosstalk and polarization drifts), which can
induce significant random shifts in the MRR resonance
wavelengths. This shift can be expressed as [22]:
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where 4, is the MRR resonance wavelength, 6™ n, is the
effective index shift due to environmental changes, and n,
isthe group index accounting for waveguide dispersion. The
effective index shift can be further expressed as [23]

sn e =c / A€E, - Efdxdy, ()]

where cis the speed of light, Ae(x, y) denotes a local change
in the dielectric constant, and E,(x,y) is the normalized
modal electric field vector of the waveguide mode. All the
static and dynamic variations — including sub-wavelength
FPVs in geometric parameters, ambient temperature distur-
bances, and thermal crosstalk — can alter Ae(x, y), resulting
in a resonance shift 64, comparable to the free spectral
range (FSR) of MRRs [24]. For example, in a recent study [25],
measurements of 371 identically designed racetrack-shaped
resonators, revealed resonance shifts ranging from 1.76 nm
(median) to 6 nm (maximum), as a result of inherent silicon
thickness variations (+5 nm fluctuations in 220 nm layers)
across wafers and fabrication batches. It is also shown that
fluctuations in ambient temperature can lead to a drift in
the MRR resonance wavelength of tens of pm, resulting
in a degradation of the accuracy of an MRR-based pho-
tonic neural network (PNN) to 67 % from 99 % for a two-
layer MNIST classification [26]. While previous work has
explored various post-fabrication strategies to counteract
these variations — including germanium (Ge) ion implanta-
tion [27], [28], integration of phase change materials (PCMs)
[29]-[32], and deposition of photochromic materials [33],
[34] - these techniques are only effective at correcting
static FPVs, and they require additional post-fabrication
processing complexity and precise control over the mate-
rials involved. Alternatively, thermo-optic tuning remains
widely used method due to its broad tuning range, but it
is power-intensive; consuming 28 mW/FSR using an embed-
ded N-doped heater [35], [36]. Consequently, the scalability
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and energy efficiency of MRR-based analog photonic proces-
sors are fundamentally constrained, hindering their appli-
cations to large-scale networks such as large AI models and
WDM transceivers.

To address fundamental limitation, we propose online
training and pruning in MRR-based PNNs that adapt to
FPV-induced and thermally induced shifts in MRR reso-
nance wavelength. Based on perturbation-based gradient
descent algorithm, we develop an online training frame-
work that maps the trainable NN parameters to MRR-based
PNN chips without the need of look-up tables (LUTs). We
further incorporate a power-aware pruning term into the
conventional loss function, which simultaneously optimizes
the PNN accuracy and the total power consumption for
MRR tuning. In proof-of-concept on-chip experiments, we
demonstrate online training with an iterative feedback
system with a PIC performing fast analog matrix-vector
multiplications (MVMSs), combined with a central process-
ing unit (CPU) digitally computing gradients at a slower
timescale. Using a 3 X 2 PNN on the Iris dataset, our system
PNNs can adaptively train to maintain above 90 % classi-
fication accuracy across static (FPV) or dynamic (thermal
drifts) variations, while achieving a 44.7 % reduction in
tuning power via pruning. Additionally, simulations with
larger and deeper convolutional neutral networks (CNNs)
on standard datasets — including MNIST [37], CIFAR-10 [38],
and Fashion-MNIST [39] — validate the scalability of our
method, showing orders-of-magnitude reductions in power
consumption. By addressing chip-to-chip variation and min-
imizing power requirements, our approach significantly
improves the scalability and energy efficiency of MRR-based
integrated analog photonic processors, paving the way for
large-scale PICs to enable versatile applications including
NNs, photonic switching, LiDAR, and RF beamforming.

2 Results

2.1 Concept and principle
2.1.1 Offline training

While PNNs can operate with picosecond latency for real-
time applications [40]-[42], they rely on slower digital com-
puters (i.e. CPU or GPU) for training, a process called offline
training [40], [43]. As shown in Figure 1a, in this approach,
NN parameters (e.g., neuron weights and biases) are opti-
mized in software using backpropagation (BP) based gradi-
ent descent algorithm:
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where w¥ denotes the weight matrix in the kth training
epoch, a is the learning rate, £ is the loss function. The
parameters are then mapped onto the physical hardware
(PNN chips) using highly accurate calibration models (also
called look-up table (LUT)). For the MRR in the ith row, the
jth column of an M X N MRR weight bank, it writes as

Iij = ﬁj(wij) = f](WU) 4

Here W denotes the weight to be executed on the i, jth MRR,
and Iij is the required tuning current. The LUT, denoted as a
mapping function fj, is determined by the relative position
of the jth laser wavelength and the MRR resonant state.
Ideally, the MRRs operating at the same laser wavelength are
expected to exhibit identical resonant wavelengths, simpli-
fying the LUT to f;.

However, in practice, the MRRs in the same column may
exhibit significantly different resonant wavelengths due to
static and dynamic variations. As derived in Supplemen-
tary Note 1, an LUT for the i, jth MRR - accounting for FPVs,
ambient temperature variations, input optical power, and
the self-heating effect — is approximately given by

Ii/' =]?ij(wij’o'ija T,Popt), 5)

where o; denotes the deviation of resonant wavelength due
to FPVs, T is the time-varying ambient temperature, Py is
the input optical power. Based on Eq. (5), it remains com-
plicated to generate an LUT that accounts for all the non-
idealities across large-scale MRR weight banks. Any inaccu-
racies in LUTs will directly introduce arbitrary deviations in
the mapped weight parameters, leading to significant per-
formance degradation across NN system benchmarks such
as classification tasks.

In an MRR-based weight bank using thermo-optic tun-
ing to counteract these non-idealities, the required electrical
power for actively programming weights of the i, jth MRR
can be written as [24]:

P;/;eight — I?j R= P%?Ck + Plg})nf’ (6)

where R is the resistance of the metal heater. The power
breaks down into a static weight locking power that locks
the MRR resonance to the desired wavelength, and a config-
uration power to program the weight value [24]. Therefore,
the total power for the weight configuration consumed by
an M X N MRR weight bank is

Pweight — Zi,]’ P\i/;eight' (7)

For simplicity, we denote P""

sections except Section 2.3.

as P in the following
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2.1.2 Online training

Online training, also known as “in situ” or “chip-in-the-loop”
training, was originally proposed to alleviate the intensive
use required of CPU/GPUs for training non Von-Neumann
architecture based computing hardware [44], where the
training occurs on the same hardware used for inference.
It was also recognized that online training can mitigate
hardware nonidealities, and promise for iterative weight
updates in real-time [45]. The state-of-the-art online train-
ing algorithms for PNNs [6], [45]-[48] can be classified
into two major categories: gradient-based and gradient-free
algorithms. Gradient-free algorithms, such as genetic algo-
rithms [47], are straightforward to implement in practice
but often face inherent challenges with convergence and
scalability. In contrast, gradient-based algorithms are typ-
ically more efficient and, therefore, more widely adopted.
The most commonly used gradient-based training algorithm
for software-based NNs, backpropagation, analytically com-
putes gradients by back-propagating errors using the chain
rule [37]. While significant progress has been made in exper-
imentally realizing BP on photonic hardware [48]-[50], the
process typically requires global optical power monitor-
ing and evaluation of nonlinear activation function gradi-
ents in software. This approach introduces additional sys-
tem complexity and latency overhead. Other gradient-based
algorithms, such as direct feedback alignment [45], replace
the chain rule in back-propagation with a random weight
matrix, but their validation has been limited to small, shal-
low NN.

In our approach, the online training of our MRR-based
PNNs is implemented by a perturbation-based gradient
descent algorithm, which estimates gradients only based
on forward inference running on PNN chips. Here, the NN
parameters to be optimized are set to be MRR tuning cur-
rents instead of neuron weights:

1K —aVuL. ®)

The gradient of loss function with respect to MRR tuning
currents (IF) is approximately given by perturbation mea-

surement:

AL
Vlk[: ~ H s (9)

where AI¥ is the perturbation rate of the MRR tuning cur-
rents in the kth training epoch, and AL is the measured
change of loss function induced by the perturbation. In
practice, AI* should be sufficiently small to preserve the
validity of approximation in Eq. (9), while remaining large
enough to produce measurable AL above experimental
noise.
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Figure 1: Comparison of offline training with online training and pruning approach. (a) Conventional offline training method supporting only
small-scale PNN chips. In this approach, NN parameters are calculated in software and mapped onto the PNN chips. The resonance variations of MRRs
necessitate complicated look-up tables, and lead to higher power consumption for MRR control. (b) Online training and pruning method compatible
for large-scale PNN chips. The training of PNNs occurs on the same chip used for inference, accounting for any chip-to-chip variations and
environmental fluctuations. Our approach simultaneously optimizes the PNN accuracy and the total power consumption for tuning all the MRRs.

2.1.3 Pruning

In software-based NNs, pruning is a model compression
technique that removes redundant weight parameters (by
setting their values to zero) whilst maintaining accuracy.
While the implementation of pruning has also been inves-
tigated in PNNs, prior approaches either lack robustness
against nonidealities [51], [52] or require extensive offline
training [26]. As shown in Figure 1b, our proposed approach
accounts for the total MRR tuning power in the “chip-in-the-
loop” process, by incorporating a power-aware “pruning”
term into the conventional loss function:

L=CL+yP, (10)

where £ is the modified loss function given by the sum of the
conventional loss function £ and the power-aware pruning
term yP, y is an empirically determined hyperparameter
that defines pruning strength. According to Egs. (6) and (7),
L can also be expressed as

il R- 1

The selection of the hyperparameter y is critical in this
framework, as it explicitly parameterizes the trade-off
between the NN accuracy and energy efficiency. Depending
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on the demand of the end users, minimizing this modified
loss function can enable concurrent optimization of both the
NN accuracy and the total power consumption. For example,
in a power-constrained environment, the training problem
becomes

min £ + yP

stLP<LP (12)

max

with a relatively larger value of y, where P, denotes the
maximum power available for weight configurations. Oppo-
sitely, in scenarios prioritizing high accuracies, it becomes

minL +yP st. L <L 13)

with a relatively smaller value of y, where L ., denotes the
upper bound of the conventional loss function permitted
under a given accuracy constraint.

2.2 Experiment

2.21 Setup

Recently, integrated PNNs have been extensively investi-
gated and experimentally validated across various on-chip
scales, achieving low latencies of hundreds of picoseconds
atdiverse applications [6], [41], [53]. Notable demonstrations
include a 3-layer PNN with 9 neurons for image classifica-
tion [53], a 3-layer 6 X 6 PNN for vowel classification task [6],
and a single-layer 4 X 2 PNN for fiber nonlinearity compen-
sation [40]. In our proof-of-concept experiment, a 3 X 2 MRR
weight bank is used to demonstrate our proposed online
training and pruning approach and the associated energy
savings.

Our experimental setup is illustrated in Figure 2a.
First, three channels of input data (denoted as x;, X,, X3)
are generated from a high sampling rate signal generator
(Keysight M8196A), and modulated onto laser 1, 2, and 3
(Pure-Photonics, PPCL500) respectively via Mach-Zehnder
modulators (MZMs). The lights from these three lasers, each
at a distinct wavelength, are combined using a wavelength-
division multiplexer (MUX) and then split equally between
two MRR weight banks. Each MRR weight bank consists of
three MRRs, which are designed with slightly different radii
(8 pm, 8.012 pm, 8.024 pm). The MRRs at the same column
(i.e., MRR1and MRR4, MRR2 and MRR5, MRR3 and MRR6) are
expected to share the same corresponding resonance wave-
lengths, aligned with 200 GHz spaced ITU grids (1,546.92 nm,
1,548.51 nm, 1,550.12 nm, respectively). However, as shown
in Figure 2b, the measured weight bank spectrum indicates
that the resonance wavelengths of all six MRRs deviate from
the designed values due to FPVs and temperature changes.
To counteract FPVs, the wavelengths of three lasers are
further tuned (1,547.24 nm, 1,548.60 nm, and 1,550.40 nm)
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to align with the deviated resonance wavelengths. More-
over, all MRRs are thermally tuned via embedded N-doped
heaters to actively program and configure weights (denoted
as Wy, Wiy, Wyg, Wy, Woy, W,3), allowing for individual weight-
ing of input analog data in the three wavelength channels.
The thermal tuning characteristics of six MRRs at 30 °C, are
illustrated in Figure 2c.

Our proof-of-concept experiment is validated on a stan-
dard Iris dataset, where three species of Iris flowers (Setosa,
Versicolour, Virginica) are classified using only three out
of four input features (sepal length, petal length, and petal
width), as shown in Figure 2d. This three-class classification
problem is converted into a two-step binary classification
(Figure 2e) mapped to the on-chip PNN, which utilizes eight
trainable parameters. The parameters include the tuning
currents of six MRRS — Iy, Iy, Ijs, Iy, Ly, Is (corresponding
to six weights) — and two biases, b; and b,. The 150 samples
are split into 120 for training and 30 for testing.

The analog optical signals from the drop and through
port are then captured and differentiated by two balanced
photodetectors (BPDs), which gives the electrical output of
the weighted summations, 2,w;;X; and X;w,;X;. The output
is further read by an oscilloscope and demodulated in a CPU,
which evaluates the power-aware loss function (Eq. (10))
and calculates gradients based on perturbation (Eq. (9)).
Finally, the CPU updates the MRR tuning currents for the
next training epoch (Eq. (8)) and commands the MRR driver,
which is equipped on a customized printed circuit board
(PCB) (Supplementary Note 2). As shown in Figure 2f, the
training of our PNN occurs with the photonic chip in the
loop, iteratively optimizing the loss function and reducing
the total power consumption.

2.2.2 Demonstration on 3 X 2 PNN

PNN training is conducted under three conditions: conven-
tional offline training, online training without pruning, and
online training with pruning. Each training configuration
is repeated 10 times to ensure consistency. The perturba-
tion rate of MRR tuning currents (AIX) is set to 0.05 mA.
To evaluate the gradients with respect to the MRR tuning
currents (Vlkﬁ), each training epoch batches the training
data seven times through the PNN: six times perturbing
each tuning current (Ii‘] + AI@) and one time to measure

£ with non-perturbed currents If‘] The plots in Figure 3a
show the average of both categorical cross-entropy loss
(£) and power-aware loss (L) versus training epoch. It is
observed that the PNN can quickly converge to the optimal
weights within 25 epochs using perturbation-based online
training.
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Figure 2: System setup of online training and pruning. (a) Schematic of our experimental setup. MZM, Mach-Zehnder modulator. MUX, wavelength
multiplexer. PIC, photonic integrated circuit. MRR, microring resonator. BPD, balanced photodetector. ADC, analog-to-digital converter. CPU, central
processing unit. (z) denotes the nonlinear activation function performed on software. The inset shows the micrograph of the two MRR weight banks
and BPDs. (b) Normalized weight spectrum of two MRR weight banks at 30 °C. The MRRs at the same colors (i.e., MRR1T and MRR4, MRR2 and MRRS5,
MRR3 and MRR6) are designed to share the same resonance wavelengths, aligned with 200 GHz spaced ITU grids (1,546.92 nm, 1,548.51 nm,

1,550.12 nm). (c) Tuning characteristics of six MRRs at 30 °C. (d) Scatterplot of Iris flower dataset. (e) Schematic of a simple 3 X 2 neural network

for Iris classification. (f) Online training and pruning procedure. At each iteration, the PIC performs matrix-vector multiplication without and with
perturbations, while the CPU evaluates the gradients of power-aware loss function, and updates the MRR tuning currents for the next iteration.
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samples, obtained by the conventional offline training, online training without, or with the pruning method, respectively.

We also simulate the trade-off between the NN accu-
racy and the associated energy savings (Figure 3b). The sim-
ulation indicates that the trade-off is optimized at y, =
0.01 mW~, where significant reduction of overall tuning
power (exceeding 70 %) can be achieved before the accuracy
drops off. As predicted in Section 2.1.3, in scenarios prior-
itizing high accuracies where y <y, the loss function c
is dominated by the conventional loss function £, such that
the PNN maintains a high accuracy of >93 %. Contrarily, in
scenarios constraining overall power consumption where
Y > Yop> the power-aware loss function L is dominated by
the pruning term yP, leading to a larger amount of energy
savings but may degrade the PNN accuracy. As shown by the
confusion matrix in Figure 3c, the offline training experi-
ment only produces 82 % accuracy on the 150 samples. In the
accuracy-prioritized online training experiment (without
pruning, y set to 0) (Figure 3d), the overall classification of
the Iris flower task is improved to 96 %, with a total MRR

tuning power of 9.54 mW. In the online training experiment
constraining power consumption (with pruning, y set to
0.0075 mW~1) (Figure 3e), we observe a 44.7 % reduction
(from 9.54 mW to 5.28 mW) of total tuning power while the
PNN maintains a classification accuracy of 95.33 %.
Furthermore, to demonstrate the adaptability of our
online training method to temperature drifts, additional
experiments are conducted at multiple different tempera-
tures ranging from 26 °C to 40 °C. Before online training,
the MRR tuning currents are randomly initialized within
the tuning range of 0-1.5 mA (only weights w;; and w,, are
plotted, Figure 4a), producing untrained classification out-
puts with only 33.33 % accuracy. After online training for 100
epochs (Figure 4b), the PNN can be trained to the optimal
weights, regardless of the changes of MRR tuning charac-
teristics due to temperature drifts. As a result, high clas-
sification accuracies is consistently achieved at both 30 °C
(99.33 %, upper row of Figure 4a and b) and 34 °C (96.67 %,
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Figure 4: Adaptive PNN training at different temperatures. (a, b) Illustrate two of the six MRR tuning currents (weights I,; and I,,) before and after
online training, respectively, at 30 °C (the upper plots) and 34 °C (the lower plots). (c) Experimental obtained Iris classification accuracies at different
temperatures. (d) Online training experiment performed with thermal disturbances. The temperature is changed from 27 °C to 32 °C at the 100th

epoch, and from 32 °C to 30 °C at the 200th epoch.

lower row of Figure 4a and b). As shown in Figure 4c, the
classification accuracies maintain above 90 % even if the
external temperature changes from 26 °C to 40 °C. We also
evaluate the resilience of our PNN training to intentional
thermal disturbances. In Figure 4d, it is shown that the PNN
can quickly recover its classification performance within

about 25 epochs even if the external temperature is dis-
turbed from 27 °C to 32 °C (at the 100th epoch), and from
32°C to 30 °C (at the 200th epoch). These proof-of-concept
experimental results further confirm that our online train-
ing and pruning method can handle any PNN hardware
non-idealities, including chip-to-chip FPVs, temperature



DE GRUYTER

disturbances, and even nonlinearities induced by input opti-
cal power.

2.3 Energy savings in large-scale NNs via
pruning

In addition to the MRR tuning power for configuring
weights, the overall power consumed by a multiwavelength
PNN also includes the power needed for laser pumping and
O-E/E-O data conversions (e.g., modulators, photodetectors,
and analog-to-digital converters [ADCs]). For a multiwave-
length PNN with N neurons and N* MRRs, the overall power
can be expressed by [24]:

Ptotal — NZ X Pweight 4+ N X Plaser 4+ N X BW X EOEO’ (14)
where P is the power needed for laser pumps, BW rep-
resents the bandwidth of the signal modulated on the opti-
cal carriers, and O = E™°¢ 4 g%t  EAPC is the energy of
O/E/O data conversion, associated with modulation, detec-
tion, and ADCs. The MRR tuning power PV is shown to
scale quadratically with the number of neurons, whereas
the power use of laser pumps and data conversions scales
linearly. While various technologies have been demon-
strated to address different power contributors [33], [54],
[55], we specifically look into MRR tuning power dominated
scenarios and the energy savings in larger-scale multiwave-
length PNNs via online pruning.

We extend the simulations to larger, deeper feedfor-
ward and CNN architectures for various classification tasks
with standard datasets, including scikit-learn Moons, scikit-
learn Wine dataset, MNIST, CIFAR-10, and Fashion-MNIST.
The FPVs in the MRRs are simulated by inducing Gaussian-
distributed variations (with a standard deviation of o) to
their resonance wavelengths (Supplementary Note 4) [24].
We quantify the impact of online pruning on inference
power consumption, defined as the control power for all the
weighting MRRs. Consistent with the theoretical framework
in Section 2.1.3, the accuracy-power trade-off for large-scale
NNs is governed by the pruning strength y, as exempli-
fied by the Iris dataset results in Figure 3b. As shown in
Figure 5, the baseline unpruned PNNs (blue line) exhibit
a linear increase in total MRR tuning power with the
PNN scale (number of MRRs), prioritizing accuracy under
unlimited power budgets (y = 0). In contrast, for power-
constrained systems tolerating specific classification errors,
our method reduces power consumption by orders of mag-
nitude. For instance, in the simulation using the scikit-
learn Wine dataset (featuring a three-layer feedforward NN
with 2,976 weights), our method achieves total MRR tuning
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Figure 5: Simulated results on reducing overall power consumption
enabled by online pruning across different size MRR-based PNNs.

power reductions of 10.8%, 65.2%, and 1,133.4X under val-
idation accuracy drops of 1%, 5 %, and 15 %, respectively.
It is also observed that the total MRR tuning power with
15 % accuracy drop remains almost constant across small-
scale datasets (the number of MRRs is below 10%), primarily
resulting from the redundancies of fully-connected feedfor-
ward NNs compared to CNNs (Supplementary Note 4.3). The
simulation results support that the scale of MRR-based PNNs
that can be trained with our online training and pruning
method can be up to one million MRR weights, far exceeding
the current fabrication capability and available channels in
100 GHz spaced ITU grids, which is up to 72 different wave-
lengths. Nevertheless, our findings significantly improve
the scalability and energy efficiency of MRR-based PNNs,
particularly paving the way for their operations in power-
constrained scenarios such as edge computing, wearable
devices, and autonomous driving systems.

3 Discussion

With the emergence of new Al computing paradigms, such
as brain-inspired neuromorphic computing and quantum
computing, online training has been proposed that revolu-
tionizes the definitions of unconventional hardware com-
puting architecture and Al training algorithms. In this
work, we focus on online training and pruning for inte-
grated silicon photonic neural networks, which among the
new computing paradigms appear attractive for their full-
programmability and CMOS-compatibility. Our proposed
approach provides a methodology that breaks one funda-
mental limiting factor on scalability due to chip-to-chip
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variations, and simultaneously optimizes overall power
consumption in thermally controlled MRR-based PICs.

Recent advances in photonic Al hardware systems
demonstrate features that go beyond the performance of
traditional digital electronics. In diffractive free-space opti-
cal systems, PNNs at the million-neuron scale have been
realized [56], with efficient online training for compensat-
ing alignment errors and device non-idealities [57], [58]. In
coherent PNNs based on MZIs, a single-chip, fully-integrated
PNN with six neurons and three cascaded layers achieves
end-to-end (410 ps) processing with online training improv-
ing the data throughput [6]. Additionally, a system-on-chip
microwave photonic processor using MRR weight banks is
developed to solve dynamic radio-frequency (RF) interfer-
ence [41], showing real-time adaptability enabled by online
learning and weight adjustments. We envision that the
online training and pruning method presented in this study
is also generalizable to other PNNs being actively investi-
gated. For example, the generalized loss function (.£’) writes
as

Z =L+ 2Zy0, (15)
where & is given by the sum of the conventional loss func-
tion and all the parameter-aware pruning term y;0;, ©;
denotes any hardware parameter related terms to be opti-
mized, such as power consumption, DC electrical control
currents/voltages, and modulator biases.

Taking advantage of low-latency photonic processing,
online PNN training can benefit applications that necessi-
tate real-time adaptability, including RF interference cancel-
lation [41], fiber nonlinearity compensation [40], and edge
computing [1]. In our experiment on Iris dataset, the total
average time for running each training epoch is about 13.1 s,
including all the latencies induced by the inter-device com-
munications, MRR weight actuating, and digital calculations
(the breakdown latency analysis is presented in Supplemen-
tary Note 5). The system training latency is currently domi-
nated by the slow single-thread CPU processing and the com-
munication time between equipments (for example, it takes
an average of 0.726 s to download the analog waveforms
from the oscilloscope to the CPU). This can be significantly
reduced to millisecond level by speeding up with high-speed
analog-to-digital converters and high-parallelism FPGA pro-
cessors [41]. Further improvements of the system training
latency include the exploration of more efficient training
algorithms [6], [59] to reduce the perturbation runs. The
exploitation of using faster MRR modulators [60], [61] for
rapid weight updates can also potentially reduce the sys-
tem latency from millisecond to microsecond level, despite
that the proposed pruning technique remains critical for
reducing the power consumption caused by thermal tuning.

DE GRUYTER

A comprehensive comparative analysis of our work with
other literatures on the online training of PNNs, together
with the positioning of our pruning method in different
tuning mechanisms used in integrated silicon photonics, can
be found in Supplementary Note 6.

4 Conclusions

To summarize, we have proposed and demonstrated an
online training and pruning method on multi-wavelength
PNNs with MRR weight banks that addresses the fundamen-
tal issue on scalability and energy efficiency due to MRR
resonance variations. We experimentally validate our train-
ing framework with an iterative feedback system, and show
that superior performances of PNNs can be attained without
any software-based pre-training involved. By incorporat-
ing the power-aware pruning term into the conventional
loss function, our approach significantly optimizes over-
all power consumption in thermally controlled MRR-based
PNNs. This study serves as a fundamental methodology for
addressing the chip-to-chip variations in PICs, and repre-
sents a significant milestone towards building large-scale,
energy-efficient MRR-based integrated analog photonic pro-
cessors for versatile applications including NNs, LiDAR, RF
beamforming, and data interconnects.
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