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1 Look-up Table Modeling Non-idealities

In the MRR-based PNNs, the development of a static look-up table (LUT)
accounting for all the non-idealities can be fairly complicated. In an MRR
weight bank using thermo-optic tuning to counteract chip-to-chip variations, a
simplified physical model presented in [1] gives:
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where w;; is the weight to be executed on the 4, jth MRR, A(Aij; Xijo, AN;j) is
the Lorentzian transfer function; A;;j(\;j0) is the resonance wavelength of the
i, jth MRR with (without) applied heat, respectively; A);; is the half-width
half-maximum of Lorentzian transfer function; P, is the input optical power

at the jth laser wavelength; F, is a normalization constant. The wavelength
offset compensating for fabrication variations (o;;), can be expressed as
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Tij = Nij — Nij.o = Aij0
where Sef ;; is the thermo-optic coefficient, neg (Aij0) denotes the effective index,
AT;; is the temperature offset, which is given by Joule heating mechanism:
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T;; denotes the local temperature of the 7, jth MRR, T} is the room temperature,
K denotes the effective thermo-optic coeflicient matrix (diagonal in the absence
of thermal crosstalk), and R;; is the electrical heater resistance. Moreover,
recent study [2] further reveals that the temperature offset is also dependent
on the MRR self-heating effect:

N N Ny
T;j = Z Qij Peeltij + Z K Ri;I}; + Z Yij Fotner,j + To; (S5)
J J J

where NV, is the number of other thermal sources, «;;, v;; represent the thermal
coupling coefficients associated with self-heating and the other thermal sources,
respectively. The self-heating power Py¢;; can be approximated as
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where a is the absorbance per unit time, @), v; represents the quality factor of
the MRR and the jth optical frequency, respectively.

Therefore, a simplified LUT accounting for the fabrication process variations,
ambient temperature, input optical power, and the self heating effect, can be
represented as

I’Lj - ﬁj(WZ]a Oij, T7 Popt)7 (87)
where the function f;; is determined by Eqs. (S1-S6).



2 Experimental Setup with Photonic Packaging

Figure S1. Photo of experimental setup. The photonic chip is co-packaged with the printed
circuit boards (PCBs).

The experimental setup in this work shares a lot in common with the setup in
ref. [3]. Similarly, a compact, portable experimental setup for the photonic inte-
grated circuit (PIC) is shown in Fig. S1. Apart from the encapsulated PIC, the
system requires three input channels, including three lasers (Pure-Photonics,
PPCL500) and three Mach-Zehnder modulators (MZMs). The input light is
coupled into the PIC by a vertical grating coupler with a roughly 6.5 dB cou-
pling loss per facet. The output signals from the PIC are connected to voltage
amplifiers (ZX60-153LN-S+, Mini-Circuits) via two coaxial cables, which are
then collected by the scope and read by a peripheral CPU for further analysis.
A grey ribbon cable sends digital commands from the CPU for programming
the tuning currents and biasing voltages output by the digital-to-analogue con-
verters (DACs, LTC2662 and LTC2664, Analog Devices) integrated onto the
printed circuit board (PCB). The PCB is designed with electroless nickel im-
mersion gold (ENIG) process pads connected to the PIC via wire bonding.



3 Demonstration on Iris Dataset

3.1 Definition of Loss function

In the proof-of-concept demonstration on Iris flower dataset, the task is con-
verted from three-class classification to two-step binary classification. The con-
ventional loss function for this two-step binary classification task is therefore
defined as the sum of two binary cross-entropy loss functions:

N

1
L=—% ; <1{yi=0} log(p1) + 0.5 - L=y (log(1 — p1) + log(p2))
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where N is the number of samples, y;(y; = 0,1,2) denotes the label of Iris
flowers and p; 2 denotes the two predicted outputs. 1y, ¢ 19 denotes the Kro-
necker delta function, which describes the condition for each label. According
to Section 2.1.3 in the manuscript, the power-aware ”pruned” loss function is
defined as
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where v is the pruning strength, I;; represents the tuning currents of six MRRs
(11, Lia, Ing, Ion, Too, Iog).

3.2 Data Generation and Modulation

It is crucial to ensure that the input data is accurately transmitted to the
photonic chip. The three channels of input data (petal length, petal width,
and sepal length) are converted to analog waveforms and sent to the Mach-
Zehnder modulators by the arbitrary waveform generator (Keysight M8196A ).
To synchronize the output signals from the three different channels, we inten-
tionally introduce circular time delays between the channels while generating
the waveforms. Before sending the actual signals, we first define and send
through testing waveforms of standard sinusoidal signals onto the three chan-
nels: S =[S, Sy, S3] where Sy = S3 = —S;. The testing signals are sent through
the photonic chip with no MRR weights applied and collected from the oscillo-
scope. Then, as shown in Fig. S2a, the output voltage amplitudes of the signal
generator, as well as the time delays between S7, S5, and between S;, S3 are
manually adjusted to ensure the sinusoidal signals from channel 1, 2 (and chan-
nel 1, 3) have the same amplitudes and the opposite optical phases. (Therefore,
the testing signals on channel 1, 2 (or 1, 3) should perfectly cancel with each



other.) Additionally, there are external optical delay lines in the optical signal
path to further ensure the optical phases in each path are aligned with each
other.

To minimize intersymbol interference (ISI), the baseband signals for the Iris
flower dataset are generated using the raised-cosine filter function with a sam-
pling rate of 88 GSa/s (88 samples per symbol). The signals are then modulated
onto optical carriers and processed by the PIC. Finally, the output data read
by the oscilloscope are downsampled and further processed by the CPU. Fig.
S2b shows the data collected by the scope after modulation and demodulation
(no photonic weighting applied), which align with the original Iris features.
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Figure 2. a Adjusting the test sinusoidal waveforms to synchronize three different channels.
b Generated data of Iris flower dataset, ensuring that the input data is accurately transmitted
to the PIC.



4 Simulations on Large-scale NNs

4.1 Datasets and NN setup

To investigate the scalability of our approach, simulations are performed on the
widely used scikit-learn wine dataset, Modified National Institute of Standards
and Technology (MNIST) dataset [4], the Canadian Institute for Advanced
Research (CIFAR-10) dataset [5], and the Fashion MNIST dataset. The wine
recognition dataset is a classic benchmark dataset that classifies three classes of
wine based on 13 chemical attributes. The MNIST (Fashion-MNIST) dataset is
a database of handwritten digits (fashion images), which has 60,000 28 x28x 1
grayscale training images, and 10,000 test images. The CIFAR-10 dataset con-
sists of 60000 32x32x3 images (50000 for training and 10000 for testing) in 10
classes, with 6000 images per class.

Wine dataset MNIST (LeNet-5) CIFAR-10 Fashion-MNIST
Input features (13) l Input Image (28x28x1) l Input Image (32x32x3) Input Image (28x28x1)
‘ Dense, channel 64 ‘ 5x5 Conv2d, channel 6, stride 1, pad 2 ‘3x3 Conv2d, channel 32, stride 1, pad 0 3x3 Conv2d, channel 32, stride 1, pad 0
ReLU \ ReLU | RelU ReLU
‘ Dense, channel 32 ‘ 2x2 MaxPooling, stride 2 l 2x2 MaxPooling, stride 2 2x2 MaxPooling, stride 2
RelLU |5x5 Conv2d, channel 16, stride 1, pad 0 |3x3 Conv2d, channel 64, stride 1, pad 0 3x3 Conv2d, channel 64, stride 1, pad 0
\ Dense, channel 3 \ ReLU ‘ ReLU ReLU
Softmax ‘ 2x2 MaxPooling, stride 2 ‘ 2x2 MaxPooling, stride 2 2x2 MaxPooling, stride 2
‘ Dense, channel 120 ‘3x3 Conv2d, channel 64, stride 1, pad 0 ‘Px3 Conv2d, channel 128, stride 1, pad 0
\ ReLU \ ReLU ReLU
‘ Dense, channel 84 ‘ 2x2 MaxPooling, stride 2 2x2 MaxPooling, stride 2
l RelLU ‘ Dense, channel 128 Dense, channel 512
| Dense, channel 10 | RelU ReLU
‘ Softmax ‘ Dense, channel 10 Dense, channel 256
l Softmax RelLU

Dense, channel 10

Softmax

Figure S3. NN setup used in simulations on the wine, MNIST, CIFAR-10, and Fashion-
MNIST datasets, respectively.

The detailed parameters of the NN setup used in the simulations are shown
in Fig. S3. For the scikit-learn wine dataset, a three-layer fully-connected NN
is used to categorize three classes of wine, which consists of 2,976 weight pa-
rameters. Furthermore, MRR-based convolutional neural networks (CNNs) are
simulated for the image classification datasets, where 61,470, 188,512, 812,752
weights are needed for the MNIST, CIFAR-10, and Fashion-MNIST datasets,

respectively.



4.2 Modeling and Procedure
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Figure S4. Procedure of online training and pruning simulations
According to Eqgs. (S1-S5), the LUT can be effectively written as
Wij(Iij) =1- 2(1 + (Izzj - I?j,0)2/AI?j)_1a (89)

where w;; is the normalized MRR weight (between —1 and +1), I, is the offset
determined by the MRR resonance wavelength offset 0;;, Al;; is the half-width
half maximum in the current unit. To simulate the MRR functional varia-
tions caused by fabrication and environmental variations, we induce random
Gaussian shifts to the offset I;;9. These variations are incorporated into our
NN model, such that each MRR weight is calculated based on a differently
generated LUT.

Fig. S4 shows the procedure of online training and pruning simulations.
It follows the conventional tutorials of open-source software tools (such as Py-
Torch or Tensorflow), which include loading the dataset, building an NN model,
and training and evaluating the model. As discussed in Section 2.1.2 of the
manuscript, the trainable NN parameters are mapped from weights to MRR
tuning currents using randomly generated LUT's considering the resonance vari-
ations.



4.3 Emergy Saving Details via Pruning

As discussed in Section 2.1.3 and Fig. 5 of the manuscript, the trade-off between
the testing accuracy and the overall energy savings via pruning for large-scale
NNs is simulated. The entire simulated parameter space for each dataset is
shown in Fig. S5 a, c, e, g, i. Fig. S5 b, d, f, h, j show the histograms
of distributions of simulated MRR tuning power across five different datasets.
For datasets using fully-connected NNs (Wine and Moons), (Fig. S5 b, d)
that most of the MRR tuning powers can be reduced to almost zero with our
pruning method (15% accuracy drop). In contrast, for larger datasets using
CNNs (MNIST, CIFAR-10, Fashion-MNIST), as shown in Fig. S5 f, h, j, a
fairly large amount of tuning power is still needed for some MRR weights to
maintain the classification efficiency of CNNs, even with 15% error tolerance.
These detailed results validate the scalability of our method, showing orders-
of-magnitude reductions in power consumption if one can tolerate an error of

10% — 15%.
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Figure S5. Simulation results of the energy savings resulting from pruning. a The tradeoff
between the prediction accuracy and power consumption on Scikit-learn Moons dataset. b
Histogram of distributions of MRR tuning power on Scikit-learn Moons dataset. ¢, d on
Scikit-learn wine dataset. e, f on MNIST dataset. g, h on CIFAR-10 dataset. i, j on
Fashion-MNIST dataset, respectively.



5 System Latency Analysis

Here, we present a detailed breakdown analysis of the system latency for each
step in the online training and pruning experiment on Iris dataset. All the
processing latencies are average of 1,000 repeated measurements. As summa-
rized in Table S1, the actual time required for training each epoch includes the
weight actuation time (35.3 ms for setting a single MRR, weight, including the
communication time between CPU and PIC driver), the on-chip optical infer-
ence time (5.3 ps, time-of-flight light propagation time), waveform downloading
time from the oscilloscope (0.726 s for output from one MRR weight bank), and
the time it takes to execute analog-to-digital conversions and calculations on
CPU. Therefore, the total execution time of running one training epoch for Iris
experiment is approximately 13.1 s, including additional latencies from Python
code execution.

We also present an estimation of how the processing time for each step scales
with the network size (e.g., on an MRR weight bank with an arbitrary size
of M x N). For the weight actuation time, it requires M N actuations for
each perturbation run and M N + 1 perturbations for each training epoch, so
the estimated scaling factor is O((MN)?). For the on-chip optical inference
time, the light propagation latency depends on the total length of the optical
waveguides, which scales linearly with (M + N). The scaling factor of scope
waveform downloading time and analog-to-digital conversion time comes from
the multiply of the total number of input samples k, the number of optical
neurons (MRR weight banks) M, and the number of perturbations (M N + 1).
Therefore, the overall latency of our PNN setup approximately scales with
O(kM?N), dominated by the slowest scope waveform downloading time.

However, We envision that the system training latency can be further reduced
to the millisecond level by speeding up communications between equipments
(e.g., replacing the oscilloscope with high-speed ADCs), as well as digital signal
processing pipeline (e.g., replacing single-thread CPU processing with high-
parallelism FPGA processing). This has been proven to be feasible in our
earlier work [3].



Processing Average  Times Est. Scaling Factor*

Stages Time  per Epoch
Weight B 9
Actuation™ 35.3ms 6 x7=42 O((MN)?#)
On-chip Optical
Inforence 5.3 ps 7 O(MN(M+ N))
Scope Waveform: o6 o 7 1y O(kM?2N)
Download
Analog-to-Digital o\ o 7 gy O(kM2N)
Conversion
Calculation of 9
Loss Function 20 ps 7 O(kMN)
Calculation of
Gradient 16 s ! O(MN)
Total latency 13.1s 1 O(kM?N)

Table S1. Detailed processing time for each step in the online training experiment. * Estimated scaling factor
refers to how the corresponding times per epoch scales with an M x N MRR weight bank. k is the total
number of samples for input training data. ** includes the time for actuating the embedded N-doped heaters
of the MRR, and the round-trip communication time between the CPU and the micro-controller (Tiny2040)
on PCB, and between the micro-controller and the DAC.



6 Comparison with other works

R e
B et
7] (2022) (S%iftl';’;zz) Not given No (91;102))

8] (2023) Back-prop Not given No C(i;gl;);; 1;/[40(;:)1)18
9] (2024) Fulbl;lioézvard 64 ms No (91151;%)
[10] (2024) SPSA3 Not given No (QV;;V%)
[11] (2025)  Back-prop Not given O.5;?altlzrenp. gér;s%
This work Perturbation 13.1 84 Yes (99125% )

Table S2. Comparisons with other recent works on online training on integrated photonic platforms.

L Adaptive Training: Experimentally demonstrated resilience to external temperature changes and fabrication
process variations. 2 only includes weight actuation and PD measurement time. 3 Simultaneous Perturbation
Stochastic Approximation. * limited by single-thread CPU processing and the communication time between
equipments.

Table S2 shows a comprehensive comparison table of our work with other
recent representative works on online training of integrated PNNs, in terms of
training algorithms, estimated training latencies, adaptive training, and pre-
diction accuracy in a given dataset. Although the concept of online training
has been proposed and investigated on integrated photonic platforms, the ex-
perimental demonstration of the resilience of the photonic chip to external
temperature changes and fabrication process variations is still lacking. In this
work, we demonstrate for the first time that the training of PNN chips can
operate in a wide temperature range of 26-40°C and with unpredictable fabri-
cation variations. Despite the limited latency, our study serves as a fundamental
methodology to address chip-to-chip variations in PICs and represents a signif-
icant milestone in the development of large-scale, energy-efficient MRR-based
integrated analog photonic processors.



Max. Tuning Energy Requires Tuning

Mechanism Speed (Hz) Consumption per bit  Post-fab? Nonvolatility Range
Thermal-optic
(w/o pruning) [12] 175 k [13] 30 nJ [14] No No Large
Germanium Ion .
Implantation [15] Static 0 Yes Yes Large
Phase-change N L
Materials [16] 50 k [17] ~ 100 nJ" [18] Yes Yes Large
Carrier Depletion —
67 G [19] 6.3 £J [20] No No Limited

(Reverse-Bias PN)
Thermal-optic
(w pruning) 175 k [13) 0.88 pJ? No No Large
(This work)

Table S3. Comparisons of our pruning method with other low-power tuning technologies for compensating FPVs.
! includes the amorphization and crystallization pulse energy. 2 calculated based on the experimental on-chip MRR
tuning power (5.28 mW for six MRRs) and the signal transmitting speed of 1 GBaud/s.

In Table S3, we present another comparative analysis of our pruning method
with different tuning mechanisms for compensating fabrication process varia-
tions used in integrated silicon photonics. As discussed in the manuscript, the
traditional thermal-optic tuning method remains necessary in a wide range of
scenarios due to its large tuning range, despite slow speed (up to 175 kHz [13])
and high energy consumption (30 nJ/bit [14]). Post-fabrication methods in-
cluding Germanium ion implantation [15] and phase change materials [16,17]
have been demonstrated for nonvolatile large range tuning, but they are either
thermally instable or require additional I/O. Furthermore, high-speed MRR
modulators based on the free carrier dispersion effect (in reverse-biased PN) of-
fer tuning speed up to 67 GHz [19] and low energy consumption [20], but their
tuning range is inherently limited by the small index change correct sub-FSR
scale fabrication variations only. In our pruning work, we reduce the energy con-
sumption per bit to 0.88 pJ (given the signal transmitting speed of 1 GBaud/s)
while maintaining the tuning speed and range of thermal-optic tuning.
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