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Abstract: The deep learning revolution has increased the

demand for computational resources, driving interest in

efficient alternatives like all-optical diffractive neural net-

works (AODNNs). These systems operate at the speed of light

without consuming external energy, making them an attrac-

tive platform for energy-efficient computation. One task

that could greatly benefit from an all-optical implementa-

tion is spatial super-resolution. This would allow overcom-

ing the fundamental resolution limitation of conventional

optical systems, dictated by their numerical aperture. Here,

we examine whether the success of digital super-resolution

networks can be replicated with AODNNs considering net-

works with phase-only nonlinearities. We find that while

promising, super-resolution AODNNs face two key physical

challenges: (i) a tradeoffbetween reconstructionfidelity and

energy preservation along the optical path and (ii) a limited

dynamic range of input intensities that can be effectively

processed. These findings offer a first step toward under-

standing and addressing the design constraints of passive,

all-optical super-resolution systems.
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1 Introduction

The spatial resolution of conventional optical systems, such

as microscopes, telescopes, and cameras, is fundamentally

constrained by their numerical aperture (NA) and thewave-

length of light. These systems act as low-pass filters, atten-

uating high spatial frequencies and thus limiting the abil-

ity to resolve fine details [1]. Overcoming this diffraction

limit has been a longstanding challenge across numerous

scientific fields, from biology [2] to astronomy [3]. Most

existing super-resolution methods modify the acquisition

process to allow measuring high spatial frequencies and

use linear optics to collect light. For example, some super-

resolution techniques rely on near-field measurements of

the imaged object, extracting high-frequency information

encoded in evanescent waves using metametrials [4], [5].

Methods like structured illumination [6], [7], localization

microscopy [8]–[10], and optical stethoscopy [11] trade tem-

poral resolution for spatial resolution. Other techniques

exploit super-oscillatory phenomena [12], [13] or the sta-

tistical behavior of speckle and scattering media [14]–[17].

However, the requirement to modify the acquisition pro-

cess poses severe limitations, rendering these techniques

impractical for many real-world scenarios.

In contrast to optical techniques, digital super-

resolution methods attempt to computationally recover

the lost high frequencies. This is done by exploiting prior

knowledge on the typical behavior of high-resolution

images in the domain of interest (e.g., cellular organelles

[18], galaxies [19], natural scenery images [20], etc.).

Over the last decade, this field has seen significant

advancements thanks to the adoption of deep learning

methods [18], [20]–[26]. Unlike classical computational

methods, such as Richardson–Lucy deconvolution [27],

[28] and its extensions, which only enforce simple priors

on the restored image (e.g., smoothness), deep learning

approaches leverage the ability of neural networks to

learn complex nonlinear mappings between low-resolution

images and their high-resolution counterparts based
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on training examples [20]. Specifically, these methods

implicitly extract complex image priors from the training

data (e.g., the valid shapes of handwritten letters) and

thus achieve state-of-the-art reconstruction accuracy, as

well as robustness to noise [29]. Unfortunately, however,

state-of-the-art digital super-resolution networks are often

challenging to deploy on end devices due to their intense

computational requirements [30]–[32]. Recently, it has

been recognized that many computational tasks that can

be performed with digital networks can also be effectively

implemented all-optically [31], [33]–[36]. In particular,

all-optical diffractive neural networks [34] emerged as a

promising tool for visual information processing. Here,

we numerically investigate whether all-optical diffractive

networks, using only passive elements, can replicate the

success of digital super-resolution networks.

We show that while passive diffractive networks can

indeed enhance resolution all-optically, they suffer from

two fundamental tradeoffs that are absent in digital net-

works: (i) a tradeoff between the reconstruction quality and

energy preservation and (ii) high sensitivity to the input

global intensity. These two tradeoffs stem from how light

propagates and interacts with passive nonlinear media. In

particular, each nonlinear layer generates high spatial fre-

quencies that correspond to waves propagating at large

angles. Some of these may inevitably escape the next layer’s

collection cone, thus causing a loss of energy. Additionally,

while images in the digital domain are normalized, natural

scenes may exhibit a large range of intensities that corre-

spond tomarkedly different regions of the nonlinearity. This

limits the system’s applicability under changing illumina-

tion conditions.

2 Passive all-optical

super-resolution neural network

The principles we would like to explore are not inher-

ent to a particular passive diffractive network architec-

ture. However, for concreteness, we focus on an all-optical

super-resolution neural network (AOSRNN) architecture

inspired by digital convolutional neural networks (CNNs),

as illustrated in Figure 1a. This network consists of a series

of diffractive convolutional units, each comprising a 4 f

system with a learned phase mask in the Fourier plane

and an all-optical nonlinear layer at the image plane.

We assume energy-preserving, phase-only nonlinear lay-

ers, whose refractive index n at spatial location (x, y)

depends nonlinearly on the intensity I(x, y) at that location,

as

n(x, y) = n0 + n2I(x, y). (1)

Here, n0 is the linear refractive index, n2 is the nonlin-

ear refractive index, and I(x, y) = |E(x, y)|2 is the intensity

of the optical field, which we assume to be monochromatic

[37].Whilewe focus here on phase-only nonlinearities, simi-

lar considerations apply to amplitude nonlinearities, which

we analyze in Supplementary Note 1. It is important to note

that achieving nonlinearity with sufficiently large n2 is a

challenge in its own right and would come at a cost of slow

response time. However, the goal of this paper is to illustrate

that even if such nonlinear layers were available, other

phenomena would still severely limit the network’s utility

(see Supplementary Note 1 for further discussions).

The input plane of AOSRNN contains a low-resolution

image of an object, obtained from some imaging optics with

small NA (left part of Figure 1a). This input image corre-

sponds to a low-pass filtered version of the object, which we

assume is illuminated by coherent light. The goal of AOS-

RNN is to reconstruct the object at its output plane, which

coincides with the plane of the last nonlinear layer. Achiev-

ing this requires generating spatial frequencies higher than

those present at the input image plane, a task facilitated by

the nonlinear layers.

To explore the ability of AOSRNN to enhance spatial

resolution, we simulated a network composed of 10 convo-

lutional units (see Supplementary Note 2 for the effect of

the network’s depth). The input to the network is a low-

resolution image, generated by imaging optics with NA of

approximately 0.01.

Throughout the paper, we assume that we do not have

access to the imaging optics, which produces images of a

given resolution. Therefore, our goal is to enhance the input

image resolution (relative improvement rather than abso-

lute resolution) by placing the AOSRNN after the imaging

system. Assuming a wavelength of 𝜆 = 550 nm, this corre-

sponds to a cutoff spatial frequency of fc = NA

𝜆
= 0.01

550 nm
=

19, 345.2 m−1, which sets the resolution at the input plane

toΔx = 1∕ fc = 51.7 μm.We examined a case in which AOS-

RNN can potentially improve resolution by a factor of up

to 4.3. To support this, the apertures of the Fourier plane

convolutional units (i.e., the phase mask sizes) were chosen

to correspond to a resolution of 12 μm, which translates

to a cutoff frequency of fc = 83, 333.3 m−1. This represents

the highest possible resolution achievable at the network’s

output. As shown below, AOSRNN is capable of improving

the input image resolution, albeit not fully reaching this

theoretical limit. AOSRNN was trained by minimizing the

discrepancy between the object intensity, I(x, y), and the

intensity at the network’s output, Î(x, y). For simplicity,

we represent these quantities as column vectors, omitting



M. Kleiner et al.: From digital to passive all-optical super-resolution — 3183

Figure 1: All-optical super-resolution neural architecture (AOSRNN). (a) Schematic of the proposed network. An optical imaging system captures an

object and produces a low-resolution image, limited by its NA, which serves as the input to the AOSRNN. This image is then processed by the all-optical

neural network, which outputs a high-resolution reconstruction. The network is composed of consecutive convolutional units, each consisting

of a 4 f system with a learnable phase mask layer in the Fourier plane, followed by a nonlinear optical layer. (b) Qualitative results on the MNIST,

FashionMNIST, and Quick, Draw! datasets. The first, second, and third rows display the high-resolution object, low-resolution network input, and

high-resolution network output, respectively. We note that the ripples observed in the low-resolution images result from the use of a low-NA imaging

system with spatially and temporally coherent illumination.

their coordinates. We used the 𝓁1 norm between the object

and the normalized network output as our loss function.

Specifically, let I(i) denote the ith example in the training set

and Î(i) denote the corresponding network prediction. We

constructed a normalized variant of Î(i) by dividing it by its

maximal value and multiplying it by the maximal intensity

value across all objects in the dataset, namely Î(i)norm = c ⋅ Î(i),

where c = max j‖I
( j )‖∞

‖Î( i )‖∞
. We then defined the training loss as

 = 1

N

N∑

i=1
‖Î(i)

norm
− I(i)‖1, (2)

where N is the number of training samples. The normaliza-

tion was chosen to address the decrease in image intensity

that accompanies resolution enhancement, a key challenge

that will be thoroughly discussed in the remainder of the

paper.

Figure 1b shows several normalized results obtained

from three different AOSRNNs, one trained on the MNIST

dataset of handwritten digits [38], one on the FashionMNIST

dataset of fashion items [39], and one on a subset of the

Quick, Draw! dataset, which contains drawings of everyday

objects [40]. All three networks effectively recover high-

resolution images from their low-resolution counterparts.

Figure 2 reports a quantitative evaluation of AOSRNN’s

reconstruction quality. The left and middle panes show

two measures of discrepancy between the network’s out-

puts and the original objects: the peak signal-to-noise ratio

(PSNR) and the structural similarity index measure (SSIM)

[41]. For both metrics, higher scores indicate greater simi-

larity. As can be seen, the similarity between the network’s

outputs and the ground-truth images is greater than the

similarity between the input low-resolution images and the

ground-truth images, suggesting that AOSRNN successfully

improves resolution. The right pane of Figure 2 provides a

more direct measure of resolution improvement. To quan-

tify resolution, we look for a linear, NA-limited imaging

system that achieves the sameaverage PSNRasAOSRNN.We

then define the resolution of AOSRNN as the inverse of the

cutoff frequency of this linear imaging system (see Supple-

mentary Note 3 for more details). In this case, lower values

correspond to better resolution. The bar plot confirms that

AOSRNN improves the resolution of the input, with an aver-

age enhancement factor of 1.8. However, we note that this
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Figure 2: Quantification of resolution enhancement by the all-optical network. Bar plots compare the similarity between the original object and

both the low-resolution input (diagonal-striped bars) and the AOSRNN output (solid bars). Similarity is quantified using three metrics: PSNR (left),

SSIM (middle), and effective resolution (right). Results are shown for three datasets: MNIST (M), FashionMNIST (FM), and Quick, Draw! (QD).

improvement is still below the theoretical maximum factor

of 4.3, which corresponds to the ultimate resolution bound

of 12 μm.We additionally evaluated AOSRNN’s performance

using input images generated by imaging optics with NAs

of approximately {0.006, 0.004, 0.003}, corresponding to

input resolutions of Δx = {84, 134.4, 168} μm. For these

cases, AOSRNN enhances resolution by an average factor of

{2, 2.6, 3}, respectively. See Supplementary Note 4 for more
details.

3 Fundamental tradeoffs

As demonstrated above, assuming the availability of suit-

able nonlinear layers, all-optical diffractive networks, like

AOSRNN, can enhance resolution all-optically. However, as

we now illustrate, nonlinear optical super-resolution sys-

tems suffer from fundamental tradeoffs that are absent in

digital networks. In the following subsections, we discuss

two such tradeoffs, both inherently tied to the properties

of light and thus expected to persist in any type of passive

all-optical neural network, regardless of the specific imple-

mentation of the nonlinearity. However, we discuss how the

working point can be chosen along the tradeoffs.

3.1 Resolution versus energy preservation

Our first observation is that, while the nonlinear AOSRNN

achieves impressive reconstruction performance, it does

so at the cost of significant optical power loss. Only a

small fraction of the input field energy is preserved at the

output plane of the network, just a few percent (̃6%) in the

example shown in Figure 1b. This energy loss is not specific

to the architecture of AOSRNN but is instead inherent to

the physics of light interacting with nonlinear optical lay-

ers. Specifically, as light propagates through such systems,

the nonlinear layers generate new high spatial frequencies,

corresponding to larger diffraction angles. Due to the lim-

ited numerical aperture (NA) of the system, some of these

high-angle components lie outside the collection cone of the

subsequent layers and are thus inevitably lost.

This effect is illustrated in Figure 3, using a simplified

one-dimensional example. The spatial frequency content

of a typical object naturally decays with increasing spatial

frequency (leftmost plot). A low-resolution version of the

object is obtained by the imaging optics that precede the net-

work, effectively acting as a low-pass filter that suppresses

frequencies beyond the system’s NA (second plot).

As the field propagates through the network, nonlin-

ear interactions give rise to new spatial frequency compo-

nents that were not present in the initial low-resolution

image. These new high-frequency components are crucial

for recovering fine spatial details of the original object. The

convolutional units act to shape this growing frequency

content, steering the evolution of the field toward a high-

fidelity reconstruction of the object up to a global normaliza-

tion constant, as formalized by Eq. (2). However, the newly

generated high-frequency components correspond to light

propagating at large angles. Due to the finite NA of the

network’s convolutional units, some of these components

fall outside the collection cone of subsequent layers (red

dotted vertical lines) and cannot be captured. This excess

bandwidth is inevitably lost, as illustrated by the red shaded
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Figure 3: Energy loss in nonlinear networks. Illustration of wave propagation through a nonlinear network in the spatial frequency domain, plotted

along one spatial dimension as a function of spatial frequency 𝜈. An imaging system with a low NA generates the low-resolution input image,

effectively applying a low-pass filter H. The black dashed vertical lines mark the NA limit of this original system. As the wave propagates through the

network, nonlinear interactions generate higher spatial frequencies, enabling partial reconstruction of previously lost high-frequency information,

up to the NA defined by the collection cones of the convolutional units (red vertical dotted lines). Inevitably, this nonlinear spectral broadening also

produces components beyond this NA, resulting in energy loss due to spectral content leaking outside the network’s collection cone, highlighted by

the red shaded regions. Consequently, the spectral intensity at low frequencies diminishes as the wave progresses through the network. At the final

layer, the spectrum within the network’s NA provides a scaled approximation of the original object, represented by the dashed gray line in all plots.

The diagrams show the spatial frequency content at the frequency plane of each convolutional unit, just before its corresponding phase mask.

regions in Figure 3. As the field continues to propagate

through the nonlinear network, each layer builds upon

the previous one, reconstructing a progressively higher-

resolution approximation of the object but at the cost of

cumulative energy loss at every stage. A detailed frequency-

domain derivation of this energy leakage is provided in

Supplementary Note 5.

This inherent energy loss inevitably leads to output

imageswith low total intensity. Suchweak outputs are unde-

sirable, as they are more susceptible to being overwhelmed

by noise during the digital acquisition process. A simple

approach to improve energy preservation is to amend the

loss function of Eq. (2) with a regularization term that penal-

izes for low output intensities,

 = 1

N

N∑

i=1

(

‖Î(i)
norm

− I(i)‖1 − 𝛾‖Î(i)‖1

)

, (3)

where the regularization parameter 𝛾 controls the strength

of the energy-preserving term. However, this solution

turns out to introduce a strong tradeoff between energy

preservation and performance, measured in terms of PSNR

and resolution, as illustrated in Figure 4 for the MNSIT

dataset. When the regularization parameter 𝛾 is very small,

the network prioritizes image fidelity and achieves its best

performance but preserves very little energy. As 𝛾 increases,

the network retains more energy, but this comes at the

cost of reduced reconstruction quality. For sufficiently large

values of 𝛾 , the network’s performance degrades to the

pointwhere it underperforms even the low-resolution input

images, as indicated by the black squares in the figure.

A network that simply transmits low-resolution images

to its output plane should, in principle, achieve performance

metrics identical to those of the low-resolution inputs. Such

a network would effectively reproduce the input field at the

(a) (b)

Figure 4: Reconstruction fidelity vs. energy preservation. (a) PSNR in dB and (b) resolution in μm as a function of the fraction of energy preserved at

the output (0–100 %). The blue line shows the results of AOSRNN, trained with 12 different values of the regularization parameter 𝛾 ranging from 10−1

to 10−9. The black squares indicate the performance of the low-resolution input images. The red dots represent a linear network with the same

architecture as AOSRNN but without the nonlinear layers.
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output, without modification. However, this is not feasible

with a nonlinear architecture, as the nonlinear layers inher-

ently perturb the input during propagation. By removing

these nonlinear elements fromAOSRNN, the resulting linear

network could, in theory, learn to perform this identitymap-

ping. In practice, however, the optimization process rarely

converges to this solution. Consequently, even the linear net-

work introduces slight distortions to the input, as indicated

by the red dots in Figure 4a and b.

The above approach offers a simple way to improve

the preservation of input energy at the cost of reducing

reconstruction accuracy for a given network configuration.

The tradeoff between energy preservation and reconstruc-

tion accuracy can be slightly improved by increasing the

network’s NA. For example, doubling the width and height

of each layer in a network trained on the MNIST dataset

without the energy preservation loss term improves energy

preservation from ∼6 % to ∼10 % and reconstruction qual-

ity from 19.8 dB to 20.3 dB. However, increasing the physical

size of the layers results in a larger system, which may

be impractical in some applications. It may also introduce

fabrication challenges that limit performance.

An alternative way to increase the NA is by reducing

the focal length between the optical elements. This could

help retain more input energy while also reducing the

system’s physical footprint. In this context, optical meta-

surfaces offer a promising future direction. Their ability to

precisely control local phase, amplitude, and polarization at

subwavelength scales enables compact optical components

with high NA [42]. As such, metasurfaces are an appealing

platform for compact, energy-efficient optical neural net-

works and analog computing systems [43]–[45]. Notably, our

modeling framework is general and directly applicable to

metasurface-based implementations, since all optical com-

ponents in the network are defined by their local phase

profiles, regardless of physical realization.

3.2 Sensitivity to global intensity

Our second key observation relates to the sensitivity of

the network to the global input intensity. In the digital

domain, images are typically normalized to the range [0, 1].

However, in natural scenes, illumination intensity can vary

across different scenarios. While this variation is generally

not problematic for linear systems, where output intensi-

ties scale proportionally with the input, nonlinear systems

behave quite differently. Even slight changes in input inten-

sity can result in dramatically different outputs, as they

shift the input field into different regimes of the system’s

nonlinearity.

(a) (b)

(c)

Figure 5: Sensitivity to global intensity. (a) Representative output images from different networks evaluated at different p values. The standard

AOSRNN fails to generalize to unseen intensity levels, whereas the IR networks produce high-quality reconstructions across varying p.

(b) Reconstruction fidelity, quantified by PSNR in dB, as a function of the maximal image intensity p = max j|I
( j)|∞. The orange curve shows the perfor-

mance of a standard AOSRNN, while the yellow, blue, and green curves show the results of an intensity-robust (IR) version of AOSRNN, each one

trained with p values in different range. The black dashed line indicates the PSNR of the low-resolution input images. While the IR networks maintain

consistent performance across a wide range of p values (denote as width), the regular network shows a sharp decline in performance when p ≠ 1.

(c) The blue curve denotes the inherent tradeoff between reconstruction fidelity (horizontal axis, measured by peak PSNR) and stability to different

peak intensity values (vertical axis, measured by width).
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Figure 5 illustrates the results of a network trained

on the MNIST dataset with maximal intensity value, p =
max j‖I

( j)‖∞, of 1, when evaluated on inputs with varying

maximal intensities, ranging from 0.1 to 12.5. The results

show significant degradation, both quantitatively and quali-

tatively, when the input intensity deviates from the training

value. For example, increasing the intensity by a factor of

2 leads to a drop of approximately 5 dB in PSNR, as shown

by the orange curve in Figure 5b. Qualitative deterioration is

also evident in the first row of Figure 5a, where the network

fails to generalize to inputs with p ≠ 1.

A straightforward approach to accommodating a larger

range of intensities is to expose the network to varying

p values during training [46]. We trained three different

networks, where the varying p values were in the range

[0, 2], [0, 4], [0, 8], indicated by the yellow, blue, and green

curves in Figure 5b, respectively. Each of these intensity-

robust (IR) networks demonstrate improved stability for

different p values. Qualitative results for each of these net-

works are shown in Figure 5a. The IR networks improved

stability can be seen by the increased range of input inten-

sities over which their reconstruction quality exceeds the

input quality, i.e., the range of p values over which the

different curves in Figure 5b exceed the black dashed line.

We term this range width. However, a larger width comes

at the expense of reconstruction fidelity, causing a drop in

the peak PSNR achieved by each network. It can be seen in

Figure 5b that the peak of the orange curve, representing

a network trained with a single p value, is the highest.

Figure 5c illustrates the inherent tradeoff between recon-

struction fidelity (horizontal axis, measured by peak PSNR)

and stability to different peak intensity values (vertical

axis, measured by width), for passive all-optical nonlinear

networks.

4 Discussion

We have demonstrated that passive all-optical neural net-

works are theoretically capable of achieving spatial super-

resolution but suffer from two fundamental limitations: an

inherent sensitivity to the input intensity and a tradeoff

between energy preservation and performance. Although

these sensitivities can be reduced by exposing the network

to diverse conditions during training, this comes at the

expense of deterioration in performance.

As mentioned in Section 2, our analysis, although inde-

pendent from a specific choice of nonlinear layer, still

assumes the availability of such a layer. Achieving an all-

optical nonlinear response with sufficiently large n2 is a

challenge in its own right [31]. In Supplementary Note 1,

we list various physical mechanisms that could be used to

implement such nonlinear layers and discuss their short-

comings. Additionally, we demonstrate that AOSRNN can

also be trained with a different nonlinear layer, a hybrid

optopelectronic nonlinear device recently introduced by

Zhang et al. [47].

It is instructive to note that, unlike conventional lin-

ear optical systems, diffractive networks are also funda-

mentally restricted by their training data, as they adapt to

its underlying statistics. As a result, a network trained on

one dataset may generalize poorly to images from another

dataset. Figure 6 illustrates this effect using the MNIST,

FashionMNIST, and Quick, Draw! datasets (see Supplemen-

tary Note 6 for more datasets). As shown, performance on

out-of-distribution data highly depends on the degree of dis-

tribution shift. For example, networks trained on MNIST or

Quick, Draw! datasets fail to generalize to the FashionMNIST

dataset, which is characterized by larger smooth regions. In

these cases, the results are even worse than the input low-

resolution images. Figure 6 further shows the performance

of a network trained on all three datasets. When tested on

a specific dataset, this network achieves improved results

with respect to the networks that were not trained on that

dataset but slightly worse results than the network trained

on that particular dataset. This highlights yet another fun-

damental tradeoff in all-optical super-resolution – themore

diverse the data onwhich thenetwork is trained, the smaller

the resolution improvement. Supplementary Note 6 pro-

vides additional details. Supplementary Note 7 illustrates

the cost of achieving immunity to all the discussed effects

simultaneously – sensitivity to global intensity, to energy

preservation, and to out-of-distribution data.

While this work primarily addresses all-optical spatial

super-resolution, the tradeoffs we identify are inherently

linked to the properties of light and may thus arise in dif-

ferent tasks as well. For example, when training our AOS-

RNN on image classification task, it achieves 94.8 % test

classification accuracy on the MNIST dataset. However, this

performance is achieved by scattering a significant portion

of the incoming light. Additionally, this network is sensi-

tive to the global input intensity, experiencing a 33 % drop

in classification accuracy when increasing the input inten-

sity by a factor of 2 (see Supplementary Note 8 for further

details).

The fundamental limitations of energy-preservation

versus resolution and sensitivity to global intensity are

also not unique to a specific network architecture or to

the choice of nonlinear layers but are instead intrinsic

to passive nonlinear optical networks. This is illustrated
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(a)

(b)

(c)

Figure 6: AOSRNN results on out-of-distribution data. (a) Qualitative results of networks trained using the MNIST, FashionMNIST, and Quick, Draw!

datasets, as well as a network trained using all these three datasets. These networks were then evaluated on the MNIST, FashionMNIST, and Quick,

Draw! datasets. All the results are given next to the objects and the low-resolution images. (b) Resolution results of the different networks when

evaluated on the different datasets. (c) PSNR results of all networks w.r.t the low resolution images, when evaluated on the different datasets.

in Supplementary Note 9, where a nonlinear passive net-

work with a different architecture [34] is trained to per-

form super-resolution. This network, which comprises of

a sequence of diffractive layers interleaved by nonlinear

layers (without 4 f systems), successfully enhances the res-

olution of the input images, achieving a PSNR of 17.4 dB

for input images with a PSNR of 16.1 dB. However, it does

so by preserving only ∼1 % of the energy in its output

plane. Furthermore, when multiplying the input intensity

by 2 or by 4, the achieved PSNR deteriorates to 16.6 dB and

14.2 dB, respectively (see Supplementary Note 9 for further

details).

Finally, the fundamental limitations of energy-

preservation versus resolution and sensitivity to global

intensity are not unique to monochromatic light. This is

demonstrated in Supplementary Note 10, where we trained

an AOSRNN for objects illuminated by polychromatic light

comprising three different wavelengths – {400, 550, 700}
nm. This network, again, successfully enhances the input

image resolution, yet, still suffers from the identified

tradeoff (see Supplementary Note 10 for further details.)

These analyses highlight the need for future designs

to carefully consider these tradeoffs and identify operat-

ing points that are well suited to the task and deployment

context. By exposing and quantifying these limitations, our

workmarks an important step toward enablingmore robust

development of passive all-optical neural systems and lays

out the key considerations for implementing all-optical

super-resolution neural networks.

5 Methods

For training AOSRNN, we used a dataset  of objects

(images),  = {I(i)}N
i=1. The input to the network was the

low-resolution images of I(i), resulting from the imaging

optics. We implemented the imaging optics as ideal filtering

in the frequency domain [1].

We used the MNIST [38], FashionMNIST [39], and

Quick, Draw! [40] datasets, which contain 28 × 28 grayscale

images of handwritten digits, fashion items, and drawing

of different everyday objects, respectively. In all of the

numerical experiments, we first upsampled these images

using nearest-neighbor interpolation to 112 × 112 graysacle

images. The input images were padded accordingly to

prevent aliasing. The MNIST and FashionMNIST datasets

include 10 different classes, while the Quick, Draw! dataset

includes draws of 345 different classes. For the numerical

experiments, we used 10 out of these 345 classes. From the

Quick, Draw! dataset, we used the classes of aircraft carrier,

banana, cake, diamond, fish, guitar, hexagon, key, micro-

phone, and saxophone.

We trained the different networks with 10,000 training

images (∼1, 000 per class) for 1,000 epochs, using the Adam
optimizer [48] with a learning rate of 𝜂 = 1 × 10−1. We

used a scheduler that reduces the learning rate by a factor

of 2 every 100 epochs. The simulations were implemented

using the Pytorch deep learning framework [49] and were

executed on a Linux machine with NVIDIA GeForce GTX

2080 Ti GPU. Standard training took ∼7 h on this machine.
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The intensity robust (IR) networks were trained using the

same hyperparamters and training process but with maxi-

mal intensity values chosen uniformly from the predefined

set [0.1, 0.25, 0.5, 0.75, 1, 2, 3,…]. The largest value of this set

was either 2, 4, or 8, for the different networks.

For details regarding the forward propagation through

AOSRNN, see Supplementary Note 11.
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