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Abstract: The deep learning revolution has increased the
demand for computational resources, driving interest in
efficient alternatives like all-optical diffractive neural net-
works (AODNNs). These systems operate at the speed of light
without consuming external energy, making them an attrac-
tive platform for energy-efficient computation. One task
that could greatly benefit from an all-optical implementa-
tion is spatial super-resolution. This would allow overcom-
ing the fundamental resolution limitation of conventional
optical systems, dictated by their numerical aperture. Here,
we examine whether the success of digital super-resolution
networks can be replicated with AODNNs considering net-
works with phase-only nonlinearities. We find that while
promising, super-resolution AODNNS face two key physical
challenges: (i) a tradeoff between reconstruction fidelity and
energy preservation along the optical path and (ii) a limited
dynamic range of input intensities that can be effectively
processed. These findings offer a first step toward under-
standing and addressing the design constraints of passive,
all-optical super-resolution systems.
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1 Introduction

The spatial resolution of conventional optical systems, such
as microscopes, telescopes, and cameras, is fundamentally
constrained by their numerical aperture (NA) and the wave-
length of light. These systems act as low-pass filters, atten-
uating high spatial frequencies and thus limiting the abil-
ity to resolve fine details [1]. Overcoming this diffraction
limit has been a longstanding challenge across numerous
scientific fields, from biology [2] to astronomy [3]. Most
existing super-resolution methods modify the acquisition
process to allow measuring high spatial frequencies and
use linear optics to collect light. For example, some super-
resolution techniques rely on near-field measurements of
the imaged object, extracting high-frequency information
encoded in evanescent waves using metametrials [4], [5].
Methods like structured illumination [6], [7], localization
microscopy [8]-[10], and optical stethoscopy [11] trade tem-
poral resolution for spatial resolution. Other techniques
exploit super-oscillatory phenomena [12], [13] or the sta-
tistical behavior of speckle and scattering media [14]-[17].
However, the requirement to modify the acquisition pro-
cess poses severe limitations, rendering these techniques
impractical for many real-world scenarios.

In contrast to optical techniques, digital super-
resolution methods attempt to computationally recover
the lost high frequencies. This is done by exploiting prior
knowledge on the typical behavior of high-resolution
images in the domain of interest (e.g., cellular organelles
[18], galaxies [19], natural scenery images [20], etc.).
Over the last decade, this field has seen significant
advancements thanks to the adoption of deep learning
methods [18], [20]-[26]. Unlike classical computational
methods, such as Richardson-Lucy deconvolution [27],
[28] and its extensions, which only enforce simple priors
on the restored image (e.g., smoothness), deep learning
approaches leverage the ability of neural networks to
learn complex nonlinear mappings between low-resolution
images and their high-resolution counterparts based
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on training examples [20]. Specifically, these methods
implicitly extract complex image priors from the training
data (e.g., the valid shapes of handwritten letters) and
thus achieve state-of-the-art reconstruction accuracy, as
well as robustness to noise [29]. Unfortunately, however,
state-of-the-art digital super-resolution networks are often
challenging to deploy on end devices due to their intense
computational requirements [30]-[32]. Recently, it has
been recognized that many computational tasks that can
be performed with digital networks can also be effectively
implemented all-optically [31], [33]-[36]. In particular,
all-optical diffractive neural networks [34] emerged as a
promising tool for visual information processing. Here,
we numerically investigate whether all-optical diffractive
networks, using only passive elements, can replicate the
success of digital super-resolution networks.

We show that while passive diffractive networks can
indeed enhance resolution all-optically, they suffer from
two fundamental tradeoffs that are absent in digital net-
works: (i) a tradeoff between the reconstruction quality and
energy preservation and (ii) high sensitivity to the input
global intensity. These two tradeoffs stem from how light
propagates and interacts with passive nonlinear media. In
particular, each nonlinear layer generates high spatial fre-
quencies that correspond to waves propagating at large
angles. Some of these may inevitably escape the next layer’s
collection cone, thus causing a loss of energy. Additionally,
while images in the digital domain are normalized, natural
scenes may exhibit a large range of intensities that corre-
spond to markedly different regions of the nonlinearity. This
limits the system’s applicability under changing illumina-
tion conditions.

2 Passive all-optical
super-resolution neural network

The principles we would like to explore are not inher-
ent to a particular passive diffractive network architec-
ture. However, for concreteness, we focus on an all-optical
super-resolution neural network (AOSRNN) architecture
inspired by digital convolutional neural networks (CNNs),
as illustrated in Figure 1a. This network consists of a series
of diffractive convolutional units, each comprising a 4f
system with a learned phase mask in the Fourier plane
and an all-optical nonlinear layer at the image plane.
We assume energy-preserving, phase-only nonlinear lay-
ers, whose refractive index n at spatial location (x,y)
depends nonlinearly on the intensity I(x, y) at that location,
as
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n(x,y) = ny + nyI(x, y). (0]

Here, n, is the linear refractive index, n, is the nonlin-
ear refractive index, and I(x, y) = |E(x, y)|? is the intensity
of the optical field, which we assume to be monochromatic
[37]. While we focus here on phase-only nonlinearities, simi-
lar considerations apply to amplitude nonlinearities, which
we analyze in Supplementary Note 1. It is important to note
that achieving nonlinearity with sufficiently large n, is a
challenge in its own right and would come at a cost of slow
response time. However, the goal of this paper is to illustrate
that even if such nonlinear layers were available, other
phenomena would still severely limit the network’s utility
(see Supplementary Note 1 for further discussions).

The input plane of AOSRNN contains a low-resolution
image of an object, obtained from some imaging optics with
small NA (left part of Figure 1a). This input image corre-
sponds to a low-pass filtered version of the object, which we
assume is illuminated by coherent light. The goal of AOS-
RNN is to reconstruct the object at its output plane, which
coincides with the plane of the last nonlinear layer. Achiev-
ing this requires generating spatial frequencies higher than
those present at the input image plane, a task facilitated by
the nonlinear layers.

To explore the ability of AOSRNN to enhance spatial
resolution, we simulated a network composed of 10 convo-
lutional units (see Supplementary Note 2 for the effect of
the network’s depth). The input to the network is a low-
resolution image, generated by imaging optics with NA of
approximately 0.01.

Throughout the paper, we assume that we do not have
access to the imaging optics, which produces images of a
given resolution. Therefore, our goal is to enhance the input
image resolution (relative improvement rather than abso-
lute resolution) by placing the AOSRNN after the imaging
system. Assuming a wavelength of A = 550 nm, this corre-
sponds to a cutoff spatial frequency of f, = N—f‘ = SS%Tm
19, 345.2 m~!, which sets the resolution at the input plane
to Ax =1/f, = 51.7 pm. We examined a case in which AOS-
RNN can potentially improve resolution by a factor of up
to 4.3. To support this, the apertures of the Fourier plane
convolutional units (i.e., the phase mask sizes) were chosen
to correspond to a resolution of 12 pm, which translates
to a cutoff frequency of f, = 83,333.3 m~". This represents
the highest possible resolution achievable at the network’s
output. As shown below, AOSRNN is capable of improving
the input image resolution, albeit not fully reaching this
theoretical limit. AOSRNN was trained by minimizing the
discrepancy between the object intensity, I(x, y), and the
intensity at the network’s output, I(x, y). For simplicity,
we represent these quantities as column vectors, omitting
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Figure 1: All-optical super-resolution neural architecture (AOSRNN). (a) Schematic of the proposed network. An optical imaging system captures an
object and produces a low-resolution image, limited by its NA, which serves as the input to the AOSRNN. This image is then processed by the all-optical
neural network, which outputs a high-resolution reconstruction. The network is composed of consecutive convolutional units, each consisting

of a 4f system with a learnable phase mask layer in the Fourier plane, followed by a nonlinear optical layer. (b) Qualitative results on the MNIST,
FashionMNIST, and Quick, Draw! datasets. The first, second, and third rows display the high-resolution object, low-resolution network input, and
high-resolution network output, respectively. We note that the ripples observed in the low-resolution images result from the use of a low-NA imaging

system with spatially and temporally coherent illumination.

their coordinates. We used the #; norm between the object
and the normalized network output as our loss function.
Specifically, let I denote the ith example in the training set
and I® denote the corresponding network prediction. We
constructed a normalized variant of ' by dividing it by its
maximal value and multiplying it by the maximal intensity

value across all objects in the dataset, namely ') = ¢ - [®,
AIhH ..
where ¢ = % We then defined the training loss as

N
L= %Z} M~ 19, @
i=
where N is the number of training samples. The normaliza-
tion was chosen to address the decrease in image intensity
that accompanies resolution enhancement, a key challenge
that will be thoroughly discussed in the remainder of the
paper.

Figure 1b shows several normalized results obtained
from three different AOSRNNS, one trained on the MNIST
dataset of handwritten digits [38], one on the FashionMNIST
dataset of fashion items [39], and one on a subset of the
Quick, Draw! dataset, which contains drawings of everyday

objects [40]. All three networks effectively recover high-
resolution images from their low-resolution counterparts.
Figure 2 reports a quantitative evaluation of AOSRNN’s
reconstruction quality. The left and middle panes show
two measures of discrepancy between the network’s out-
puts and the original objects: the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM)
[41]. For both metrics, higher scores indicate greater simi-
larity. As can be seen, the similarity between the network’s
outputs and the ground-truth images is greater than the
similarity between the input low-resolution images and the
ground-truth images, suggesting that AOSRNN successfully
improves resolution. The right pane of Figure 2 provides a
more direct measure of resolution improvement. To quan-
tify resolution, we look for a linear, NA-limited imaging
system that achieves the same average PSNR as AOSRNN. We
then define the resolution of AOSRNN as the inverse of the
cutoff frequency of this linear imaging system (see Supple-
mentary Note 3 for more details). In this case, lower values
correspond to better resolution. The bar plot confirms that
AOSRNN improves the resolution of the input, with an aver-
age enhancement factor of 1.8. However, we note that this
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Figure 2: Quantification of resolution enhancement by the all-optical network. Bar plots compare the similarity between the original object and
both the low-resolution input (diagonal-striped bars) and the AOSRNN output (solid bars). Similarity is quantified using three metrics: PSNR (left),
SSIM (middle), and effective resolution (right). Results are shown for three datasets: MNIST (M), FashionMNIST (FM), and Quick, Draw! (QD).

improvement is still below the theoretical maximum factor
of 4.3, which corresponds to the ultimate resolution bound
0f12 pm. We additionally evaluated AOSRNN’s performance
using input images generated by imaging optics with NAs
of approximately {0.006,0.004,0.003}, corresponding to
input resolutions of Ax = {84,134.4,168} pm. For these
cases, AOSRNN enhances resolution by an average factor of
{2,2.6,3}, respectively. See Supplementary Note 4 for more
details.

3 Fundamental tradeoffs

As demonstrated above, assuming the availability of suit-
able nonlinear layers, all-optical diffractive networks, like
AOSRNN, can enhance resolution all-optically. However, as
we now illustrate, nonlinear optical super-resolution sys-
tems suffer from fundamental tradeoffs that are absent in
digital networks. In the following subsections, we discuss
two such tradeoffs, both inherently tied to the properties
of light and thus expected to persist in any type of passive
all-optical neural network, regardless of the specific imple-
mentation of the nonlinearity. However, we discuss how the
working point can be chosen along the tradeoffs.

3.1 Resolution versus energy preservation

Our first observation is that, while the nonlinear AOSRNN
achieves impressive reconstruction performance, it does
so at the cost of significant optical power loss. Only a
small fraction of the input field energy is preserved at the
output plane of the network, just a few percent (6%) in the

example shown in Figure 1b. This energy loss is not specific
to the architecture of AOSRNN but is instead inherent to
the physics of light interacting with nonlinear optical lay-
ers. Specifically, as light propagates through such systems,
the nonlinear layers generate new high spatial frequencies,
corresponding to larger diffraction angles. Due to the lim-
ited numerical aperture (NA) of the system, some of these
high-angle components lie outside the collection cone of the
subsequent layers and are thus inevitably lost.

This effect is illustrated in Figure 3, using a simplified
one-dimensional example. The spatial frequency content
of a typical object naturally decays with increasing spatial
frequency (leftmost plot). A low-resolution version of the
object is obtained by the imaging optics that precede the net-
work, effectively acting as a low-pass filter that suppresses
frequencies beyond the system’s NA (second plot).

As the field propagates through the network, nonlin-
ear interactions give rise to new spatial frequency compo-
nents that were not present in the initial low-resolution
image. These new high-frequency components are crucial
for recovering fine spatial details of the original object. The
convolutional units act to shape this growing frequency
content, steering the evolution of the field toward a high-
fidelity reconstruction of the object up to a global normaliza-
tion constant, as formalized by Eq. (2). However, the newly
generated high-frequency components correspond to light
propagating at large angles. Due to the finite NA of the
network’s convolutional units, some of these components
fall outside the collection cone of subsequent layers (red
dotted vertical lines) and cannot be captured. This excess
bandwidth is inevitably lost, as illustrated by the red shaded
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Figure 3: Energy loss in nonlinear networks. Illustration of wave propagation through a nonlinear network in the spatial frequency domain, plotted
along one spatial dimension as a function of spatial frequency v. An imaging system with a low NA generates the low-resolution input image,
effectively applying a low-pass filter H. The black dashed vertical lines mark the NA limit of this original system. As the wave propagates through the
network, nonlinear interactions generate higher spatial frequencies, enabling partial reconstruction of previously lost high-frequency information,
up to the NA defined by the collection cones of the convolutional units (red vertical dotted lines). Inevitably, this nonlinear spectral broadening also
produces components beyond this NA, resulting in energy loss due to spectral content leaking outside the network’s collection cone, highlighted by
the red shaded regions. Consequently, the spectral intensity at low frequencies diminishes as the wave progresses through the network. At the final
layer, the spectrum within the network’s NA provides a scaled approximation of the original object, represented by the dashed gray line in all plots.
The diagrams show the spatial frequency content at the frequency plane of each convolutional unit, just before its corresponding phase mask.

regions in Figure 3. As the field continues to propagate
through the nonlinear network, each layer builds upon
the previous one, reconstructing a progressively higher-
resolution approximation of the object but at the cost of
cumulative energy loss at every stage. A detailed frequency-
domain derivation of this energy leakage is provided in
Supplementary Note 5.

This inherent energy loss inevitably leads to output
images with low total intensity. Such weak outputs are unde-
sirable, as they are more susceptible to being overwhelmed
by noise during the digital acquisition process. A simple
approach to improve energy preservation is to amend the
loss function of Eq. (2) with aregularization term that penal-
izes for low output intensities,
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where the regularization parameter y controls the strength
of the energy-preserving term. However, this solution
turns out to introduce a strong tradeoff between energy
preservation and performance, measured in terms of PSNR
and resolution, as illustrated in Figure 4 for the MNSIT
dataset. When the regularization parameter y is very small,
the network prioritizes image fidelity and achieves its best
performance but preserves very little energy. As y increases,
the network retains more energy, but this comes at the
cost of reduced reconstruction quality. For sufficiently large
values of y, the network’s performance degrades to the
point where it underperforms even the low-resolution input
images, as indicated by the black squares in the figure.

A network that simply transmits low-resolution images
to its output plane should, in principle, achieve performance
metrics identical to those of the low-resolution inputs. Such
a network would effectively reproduce the input field at the
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Figure 4: Reconstruction fidelity vs. energy preservation. (a) PSNR in dB and (b) resolution in pm as a function of the fraction of energy preserved at
the output (0-100 %). The blue line shows the results of AOSRNN, trained with 12 different values of the regularization parameter y ranging from 10~
to 10~°. The black squares indicate the performance of the low-resolution input images. The red dots represent a linear network with the same

architecture as AOSRNN but without the nonlinear layers.
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output, without modification. However, this is not feasible
with a nonlinear architecture, as the nonlinear layers inher-
ently perturb the input during propagation. By removing
these nonlinear elements from AOSRNN, the resulting linear
network could, in theory, learn to perform this identity map-
ping. In practice, however, the optimization process rarely
converges to this solution. Consequently, even the linear net-
work introduces slight distortions to the input, as indicated
by the red dots in Figure 4a and b.

The above approach offers a simple way to improve
the preservation of input energy at the cost of reducing
reconstruction accuracy for a given network configuration.
The tradeoff between energy preservation and reconstruc-
tion accuracy can be slightly improved by increasing the
network’s NA. For example, doubling the width and height
of each layer in a network trained on the MNIST dataset
without the energy preservation loss term improves energy
preservation from ~6 % to ~10 % and reconstruction qual-
ity from 19.8 dB to 20.3 dB. However, increasing the physical
size of the layers results in a larger system, which may
be impractical in some applications. It may also introduce
fabrication challenges that limit performance.

An alternative way to increase the NA is by reducing
the focal length between the optical elements. This could
help retain more input energy while also reducing the
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system’s physical footprint. In this context, optical meta-
surfaces offer a promising future direction. Their ability to
precisely control local phase, amplitude, and polarization at
subwavelength scales enables compact optical components
with high NA [42]. As such, metasurfaces are an appealing
platform for compact, energy-efficient optical neural net-
works and analog computing systems [43]-[45]. Notably, our
modeling framework is general and directly applicable to
metasurface-based implementations, since all optical com-
ponents in the network are defined by their local phase
profiles, regardless of physical realization.

3.2 Sensitivity to global intensity

Our second key observation relates to the sensitivity of
the network to the global input intensity. In the digital
domain, images are typically normalized to the range [0, 1].
However, in natural scenes, illumination intensity can vary
across different scenarios. While this variation is generally
not problematic for linear systems, where output intensi-
ties scale proportionally with the input, nonlinear systems
behave quite differently. Even slight changes in input inten-
sity can result in dramatically different outputs, as they
shift the input field into different regimes of the system’s
nonlinearity.

=== Low res.
2] —— AOSRNN

IR, p € 0,2

—— IR.pe 0.4

0 3 i 6 g 10 12

Width

18.25 18.75

75 .25 19775
Peak PSNR [dB

Figure 5: Sensitivity to global intensity. (a) Representative output images from different networks evaluated at different p values. The standard
AOSRNN fails to generalize to unseen intensity levels, whereas the IR networks produce high-quality reconstructions across varying p.

(b) Reconstruction fidelity, quantified by PSNR in dB, as a function of the maximal image intensity p = malel‘/)lw. The orange curve shows the perfor-
mance of a standard AOSRNN, while the yellow, blue, and green curves show the results of an intensity-robust (IR) version of AOSRNN, each one
trained with p values in different range. The black dashed line indicates the PSNR of the low-resolution input images. While the IR networks maintain
consistent performance across a wide range of p values (denote as width), the regular network shows a sharp decline in performance when p # 1.

(c) The blue curve denotes the inherent tradeoff between reconstruction fidelity (horizontal axis, measured by peak PSNR) and stability to different

peak intensity values (vertical axis, measured by width).
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Figure 5 illustrates the results of a network trained
on the MNIST dataset with maximal intensity value, p =
max;|I? |, of 1, when evaluated on inputs with varying
maximal intensities, ranging from 0.1 to 12.5. The results
show significant degradation, both quantitatively and quali-
tatively, when the input intensity deviates from the training
value. For example, increasing the intensity by a factor of
2 leads to a drop of approximately 5 dB in PSNR, as shown
by the orange curve in Figure 5h. Qualitative deterioration is
also evident in the first row of Figure 5a, where the network
fails to generalize to inputs with p # 1.

A straightforward approach to accommodating a larger
range of intensities is to expose the network to varying
p values during training [46]. We trained three different
networks, where the varying p values were in the range
[0,2],[0,4],[0, 8], indicated by the yellow, blue, and green
curves in Figure 5h, respectively. Each of these intensity-
robust (IR) networks demonstrate improved stability for
different p values. Qualitative results for each of these net-
works are shown in Figure 5a. The IR networks improved
stability can be seen by the increased range of input inten-
sities over which their reconstruction quality exceeds the
input quality, i.e., the range of p values over which the
different curves in Figure 5b exceed the black dashed line.
We term this range width. However, a larger width comes
at the expense of reconstruction fidelity, causing a drop in
the peak PSNR achieved by each network. It can be seen in
Figure 5b that the peak of the orange curve, representing
a network trained with a single p value, is the highest.
Figure 5c illustrates the inherent tradeoff between recon-
struction fidelity (horizontal axis, measured by peak PSNR)
and stability to different peak intensity values (vertical
axis, measured by width), for passive all-optical nonlinear
networks.

4 Discussion

We have demonstrated that passive all-optical neural net-
works are theoretically capable of achieving spatial super-
resolution but suffer from two fundamental limitations: an
inherent sensitivity to the input intensity and a tradeoff
between energy preservation and performance. Although
these sensitivities can be reduced by exposing the network
to diverse conditions during training, this comes at the
expense of deterioration in performance.

As mentioned in Section 2, our analysis, although inde-
pendent from a specific choice of nonlinear layer, still
assumes the availability of such a layer. Achieving an all-
optical nonlinear response with sufficiently large n, is a
challenge in its own right [31]. In Supplementary Note 1,

M. Kleiner et al.: From digital to passive all-optical super-resolution == 3187

we list various physical mechanisms that could be used to
implement such nonlinear layers and discuss their short-
comings. Additionally, we demonstrate that AOSRNN can
also be trained with a different nonlinear layer, a hybrid
optopelectronic nonlinear device recently introduced by
Zhang et al. [47].

It is instructive to note that, unlike conventional lin-
ear optical systems, diffractive networks are also funda-
mentally restricted by their training data, as they adapt to
its underlying statistics. As a result, a network trained on
one dataset may generalize poorly to images from another
dataset. Figure 6 illustrates this effect using the MNIST,
FashionMNIST, and Quick, Draw! datasets (see Supplemen-
tary Note 6 for more datasets). As shown, performance on
out-of-distribution data highly depends on the degree of dis-
tribution shift. For example, networks trained on MNIST or
Quick, Draw! datasets fail to generalize to the FashionMNIST
dataset, which is characterized by larger smooth regions. In
these cases, the results are even worse than the input low-
resolution images. Figure 6 further shows the performance
of a network trained on all three datasets. When tested on
a specific dataset, this network achieves improved results
with respect to the networks that were not trained on that
dataset but slightly worse results than the network trained
on that particular dataset. This highlights yet another fun-
damental tradeoff in all-optical super-resolution — the more
diverse the data on which the network s trained, the smaller
the resolution improvement. Supplementary Note 6 pro-
vides additional details. Supplementary Note 7 illustrates
the cost of achieving immunity to all the discussed effects
simultaneously — sensitivity to global intensity, to energy
preservation, and to out-of-distribution data.

While this work primarily addresses all-optical spatial
super-resolution, the tradeoffs we identify are inherently
linked to the properties of light and may thus arise in dif-
ferent tasks as well. For example, when training our AOS-
RNN on image classification task, it achieves 94.8 % test
classification accuracy on the MNIST dataset. However, this
performance is achieved by scattering a significant portion
of the incoming light. Additionally, this network is sensi-
tive to the global input intensity, experiencing a 33 % drop
in classification accuracy when increasing the input inten-
sity by a factor of 2 (see Supplementary Note 8 for further
details).

The fundamental limitations of energy-preservation
versus resolution and sensitivity to global intensity are
also not unique to a specific network architecture or to
the choice of nonlinear layers but are instead intrinsic
to passive nonlinear optical networks. This is illustrated
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Figure 6: AOSRNN results on out-of-distribution data. (a) Qualitative results of networks trained using the MNIST, FashionMNIST, and Quick, Draw!
datasets, as well as a network trained using all these three datasets. These networks were then evaluated on the MNIST, FashionMNIST, and Quick,
Draw! datasets. All the results are given next to the objects and the low-resolution images. (b) Resolution results of the different networks when
evaluated on the different datasets. (c) PSNR results of all networks w.r.t the low resolution images, when evaluated on the different datasets.

in Supplementary Note 9, where a nonlinear passive net-
work with a different architecture [34] is trained to per-
form super-resolution. This network, which comprises of
a sequence of diffractive layers interleaved by nonlinear
layers (without 4f systems), successfully enhances the res-
olution of the input images, achieving a PSNR of 17.4 dB
for input images with a PSNR of 16.1 dB. However, it does
so by preserving only ~1% of the energy in its output
plane. Furthermore, when multiplying the input intensity
by 2 or by 4, the achieved PSNR deteriorates to 16.6 dB and
14.2 dB, respectively (see Supplementary Note 9 for further
details).

Finally, the fundamental limitations of energy-
preservation versus resolution and sensitivity to global
intensity are not unique to monochromatic light. This is
demonstrated in Supplementary Note 10, where we trained
an AOSRNN for objects illuminated by polychromatic light
comprising three different wavelengths — {400, 550,700}
nm. This network, again, successfully enhances the input
image resolution, yet, still suffers from the identified
tradeoff (see Supplementary Note 10 for further details.)

These analyses highlight the need for future designs
to carefully consider these tradeoffs and identify operat-
ing points that are well suited to the task and deployment
context. By exposing and quantifying these limitations, our
work marks an important step toward enabling more robust
development of passive all-optical neural systems and lays
out the key considerations for implementing all-optical
super-resolution neural networks.

5 Methods

For training AOSRNN, we used a dataset D of objects
(images), D = {I”}¥ . The input to the network was the
low-resolution images of I, resulting from the imaging
optics. We implemented the imaging optics as ideal filtering
in the frequency domain [1].

We used the MNIST [38], FashionMNIST [39], and
Quick, Draw! [40] datasets, which contain 28 X 28 grayscale
images of handwritten digits, fashion items, and drawing
of different everyday objects, respectively. In all of the
numerical experiments, we first upsampled these images
using nearest-neighbor interpolation to 112 X 112 graysacle
images. The input images were padded accordingly to
prevent aliasing. The MNIST and FashionMNIST datasets
include 10 different classes, while the Quick, Draw! dataset
includes draws of 345 different classes. For the numerical
experiments, we used 10 out of these 345 classes. From the
Quick, Draw! dataset, we used the classes of aircraft carrier,
banana, cake, diamond, fish, guitar, hexagon, key, micro-
phone, and saxophone.

We trained the different networks with 10,000 training
images (~1, 000 per class) for 1,000 epochs, using the Adam
optimizer [48] with a learning rate of # =1 X 10~.. We
used a scheduler that reduces the learning rate by a factor
of 2 every 100 epochs. The simulations were implemented
using the Pytorch deep learning framework [49] and were
executed on a Linux machine with NVIDIA GeForce GTX
2080 Ti GPU. Standard training took ~7 h on this machine.
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The intensity robust (IR) networks were trained using the
same hyperparamters and training process but with maxi-
mal intensity values chosen uniformly from the predefined
set [0.1,0.25,0.5,0.75,1, 2, 3, ...]. The largest value of this set
was either 2, 4, or 8, for the different networks.

For details regarding the forward propagation through
AOSRNN, see Supplementary Note 11.

Research funding: None declared.

Author contributions: All authors have accepted respon-
sibility for the entire content of this manuscript and
consented to its submission to the journal, reviewed
all the results, and approved the final version of the
manuscript.

Conflict of interest: Authors state no conflict of interest.
Data availability: The code used in the current study
is available at ref. [50]. The datasets analyzed during
the current study were derived from these public
domain dataset: MNIST dataset — https://docs.pytorch.org/
vision/main/generated/torchvision.datasets.MNIST.html,
FashionMNIST dataset - https://github.com/
zalandoresearch/fashion-mnist, Quick, Draw! dataset
— https://github.com/googlecreativelab/quickdraw-dataset,
KMNIST dataset — https:/github.com/rois-codh/kmnist,
EMNIST dataset - https://www.nist.gov/itl/products-and-
services/emnist-dataset.

References

[1] J. W. Goodman, Introduction to Fourier Optics, Englewood,
Colorado, Roberts and Company Publishers, 2005.

[2] S.W. Hell, “Far-field optical nanoscopy,” Science, vol. 316, no. 5828,
pp. 1153—1158, 2007.

[31 A.N.Kellerer, “Beating the diffraction limit in astronomy via
quantum cloning (corrigendum),” Astron. Astrophys., vol. 582, 2015,
https://doi.org/10.1051/0004-6361/201322665e.

[4] N.Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited
optical imaging with a silver superlens,” Science, vol. 308, no. 5721,
pp. 534—537, 2005.

[5] D.O.Melville and R.]. Blaikie, “Super-resolution imaging through
a planar silver layer,” Opt. Express, vol. 13, no. 6, pp. 2127—2134,
2005.

[6] M.A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical
sectioning by using structured light in a conventional microscope,”
Opt. Lett., vol. 22, no. 24, pp. 1905—1907, 1997.

[71 M. G. Gustafsson, “Surpassing the lateral resolution limit by a
factor of two using structured illumination microscopy,” J. Microsc.,
vol. 198, no. 2, pp. 82—87, 2000.

[8] E.Betzig, et al., “Imaging intracellular fluorescent proteins at nano-
meter resolution,” Science, vol. 313, no. 5793, pp. 1642 —1645, 2006.

[9] S.T.Hess,T.P.Girirajan, and M. D. Mason, “Ultra-high resolution
imaging by fluorescence photoactivation localization microscopy,”
Biophys. J., vol. 91, no. 11, pp. 4258 —4272, 2006.

M. Kleiner et al.: From digital to passive all-optical super-resolution = 3189

[10] M.]J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging
by stochastic optical reconstruction microscopy (storm),” Nat.
Methods, vol. 3, no. 10, pp. 793 —796, 2006.

[11] D.W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image
recording with resolution 4/20,” Appl. Phys. Lett., vol. 44, no. 7,
pp. 651—653,1984.

[12] F.M.Huang, Y. Chen,F.]. G. De Abajo, and N. I. Zheludev, “Optical
super-resolution through super-oscillations,” J. Opt. A: Pure Appl.
Opt.,vol. 9, no. 9, p. S285, 2007.

[13] E.T.Rogersand N. L. Zheludev, “Optical super-oscillations:
sub-wavelength light focusing and super-resolution imaging,” /.
Opt., vol. 15, no. 9, p. 094008, 2013.

[14] Y. Choi, et al., “Overcoming the diffraction limit using multiple light
scattering in a highly disordered medium,” Phys. Rev. Lett., vol. 107,
no. 2, p. 023902, 2011.

[15] H.Yilmaz, E. G.van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and
A. P. Mosk, “Speckle correlation resolution enhancement of
wide-field fluorescence imaging,” Optica, vol. 2, no. 5,
pp. 424—429, 2015.

[16] E.Edreiand G. Scarcelli, “Memory-effect based deconvolution
microscopy for super-resolution imaging through scattering
media,” Sci. Rep., vol. 6, no. 1, p. 33558, 2016.

[17] D.Wang, S. K. Sahoo, X. Zhu, G. Adamo, and C. Dang,
“Non-invasive super-resolution imaging through dynamic
scattering media,” Nat. Commun., vol. 12, no. 1, p. 3150, 2021.

[18] E.Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-storm:
super-resolution single-molecule microscopy by deep learning,”
Optica, vol. 5, no. 4, pp. 458 —464, 2018.

[19]1 Q.-Q.Shan, et al., “Galaxy image super-resolution reconstruction
using diffusion network,” Eng. Appl. Artif. Intell., vol. 142, p. 109836,
2025.

[20] C.Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 38, no. 2, pp. 295—307, 2015.

[21] J. Kim, ). K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1646 —1654.

[22] C. Ledig, et al., “Photo-realistic single image super-resolution
using a generative adversarial network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017,
pp. 4681—4690.

[23] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor,
“The 2018 pirm challenge on perceptual image super-resolution,”
in Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, 2018.

[24] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image
super-resolution using very deep residual channel attention
networks,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 286 —301.

[25] X.Wang, et al., “Esrgan: enhanced super-resolution generative
adversarial networks,” in Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, 2018.

[26] J. Liang, ). Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“Swinir: image restoration using swin transformer,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 1833—1844.

[27] W. H. Richardson, “Bayesian-based iterative method of image
restoration,” J. Opt. Soc. Am., vol. 62, no. 1, pp. 55—59, 1972.


https://docs.pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/rois-codh/kmnist
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://doi.org/10.1051/0004-6361/201322665e

3190 = M.Kleiner et al.: From digital to passive all-optical super-resolution

[28]

[29]

[30]

31]

(32]

[33]

[34]

[35]

[36]

371

[38]

[39]

L. B. Lucy, “An iterative technique for the rectification of observed
distributions,” Astron. J., vol. 79, no. 6, p. 745, 1974.

V. V. R. Bukka, M. Xu, M. Andrew, and A. Andreyev, “Assessment of
deep-learning-based resolution recovery algorithm relative to
imaging system resolution and feature size,” Methods Microsc.,
vol. 2, no. 2, pp. 183—201, 2025.

X. Xu, et al., “Scaling for edge inference of deep neural networks,”
Nat. Electron., vol. 1, no. 4, pp. 216—222, 2018.

G. Wetzstein, et al., “Inference in artificial intelligence with deep
optics and photonics,” Nature, vol. 588, no. 7836, pp. 39—47, 2020.
P. N. Michelini, Y. Lu, and X. Jiang, “edge-sr: super-resolution for
the masses,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2022, pp. 1078 —1087.

Y. Shen, et al., “Deep learning with coherent nanophotonic
circuits,” Nat. Photonics, vol. 11, no. 7, pp. 441—446, 2017.

X. Lin, et al., “All-optical machine learning using diffractive deep

neural networks,” Science, vol. 361, no. 6406, pp. 1004—1008, 2018.

B. ). Shastri, et al., “Photonics for artificial intelligence and
neuromorphic computing,” Nat. Photonics, vol. 15, no. 2,

pp. 102—114, 2021.

P. L. McMahon, “The physics of optical computing,” Nat. Rev. Phys.,
vol. 5, no. 12, pp. 717—734, 2023.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and
E. W. Van Stryland, “Nonlinear refraction and absorption:
mechanisms and magnitudes,” Adv. Opt. Photonics, vol. 2, no. 1,
pp. 60—200, 2010.

Y. LeCun, “The mnist database of handwritten digits,” 1998.
Available at: https://yann.lecun.com/exdb/mnist/.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[40] ). Jongejan, H. Rowley, T. Kawashima, J. Kim, and N. Fox-Gieg, “The

quick, draw!-ai experiment,” 2016. Available at: https://quickdraw
.withgoogle.com/data.

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

DE GRUYTER

Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600—612, 2004.

A. 1. Kuznetsov, et al., “Roadmap for optical metasurfaces,” ACS
Photonics, vol. 11, no. 3, pp. 816 —865, 2024.

C. Qian, et al., “Performing optical logic operations by a diffractive
neural network,” Light Sci. Appl., vol. 9, no. 1, 2020, https://doi.org/
10.1038/541377-020-0303-2.

C. Liu, et al., “A programmable diffractive deep neural network
based on a digital-coding metasurface array,” Nat. Electron., vol. 5,
no. 2, pp. 113—122, 2022.

T. Badloe, S. Lee, and J. Rho, “Computation at the speed of light:
metamaterials for all-optical calculations and neural networks,”
Adv. Photonics, vol. 4, no. 6, p. 064002, 2022.

M. Kleiner, L. Michaeli, and T. Michaeli, “Coherence awareness in
diffractive neural networks,” Laser Photonics Rev., vol. 19, no. 10,

p. 2401299, 2025.

D. Zhang, et al., “Broadband nonlinear modulation of incoherent
light using a transparent optoelectronic neuron array,” Nat.
Commun., vol. 15, no. 1, p. 2433, 2024.

D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” in International Conference on Learning
Representations, vol. 3, 2015.

A. Paszke, et al., “Pytorch: an imperative style, high-performance
deep learning library,” Adv. Neural Inf. Process. Syst., vol. 32,

2019.

M. Kleiner, L. Michaeli, and T. Michaeli, “Github reposetery — All
Optical Super Resolution,” 2025. Available at: https://github.com/
matankleiner/All-Optical-SR.

Supplementary Material: This article contains supplementary material
(https://doi.org/10.1515/nanoph-2025-0294).


https://yann.lecun.com/exdb/mnist/
https://quickdraw.withgoogle.com/data
https://quickdraw.withgoogle.com/data
https://doi.org/10.1038/s41377-020-0303-2
https://doi.org/10.1038/s41377-020-0303-2
https://github.com/matankleiner/All-Optical-SR
https://github.com/matankleiner/All-Optical-SR
https://doi.org/10.1515/nanoph-2025-0294

	1 Introduction
	2 Passive all-optical super-resolution neural network
	3 Fundamental tradeoffs
	3.1 Resolution versus energy preservation
	3.2 Sensitivity to global intensity

	4 Discussion
	5 Methods


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


