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Abstract: Edge states emerging at the boundaries of materi-
als with nontrivial topology are attractive for many practical
applications due to their remarkable robustness to disorder
and local boundary deformations, which cannot result in
scattering of the energy of the edge states impinging on
such defects into the bulk of material, as long as forbidden
topological gap remains open in its spectrum. The velocity
of such states traveling along the edge of the topological
insulator is typically determined by their Bloch momentum.
In contrast, here, using valley Hall edge states forming at
the domain wall between two honeycomb lattices with bro-
ken inversion symmetry, we show that by imposing Airy
envelope on them one can construct edge states which,
on the one hand, exhibit self-acceleration along the bound-
ary of the insulator despite their fixed Bloch momentum
and, on the other hand, do not diffract along the boundary
despite the presence oflocalized features in their shapes. We
construct both linear and nonlinear self-accelerating edge
states, and show that nonlinearity considerably affects their
envelopes. Such self-accelerating edge states exhibit self-
healing properties typical for nondiffracting beams. Self-
accelerating valley Hall edge states can circumvent sharp
corners, provided the oscillating tail of the self-accelerating
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topological state is properly apodized by using an exponen-
tial function. Our findings open new prospects for control
of propagation dynamics of edge excitations in topological
insulators and allow to study rich phenomena that may
occur upon interactions of nonlinear envelope topological
states.
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1 Introduction

Development of new approaches for control of propaga-
tion paths, diffraction, and shape transformations of light
beams is one of the most important goals of modern pho-
tonics. Localized features in light beams propagating in free
space can persist over large distances only if such beams
are nondiffracting and carry infinite power. In addition to
rich demonstrated classes of nondiffracting beams prop-
agating along straight trajectories [1] that can be associ-
ated with different coordinate systems, where it is con-
venient to construct them, particular attention is paid to
a broad class of self-accelerating beams [2] that possess
all typical features of nondiffracting states, such as the
ability for self-healing, and at the same time propagate
along the curved trajectory [3]-[13]. Even though rigor-
ous self-accelerating and non-diffracting beams in the bulk
of periodic medium represented by “static” photonic lat-
tices or arrays of straight waveguides [14] may not exist,
it was possible to generate in such materials a class of
similar self-accelerating Wannier—Stark beams [15], [16].
Various other approximations to accelerating beams have
been reported in static photonic lattices as well [14]-[21],
see also recent review [22]. It should be stressed that
all previous results on self-accelerating beams in periodic
medium were reported exclusively in topologically trivial
structures.

However, when a periodic medium is characterized by
the nontrivial topology of its bands, it may support a differ-
ent class of diffraction-free solutions that can be localized
at the boundary of such medium. Such edge states are pro-
tected by the nontrivial band topology and are localized in
the direction perpendicular to the edge, while remaining
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extended (periodic) along the edge of the material. Due to
their topological protection, the edge states are immune
to disorder and imperfections in the lattice, as long as
disorder is not strong enough to close the topological gap.
The concept of topological insulators originates from solid
state physics [23], [24], and it has widely extended also
in photonics [25]-[33]. Topological robustness of the edge
states make them highly promising for the development
of topological lasers [34]-[38], construction of topological
solitons localized due to self-action [39]-[45], and design
of advanced photonic structures for protected transmission
of power and information [46]-[49]. The group velocity of
the edge states, even when they are unidirectional [50], [51]
usually does not change upon propagation and is typically
determined by the Bloch momentum of the state along the
edge. It is thus generally believed that such states cannot
accelerate or decelerate in the course of propagation along
the edge. Moreover, in the absence of nonlinearities, topo-
logical edge states with localized envelopes exhibit diffrac-
tion along the edge.

Therefore, the natural fundamental question arises: Is
it possible to construct topological edge states that would
exhibit acceleration along the edge (without introducing
any gradients into the underlying lattice structure [52])
and can such states preserve localized features nested in
them that would not undergo dispersion in the course
of propagation? The answer to this question is provided
in the present work, where we join the phenomenol-
ogy of self-accelerating beams and topological edge states
and show that the boundaries of topologically nontriv-
ial material can support both linear and nonlinear self-
accelerating topological states. Our findings are reported
for valley Hall edge states forming at the domain wall
in the inversion-symmetry-broken honeycomb structure.
The self-accelerating property of the constructed states
allows for the adjustment of their velocity and for the
reversal of their direction of motion. Self-accelerating topo-
logical edge states can also recover their missing parts
— a self-healing property inherited from nondiffracting
beams. We show that nonlinearity substantially affects
the envelope of such self-accelerating beams. Apodized
finite-power self-accelerating edge states can circumvent
sharp corners of the domain wall without backscatter-
ing. Self-accelerating beams reported here are principally
new two-dimensional envelope states of topological origin
constructed on edge states belonging to topological gap
that dictates their unusual internal phase and intensity
distributions. They sharply contrast with one-dimensional
Airy beams reported in trivial uniform or plasmonic
media.
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2 Theoretical model

The propagation dynamics of the light beam in the material
with shallow transverse refractive index modulation defin-
ing topological waveguide array and cubic focusing nonlin-
earity can be described by the dimensionless Schrodinger
equation for dimensionless field amplitude y:

.0y

o _ 1, _ 2
b = ZAW R,y — |y |y, (4))

where A = 0% + 0; is the transverse Laplacian and (x, y)
and z are the normalized transverse coordinates and prop-
agation distance, respectively. The function

ROY) = 3 ppge l0ma 40-r 1

m,n

describes the refractive index distribution in the honey-
comb waveguide array with waveguides having depths p,, ,,
identical widths d, and located in positions with coordi-
nates (X, n» Y n)> S€€ schematic illustration in Figure 1. We
assume that honeycomb array (frequently named “photonic
graphene”) consists of two sublattices that are detuned, i.e.
Pmn = P % 6, with typical value of detuning 6 = 0.5. We

., = —0.300K,

ky /Ky ky /K,

1.3
- 0.5 -0.5 0 0.5

.5 0
Figure 1: Lattice and band structure. (a) Inversion-symmetry-broken
honeycomb waveguide array with the domain wall indicated by the
dashed rectangle. The depth of the red and blue wavequides is p + 6
and p — 6, respectively. (b) Band structure of the array from panel (a).
The blue and gray lines represent propagation constants of the valley
Hall edge state and of the bulk states, respectively. (c) First-order

(b’ solid line) and second-order (b”, dashed line) derivatives of the
propagation constant b of the valley Hall edge state. (d) Field modulus
distribution |y of the valley Hall edge state at k, = —0.3K,
corresponding to the blue dot in panel (b). Panels (a) and (d) correspond
to —20 < x <20 and —3.5 < y < 3.5 windows.
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set here the following parameter values: Lattice constant
a = 1.6, waveguide width d = 0.5, and depth p = 8. In the
arrays fabricated using direct fs-laser writing in fused sil-
ica [33], [51], [53]-[60] the transverse coordinates (x, y) can
be normalized to the characteristic transverse scale r, =
10 pm, the propagation distance z is normalized to krg =
1.1 mm, with the wavenumber k = 2n,z / 4, where the back-
ground refractive index is n, = 1.45, and the wavelength
in vacuum A = 800 nm. The waveguide depth p is related
to the refractive index change An through p = k’riAn/n,,
and p = 8 will result in An ~ 8.8 x 1074

As mentioned above, if one sets the depth of one sublat-
tice to p — &, while that of the other sublattice to p + 6, the
inversion symmetry of the array will be broken. Two such
arrays with the opposite signs of detuning can be joined to
create a domain wall. In Figure 1(a) we present a typical
example of such a domain wall highlighted by the dashed
rectangle. Note that the domain wall is periodic in y with
the period Y = 3'/2a. It has already been demonstrated that
such domain walls can support valley Hall topological edge
states [43], [44], [61], [62], since the difference between the
two valley Chern numbers of the same valley across the
domain wall is 1 [63]-[65].

When the array is limited along the x axis, the general
solution of Eq. (1) can be written as

v = ulx, y) exp(ik,y + ibz),

where b is the propagation constant of the edge state and
k, is its Bloch momentum. Substituting this solution into
Eq. (1), one obtains the equation:

bu = ;(aa; aa—;z +2iky% _ k§>u +Ru+ ulu, @)
which in the absence of nonlinearity (i.e. when the term
|u|?u is omitted) can be numerically solved to obtain the
relation between b and k, in the first Brillouin zone
[-K,/2,K, /2] with K, = 27z /Y (see the details of the numer-
ical methods in the Appendix A). In this manner, one
obtains the linear band structure of the array displayed
in Figure 1(b). One finds that for this type of the domain
wall, the valley Hall edge state that is shown with blue line
emerges from the lower bulk band (shown with gray lines)
and disappears in the same band (because the system pos-
sesses time-reversal symmetry). The first-order derivative
b’ = db/dk, and the second-order derivative b = d?b/ dk§
of propagation constant determine the group velocity and
dispersion of the edge state, respectively, and are shown in
Figure 1(c) by the solid and dashed curves. The valley Hall
edge state moves in the negative y direction when k, <0
and in the positive y direction when k, > 0. Typical valley
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Hall edge state at ky = —0.3Ky, shown in Figure 1(d) features
oscillating and decaying tails at both sides of the interface
reflecting its nontrivial topological nature. By changing the
sign of the detuning 6 one can realize the situation, when
the domain wall contains only deep (red) waveguides. In
this case, the valley Hall edge state will emerge from the
upper bulk band and disappear in the same band, while cor-
responding derivatives b’ and b” will be reversed (see [44],
[64]) in comparison with the values shown in Figure 1(c). We
would like to note that the domain wall considered here can
support bright valley Hall edge solitons, since for the sign of
detuning considered here the derivative b” < 0 for edge
state on which such solitons can be constructed [43]. The
sign of detuning 6 does not affect the conclusions reported
below even though it may change the sign of b”, in which
case one can construct dark valley Hall edge solitons [44].
Further we consider the 6 = 0.5 case.

As one can see from Figure 1, both group velocity
b’ and dispersion b are the functions of Bloch momen-
tum ky and, therefore, if the momentum of the uncon-
strained (along the y-axis) linear edge state does not change
in the course of evolution, its group velocity does not
change as well. Nevertheless, our aim is to show that
by imposing the proper envelope on the edge state with
selected k,, (importantly, such envelope should not be nar-
row) it is possible to realize the situation, when the fea-
tures of this envelope would exhibit acceleration upon
propagation.

3 Self-accelerating envelope
for the valley Hall edge states

The valley Hall edge state displayed in Figure 1(d) is peri-
odic in y, but one can superimpose a broad (in com-
parison with array period Y) envelope on it to construct
on its basis various topological objects. Among them are
localized topological edge solitons bifurcating under the
action of nonlinearity from the extended edge states, whose
theory for continuous media was developed in [42], [44],
[66]-[68]. Here we use a similar approach, but now we
do not impose the requirement of localization on corre-
sponding envelope. Following this method, we introduce the
ansatz

v = A(n, 2)u(x, y) exp(ik,y + ibz), 3)

plug it into Eq. (1), and use the multiscale approach [42] to
obtain the following nonlinear Schrodinger equation for the
envelope A:

04 _ 1

1—

0*A
- /! Y 2
5 =2 sgn(b )6;72 YIAI°A, 4
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where

+o00 Y
= / dx / dylul*
—00 0

is the transverse coordinate running with group veloc-
ity —b" of the edge state, and effective nonlinear coeffi-
cient determined by the shape of the edge state, respec-
tively. Here we use the standard normalization condition
f_+o§°dx /OYdylul2 = 1for linear edge state.

The Eq. (4) possesses self-accelerating self-trapped solu-
tions [69] exhibiting parabolic trajectories that represent
nonlinear generalizations of the Airy beams. To obtain
them, one can move into accelerating coordinate frame # —
n — uz? that yields the equation:

l.&A JA 1

9 = puz%” +

*A
1 " _ 2
32 on 5 senb )—an2 XIAIPA, )

where y is a free parameter determining the parabolic tra-
jectory. Assuming that the solution of this equation can be
written in the form:

Aln,z) = win) exp[i(bnlz +2unz + §u223>], (6)

Vx
one arrives at the ordinary differential equation for beam
profile w(x):

im0 w 2
—sgn(b )a—’72 +2lwl*w — 4punw = 2byw =0.  (7)

This equation already does not contain parameters y,
b',and b" depending on the momentum k, of the valley Hall
edge state and can therefore be used to obtain envelopes
for any k,, value. Notice that the propagation constant by,
introduced in Eq. (6) by analogy with propagation constant
of self-sustained states propagating along the straight tra-
jectories, can now be eliminated by shifting the solution
w(n) by by /@u) in 7. Thus, it makes sense to compare
phase accumulation rate arising due to nonlinearity only for
beams with global intensity maximum in the same trans-
verse location #. Such nonlinear phase accumulation rate
can be determined at the initial stages of propagation of
the self-accelerating edge state [where cubic contribution ~
(2/3) 4223 to phase arising due to propagation along curved
path is still small for u < 1] using the expression

_, arg(A(n,z), A(n,z + Az))
- Az

by —2un, 8)

where Az should be small. We therefore further calculate
by, for beams with global intensity maximum located at # =
0. Due to this requirement, the phase shift calculated using
Eq. (8), may approach some small nonzero value b, when
| Alpax = 0, so it is more convenient to plot the quantity
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f = b, — b, as a propagation constant or “energy shift” of
self-accelerating nonlinear state. The so defined quantity is
independent of the #-location of global maximum of the
beam.

4 Self-accelerating valley Hall edge
states

4.1 Linear case

In the following, we construct both linear and nonlinear
self-accelerating valley Hall edge states by superimposing
the envelope obtained from Eqs. (6) and (7) onto exact valley
Hall edge states and studying their propagation dynamics. If
the nonlinear term in Eq. (7) is omitted, one can obtain the
following explicit solution in the form of linear Airy beam:

w(n) = Ail(4)"?n]. ©

Here, we used the variable # instead of # + by, /(2u),
since nonlinearity-induced phase shift is irrelevant in this
case. We superimpose such Airy envelope onto the valley
Hall edge state at z = 0, to obtain the initial field distribution
v (x,y) = Au(x, y) exp(ik,y) and model its propagation
dynamics in real waveguide array using linear version of
Eq. (D). The so-constructed input represents hybrid state that
is localized across the domain wall due to its topological
nature, and at the same time having localized features along
the domain wall due to oscillations present in the shape of
Airy function (the power of the beam still remains infinite
because oscillating tail does not decay exponentially). We
adopt here sufficiently small value of parameter ;4 = 0.002
to ensure that the main lobe of the so-constructed state
is sufficiently wide, so that the envelope equation (4) and
multiscale approach are applicable. Because the frequency
of oscillations on the tail of Airy beam gradually increases,
the validity of this approximation may sooner or later be
violated, but usually this happens very far from the global
beam maximum (in the region, where the amplitude of the
beam becomes very small) and arising distortions do not
notably affect beam evolution.

In Figure 2(a) we illustrate propagation dynamics of
the self-accelerating beam constructed on the valley Hall
edge state with k, = 0. The group velocity of carrier edge
state v = —b’ is zero for this momentum value, so such
edge state with usual localized Gaussian envelope would not
move and would exhibit diffraction (see the Appendix B).
Nevertheless, the presence of the asymmetric Airy envelope
immediately leads to self-acceleration of the beam along
the domain wall of topological insulator with z (akin to
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Figure 2: Self-accelerating topological edge states in linear regime.
(a) Cross-section |y (x = 0, y)| illustrating propagation dynamics of
the valley Hall edge state with k, = 0 and superimposed Airy envelope
with y = 0.002. The parabolic dashed line is the theoretically predicted
trajectory of the self-accelerating valley Hall edge state. The dynamics
is shown within the window 0 < z < 200 and —80 < y < 80.

(b, ) Same as in (a), but for the valley Hall edge states with Bloch
momenta k, = —0.3K, and k, = 0.3K, respectively. (d) Self-healing
of the self-accelerating valley Hall edge state from (a) with eliminated
second lobe. (e) Field modulus distributions |y (x, y)| at distances
corresponding to the vertical dashed lines in (a) that clearly illustrate
self-acceleration of the beam along the domain wall. Panels (e) are
shown within the window —20 < x < 20 and —80 < y < 80. (f) Field
modulus distributions at different distances z corresponding to

the vertical dashed lines in (d).

self-acceleration exhibited by usual Airy beams in free space
[3]). This illustrates that even though the momentum of
the carrier edge state is well defined at all propagation
distances, thereby determining the velocity of the carrier
state, its envelope can still shift along the domain wall with
different and varying with z velocity and namely the latter
velocity determines the shift of localized features in beam
profile. The reason is that when superimposing an Airy
envelope (with its characteristic asymmetric momentum
spectrum) onto the original valley edge state, the momen-
tum distribution of the resulting state reflects a convolu-
tion of both components. Thus, even though the original
edge state has zero group velocity, the Airy envelope would
shift the momentum components of the modulated valley
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Hall edge state predominantly to k,, > 0. The dashed curve
superimposed on Figure 2(a) corresponds to the expected
from the envelope equation y = |b”'|//2 22 trajectory of self-
accelerating beam and it is indeed close to the actual trajec-
tory obtained by simulating beam propagation in the origi-
nal Eq. (1) (the deviation is expected to come from reshaping
of the envelope that is unavoidable due to higher-order
derivatives that are neglected in the envelope equation).
The self-accelerating valley Hall edge state maintains its
profile over sufficiently large propagation distances, with
the width of the main and subsequent lobes and structure
of the beam remaining nearly unchanged (i.e., illustrating
non-diffracting propagation), as it is evident from distri-
butions in the (x, y) plane shown at different distances in
Figure 2(e), which correspond to the vertical dashed lines in
Figure 2(a). The progressively increasing shift of the beam
(acceleration) is also obvious from these plots. One can also
see that radiation into the bulk is absent due to topological
nature of the state.

Since the imposed Airy envelope forces valley Hall
edge state to accelerate in the positive y direction, one may
assume that if the carrier state initially moves in the neg-
ative direction of the y axis, its propagation direction can
be reversed with z due to the impact of the envelope, while
for the state initially moving in the positive direction of
the y axis, the acceleration will further increase the initial
velocity. In Figure 2(b) we show propagation dynamics of
the self-accelerating valley Hall edge state with momentum
k, = —0.3K,, corresponding to negative group velocity -
of the carrier state. This state initially indeed moves in the
negative direction of the y-axis, but then changes its propa-
gation direction when acceleration due to the imposed enve-
lope changes the sign of velocity. Remarkably, this state still
evolves practically without changing its envelope. This phe-
nomenon, demonstrated previously for Airy beams in free
space [70], [71], has never been reported in topological insu-
lators, where it is commonly believed that in the absence
of defects or gradients the edge states cannot change their
propagation direction. If the carrier edge state with Bloch
momentum k, = +0.3K, corresponding to positive group
velocity —b’ is used for the construction of self-accelerating
state, then one observes progressively increasing with dis-
tance z displacement of features of Airy envelope demon-
strated in Figure 2(c). We note that the peak amplitude of the
beam in Figure 2(a) and (c) slightly reduces during propaga-
tion, while in Figure 2(b) it changes only weakly, at least at
the propagation distance shown. This is the consequence of
slight reshaping of the beam upon its propagation along the
domain wall (because the imposed envelope does not take
into account the presence of higher-order derivatives that
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were neglected in the envelope equation, see the explana-
tion above). Another reason is that in simulations we use
very large, but finite y-windows, so in contrast to ideal Airy
beam thathaslong slowly decaying oscillating tail, our input
beam is truncated by the window far away from the main
lobe and this may also lead to slow power transfer from
the main lobe into tails due to self-healing tendency. This
transfer is just delayed in Figure 2(b) leading to practical
invariance of amplitude with z. Note that the reversal of the
propagation direction in Figure 2(b) and enhanced acceler-
ation in Figure 2(c) correspond to distinct modifications of
the momentum distributions around their original k,, values
due to superposition of the envelopes. The theoretical pre-
diction y = —b'z + |b”’|'/2uz* for beam propagation trajec-
tory shown with dashed lines in Figure 2(b) and (c), where
b’ ~ +0.5029, respectively, is in reasonable agreement with
actual trajectory obtained on the basis of simulations of
Eq. (.

One of the most distinguishing features of non-
diffracting beams, including accelerating Airy beams, is
their ability to self-heal from localized introduced perturba-
tions [5]. This property is a consequence of non-diffracting
nature of corresponding beams and infinite power that they
carry under ideal conditions. Physically, when the localized
perturbation is imposed on the beam, it rapidly diffracts in
the course of evolution, while the beam remains unaffected,
so that after sufficiently long distance z one observes visu-
ally the recovery of the ideal heam shape. We confirmed that
this property also holds for self-accelerating valley Hall edge
states. The state in Figure 2(d) with removed second lobe
indeed self-heals upon propagation, while the trajectory of
its motion remains practically unaffected by the introduced
disturbance [compare Figure 2(d) with (a)]. The field modu-
lus distributions at different distances illustrating recovery
of the second lobe that was removed at z = 0 are presented
in Figure 2(f). The comparison of distributions in Figure 2(e)
and (f) also demonstrates that the internal structure of
the beam is recovered after sufficiently large propagation
distance.

It should be stressed that the envelope theoryleading to
Eq. (4) requires slow variation of the envelope of the beam
A on one period Y of the domain wall, while increasing
u reduces the scale of the characteristic features in Airy
beam envelope and simultaneously leads to faster bend-
ing of the beam. Thus, the validity of the envelope theory
requires small values of y and increase of this parame-
ter would lead to more pronounced deviations of actual
propagation trajectory from parabolic one (and more pro-
nounced reshaping, especially on the oscillating tails of the
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beam). A similar conclusion was obtained for approxima-
tions of the non-diffracting beams in trivial lattices [15], [16].
Nevertheless, we were able to see self-acceleration of the
edge states even for 10 times larger values of y ~ 0.02 indi-
cating on robustness of the phenomenon. In addition, we
found that self-accelerating properties persist, at least at
the initial stages of propagation, even if the beam artifi-
cially apodized with a Gaussian envelope (see the section
on topological protection). Thus we, for the first time to our
knowledge, presented self-accelerating, non-diffracting and
self-healing topological states.

It is worth noting that the trajectory of the acceler-
ating waves can be not only parabolic, see for instance
an example proposed in previous literature [72], [73]. Such
envelopes can be also used to produce self-accelerating val-
ley Hall edge states with different from parabolic trajecto-
ries. We however, would like to leave the investigation of
such envelopes for the future studies and focus more on the
simplest Airy envelope that leads to acceleration along the
parabolic trajectory.

4.2 Nonlinear case

We now take into account nonlinearity of the material and
obtain nonlinear generalizations of self-accelerating valley
Hall edge states. To calculate the envelope, we use Eq. (7)
with cubic nonlinear term and obtain its solutions using
shooting method, assuming that at sufficiently large posi-
tive values of #, where the envelope function w(#) decays
exponentially, the nonlinear term can be omitted and the
asymptotic values of the function and its first derivative are
given by w(n) = cAi(n) and w'(n) = cAi’ (), where o is the
free parameter that can be tuned to adjust the position of
the main lobe of the beam (that we require to be located
at n = 0). It is known from theory of topological edge soli-
tons [27], [74] that the nonlinearity shifts the propagation
constant of the nonlinear edge state from corresponding
linear eigenvalue, so that the nonlinear state may enter into
the band and couple with the bulk states, thereby losing
its localization. Therefore, when we calculate the family of
nonlinear Airy-like envelopes we track the “energy shift”
p = b, — b, [see Eq. (8)] as a function of peak amplitude
of the edge state to compare it with the width of the gap
to avoid coupling of such nonlinear self-accelerating edge
states with bulk modes.

In Figure 3(a), we display the “energy shift” (blue curve)
as well as the full width at half maximum (FWHM) of
the first lobe in the intensity distribution of the beam
(red curve) as functions of the peak amplitude |A| . =
|t0| max/ 2% for nonlinear self-accelerating solutions with
p =0.002 and k, = 0 (the curve for k, = +0.3K, is quite
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Figure 3: Nonlinear self-accelerating envelopes. (a) Blue curve

(ref. the left y axis): peak amplitude of the nonlinear self-accelerating
beam versus energy shift f = b,, — b,. Red curve (ref. the right y axis):
FWHM of the main lobe in the intensity distribution of the nonlinear
self-accelerating solution versus its peak amplitude with k, = 0. The
“energy shift” corresponding to the dots labeled 1-4 is given by 0.006,
0.038, 0.138, and 0.516, respectively. (b) Profiles of the self-accelerating
solutions for different peak amplitudes |w|,,,,, corresponding to the dots
in (a). For all cases: y = 0.002.

similar). One finds that increasing peak amplitude leads to
narrowing of all lobes in the profile of the beam and growing
“energy shift”. To illustrate the transformation of the enve-
lope, we show in Figure 3(b) the envelopes corresponding
to the dots in Figure 3(a). Note that with increasing peak
amplitude, the widths of different lobes gradually equili-
brate. Because the difference between the top edge of the
gap and the propagation constant of the edge state depends
on momentum ky, one should compare this difference with
nonlinear “energy shift” for different k, values to ensure
that nonlinear self-accelerating edge state will be located
in the gap. The interval between the eigenvalue of linear
valley Hall edge state and top edge of the gap is about
0.31 for ky = 03K, and about 0.21 for ky = 0. Therefore,
the envelopes corresponding to the dots 1-3 in Figure 3(a)
correspond to nonlinear edge states with propagation con-
stants in the topological gap, while the state with envelope
corresponding to the dot 4 is in the bulk band.

To test robustness of propagation in nonlinear case
we prepared the nonlinear self-accelerating valley Hall
edge state with envelope corresponding to peak ampli-
tude [w0|pay = 025 (0F | Alpax = |Wlnax/x/%) and super-
imposed calculated envelope on the linear carrier edge
state. In Figure 4(a) we illustrate the propagation dynam-
ics of such state at k, =0 in the frames of the original
Eq. (1. The field modulus distributions at different selected
propagation distances are shown in Figure 4(b). The results
clearly demonstrate self-acceleration of the state in the
course of propagation. The propagation dynamics of non-
linear self-accelerating states with k, = +0.3K, are shown
in Figure 4(c), (d), (e) and (f ), respectively. The state cor-
responding to k, = —0.3K, shows somewhat more stable
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Figure 4: Self-accelerating topological edge states in nonlinear regime.
(a) Evolution dynamics of the nonlinear self-accelerating valley Hall edge
state at k, = 0, for y ~ 0.1592, b” ~ —0.7763, u = 0.002, and

| Al max = 0.63. (b) Field modulus distributions |y (x, y)| at selected
propagation distances. (c, d) Same as in (a, b), but for ky =-0.3K, at

¥ ~0.1663, |b'| ~ 0.5029, b” ~ —0.6584, and | A|,,,, = 0.61. (e, f) Same
as (c, d) but for and ky = +0.3Ky. Dashed lines in (a, , €) stand for

the predicted accelerating trajectories. Panels in (a, ¢, ) are shown in
the window 0 < z < 200, —80 < y < 80. Panels in (b, d, f) are shown in
the window —20 < x < 20 and —80 < y < 80. For all cases: y = 0.002.

evolution practically without modifications of the envelope
in comparison with k, = +0.3K, beam. One can conclude
that self-accelerating edge states persist even in the pres-
ence of nonlinearity of the medium.

Finally, we note that the nonlinear self-accelerating
states exist not only in the focusing medium, but also in
defocusing one, by analogy with topological solitons [75].
The example of the envelope of the nonlinear edge state
in defocusing medium and its propagation dynamics are
presented in the Appendix C. Along the same lines, non-
linear self-accelerating valley Hall edge states can also be
constructed in media with saturable nonlinearity [12], [13]
typical for photorefractive crystals [63], i.e. they are rather
universal.

4.3 Topological protection

The most representative manifestation of the topologi-
cal protection of the edge states in valley Hall systems,
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Figure 5: Topological protection of the self-accelerating topological edge state. (a) Composite photonic graphene lattice with a Z-path domain wall
indicated by the blue color. The arrows indicate the propagation direction of the input beam. (b) Field modulus distributions of a finite-energy
self-accelerating valley Hall edge state at different distances illustrating passage through the Z-shaped region. The insets show the spatial spectrum of
the beam in the Fourier domain with hexagons representing Brillouin zone. All panels are shown within the window —20 < x < 20, =100 < y < 100.
The insets are shown within the window —5 <k, , <5.

including valley Hall edge solitons [43], [44], is that they can
circumvent sharp corners without backward reflection or
radiation into the bulk. To prove that such a protection takes
place also for self-accelerating edge states, we designed
here a Z-shaped domain wall depicted in Figure 5(a), that
allows to demonstrate such a behavior. Considering that
the self-accelerating valley Hall edge state at k, = 0.3K,
always moves in the positive direction of the y-axis [see
Figure 4(e)], we select namely such state for illustration of
such a protection.

As is well known, in valley Hall systems only the states
populating valleys of the same type are topologically pro-
tected [in the first Brillouin zone, the K valleys are located
at (+1/3"2,1/3)K, and (0,-2/3)K,, while the K’ valleys
are located at (+1/32, —1/3)K, and (0,2/3)K,]. To clearly
capture the passage of the self-accelerating beam through
Z-shaped region at the domain wall and to be sure that back-
ward reflection is absent, we superimposed the exponential
function exp(0.04y) on the self-accelerating valley Hall edge
state. In Figure 5(b), we show the initial field modulus dis-
tribution of such apodized self-accelerating valley Hall edge
state, while the inset in this figure shows spatial spectrum
of the beam confirming that only K valleys were excited
and that the spectrum is well-localized around correspond-
ing valleys. When the beam reaches z =50, it circum-
vents the first sharp corner, while at propagation distance
z =100 it circumvents the second corner. At z = 200, the
largest part of the beam has passed through the Z-shaped
region. Importantly, the beam keeps propagating along the

domain wall, while maintaining its Airy-like envelope (with
clearly resolvable oscillations), even though correspond-
ing lobes gradually broaden (we attribute this slow shape
transformation to the apodization of the input beam). The
insets with spatial spectrum demonstrate the absence of the
inter-valley scattering, since the beam occupies only K val-
leys at all propagation distances. The absence of backscat-
tering is also obvious from spatial field modulus distribu-
tions. Upon further propagation such beam will eventually
evolve into Gaussian-like distribution due to its finite input
power (similar transformation in trivial medium is illus-
trated in [3]). At the same time, our investigation demon-
strates that too long tail affects the self-accelerating edge
state in the inverted space — the longer is the tail of the
edge state, the wider is the initial spectrum (it exhibits a
stripe-like distribution that may extend away from the K
valleys due to rapid oscillations on the tail of the beam far
away from its main lobe). Such an expansion of spectrum
may eventually lead to excitation of the K’ valleys.

5 Conclusion and outlook

In this work, both linear and nonlinear self-accelerating
topological valley Hall edge states are predicted and ana-
lyzed. If the characteristic features of the envelope that
is superimposed onto the topological edge state are suffi-
ciently broad, the self-accelerating topological edge states
can be constructed that preserve their shapes in the course
of propagation, just like nondiffracting beams, but also
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accelerate along the domain wall. The self-accelerating
topological edge states may reverse the direction of their
motion during propagation. In addition to the topological
protection, the self-accelerating topological edge states can
also self-heal themselves if they are partially obstructed.
Our study thereby connects the two previously indepen-
dent fields — the self-accelerating beams and the topological
edge states. It may inspire new ideas and realizations in
cold atoms, acoustics, nonlinear physics, quantum optics,
and micro/nano materials. Self-accelerating beams reported
here can be potentially realized in waveguide arrays fab-
ricated by the fs direct laser writing in dielectrics or in
exciton—polariton systems [76], [77].

The study performed here highlights the power of
the envelope physics applied to topological edge states.
Namely, constructing different types of topological objects
on the edge states allows to study nontrivial transforma-
tions/evolution dynamics of their envelopes and their inter-
actions in topological materials. This concept can be inter-
esting not only from the point of view of nonlinear topo-
logical materials [27], [74], but also for non-Hermitian [29],
[78], [79], quantum [30], [80], and programmable topological
photonics [81]. Our results on self-accelerating topological
states can be extended to other types of the beams with
different envelopes [17], [82] and potentially to non-paraxial
settings [83]-[87] since valley Hall edge states have been
well addressed in such settings [88], [89].
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Appendix A: Numerical methods

A1 The plane-wave expansion method

By inserting the ansatz y = u(x,y) exp(ik,y + ibz) into
Eq. (1), one obtains Eq. (2). We use the plane-wave expansion
method to solve Eq. (2) by neglecting the nonlinear term
(that transforms this equation into linear eigenvalue
problem). To solve it we expand u and R into the Fourier
series in a supercell with the sufficient number of harmon-
ics:

u= Zcm,n exp (KX + iK,y),

mn

R = Z vs exp(iKx + iK.y), (10)
Ls

where ¢,,, and v;; are the Fourier coefficients, K,,; =
2(m,Dr /Dy, K, = 2n, s)n/Dy, D, are the sizes of the
supercell along the x, y axes, and (m, n, [, s) are the integers.
Due to periodicity of the system in the y direction, the D,
size of the supercell can be selected equal to the Y period.
Plugging the above series into the linear version of Eq. (2),
after simple algebraic transformations one obtains a series
of linear equations with different (m, n, [, s):

1
-5 (K2 + (K, + k)| + Z ULsCmotnes = DCpp. (D)
Ls

Rewriting Eq. (11) in matrix format and diagonalizing
the matrix, one obtains the eigenvalues b for a given k|, (i.e.
the spectrum) and the corresponding eigenvectors c,, , that
allow to construct the eigenmodes u of the array according
to Eq. (10).

A.2 The beam propagation method

To model the propagation of the beam we rewrite the Eq. (1)
into

W _ ry+ Ny 12)

0z
with £ = (i/2)(0% + 0)2)) and N = i(R + |w|?) being linear
diffraction and nonlinear operators, respectively. For small
propagation steps, one can treat/apply linear and nonlin-
ear operators successively at each propagation step. For
instance, applying the Fourier transform to £y one obtains

i N
F{Ly} = —£<a))2( +a)§>u/,

where  is the Fourier transform of y, w, , are the fre-
quencies. This allows to obtain complex field amplitude in
Fourier domain on the next step dz as

W(z+dz) =exp [—; (a))z( + wi)dz] W(2). (13)
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Figure A1: Topological edge state superimposed with a Gaussian
envelope. (a) Propagation dynamics of the valley Hall edge state with
superimposed Gaussian envelope at x = 0. The dashed line represents
the trajectory of the beam center. (b) Field modulus distributions in the
(x, y) plane at different distances z illustrating diffraction of such beam.

By taking inverse Fourier transform and applying the
nonlinear operator one eventually obtains

w(z +dz) = exp(Ndz)F{y(z + d2)}, (14)

where 71 is the inverse Fourier transform operator.

Appendix B: Edge state with
a Gaussian envelope

To illustrate that the group velocity of the edge state with
simple Gaussian envelope is determined by the —b’ (that
implies zero group velocity at k, = 0) we demonstrate here
the dynamics for the edge state with sufficiently broad
envelope exp(—y?/25). The width of Gaussian envelope is
selected here such as to be equal to the width of the first
lobe of the Airy envelope used in Figure 2.

As one can see from the evolution dynamics in the x =
0 cross-section, the beam shown in Figure Al(a) does not
exhibit acceleration in the course of evolution. Its integral

center

y= J ylw *dxdy

Iy lPdxdy °

indicated by the horizontal dashed line in Figure Al(a),
remains y = 0 during propagation, in clear contrast with
evolution of self-accelerating beam in Figure 2(a). The field
modulus distributions in the (x, y) plane shown at different
distances z in Figure Al(b) also reveal diffraction of the
beam without the shift of its integral center.
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Figure A2: A self-accelerating topological edge state in defocusing
nonlinear medium. (a) A nonlinear self-accelerating envelope. (b) Cross-
section of the nonlinear self-accelerating valley Hall edge state during
propagation in a self-defocusing nonlinear Kerr medium. The dashed
curve is the predicted parabolic trajectory that is same as that

in Figure 4(d). The panel is shown in —80 < y < 80 and 0 < z < 200.

Appendix C: Self-accelerating valley
Hall edge state in self-defocusing
Kerr medium

The nonlinear self-accelerating valley Hall edge states also
exist in defocusing nonlinear Kerr medium. The envelope
for such beams can be obtained by solving the ordinary
differential equation

0*w

o (15)

—2lw|*w - 4/4<n + bnl)w =0,
2p
which can be obtained from the governing equation with

defocusing Kerr nonlinearity

i =
0z
using the same procedure, as described in the main text.

In Figure A2(a), we display an example of the envelope
for such self-accelerating beam corresponding to | A| .5 ~
0.1. By superimposing this envelope on the linear valley
Hall edge state, the nonlinear self-accelerating valley Hall
edge state is constructed. In Figure A2(b), we show the cross-
section of the nonlinear self-accelerating valley Hall edge
state with k, = —0.3K, during its propagation in defocusing
medium. Just as in the case illustrated in Figure 4(d) in the
main text, one observes that the beam changes its propaga-
tion direction upon evolution, while maintaining its internal
structure.

Ay —ROCYW + WPy, (16)
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