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Abstract: Edge states emerging at the boundaries of materi-

alswithnontrivial topology are attractive formanypractical

applications due to their remarkable robustness to disorder

and local boundary deformations, which cannot result in

scattering of the energy of the edge states impinging on

such defects into the bulk of material, as long as forbidden

topological gap remains open in its spectrum. The velocity

of such states traveling along the edge of the topological

insulator is typically determined by their Blochmomentum.

In contrast, here, using valley Hall edge states forming at

the domain wall between two honeycomb lattices with bro-

ken inversion symmetry, we show that by imposing Airy

envelope on them one can construct edge states which,

on the one hand, exhibit self-acceleration along the bound-

ary of the insulator despite their fixed Bloch momentum

and, on the other hand, do not diffract along the boundary

despite the presence of localized features in their shapes.We

construct both linear and nonlinear self-accelerating edge

states, and show that nonlinearity considerably affects their

envelopes. Such self-accelerating edge states exhibit self-

healing properties typical for nondiffracting beams. Self-

accelerating valley Hall edge states can circumvent sharp

corners, provided the oscillating tail of the self-accelerating
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topological state is properly apodized by using an exponen-

tial function. Our findings open new prospects for control

of propagation dynamics of edge excitations in topological

insulators and allow to study rich phenomena that may

occur upon interactions of nonlinear envelope topological

states.

Keywords: valley Hall effect; self-accelerating beams; pho-

tonic topological insulators; topological edge state

1 Introduction

Development of new approaches for control of propaga-

tion paths, diffraction, and shape transformations of light

beams is one of the most important goals of modern pho-

tonics. Localized features in light beams propagating in free

space can persist over large distances only if such beams

are nondiffracting and carry infinite power. In addition to

rich demonstrated classes of nondiffracting beams prop-

agating along straight trajectories [1] that can be associ-

ated with different coordinate systems, where it is con-

venient to construct them, particular attention is paid to

a broad class of self-accelerating beams [2] that possess

all typical features of nondiffracting states, such as the

ability for self-healing, and at the same time propagate

along the curved trajectory [3]–[13]. Even though rigor-

ous self-accelerating and non-diffracting beams in the bulk

of periodic medium represented by “static” photonic lat-

tices or arrays of straight waveguides [14] may not exist,

it was possible to generate in such materials a class of

similar self-accelerating Wannier–Stark beams [15], [16].

Various other approximations to accelerating beams have

been reported in static photonic lattices as well [14]–[21],

see also recent review [22]. It should be stressed that

all previous results on self-accelerating beams in periodic

medium were reported exclusively in topologically trivial

structures.

However, when a periodic medium is characterized by

the nontrivial topology of its bands, it may support a differ-

ent class of diffraction-free solutions that can be localized

at the boundary of such medium. Such edge states are pro-

tected by the nontrivial band topology and are localized in

the direction perpendicular to the edge, while remaining
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extended (periodic) along the edge of the material. Due to

their topological protection, the edge states are immune

to disorder and imperfections in the lattice, as long as

disorder is not strong enough to close the topological gap.

The concept of topological insulators originates from solid

state physics [23], [24], and it has widely extended also

in photonics [25]–[33]. Topological robustness of the edge

states make them highly promising for the development

of topological lasers [34]–[38], construction of topological

solitons localized due to self-action [39]–[45], and design

of advanced photonic structures for protected transmission

of power and information [46]–[49]. The group velocity of

the edge states, even when they are unidirectional [50], [51]

usually does not change upon propagation and is typically

determined by the Bloch momentum of the state along the

edge. It is thus generally believed that such states cannot

accelerate or decelerate in the course of propagation along

the edge. Moreover, in the absence of nonlinearities, topo-

logical edge states with localized envelopes exhibit diffrac-

tion along the edge.

Therefore, the natural fundamental question arises: Is

it possible to construct topological edge states that would

exhibit acceleration along the edge (without introducing

any gradients into the underlying lattice structure [52])

and can such states preserve localized features nested in

them that would not undergo dispersion in the course

of propagation? The answer to this question is provided

in the present work, where we join the phenomenol-

ogy of self-accelerating beams and topological edge states

and show that the boundaries of topologically nontriv-

ial material can support both linear and nonlinear self-

accelerating topological states. Our findings are reported

for valley Hall edge states forming at the domain wall

in the inversion-symmetry-broken honeycomb structure.

The self-accelerating property of the constructed states

allows for the adjustment of their velocity and for the

reversal of their direction of motion. Self-accelerating topo-

logical edge states can also recover their missing parts

– a self-healing property inherited from nondiffracting

beams. We show that nonlinearity substantially affects

the envelope of such self-accelerating beams. Apodized

finite-power self-accelerating edge states can circumvent

sharp corners of the domain wall without backscatter-

ing. Self-accelerating beams reported here are principally

new two-dimensional envelope states of topological origin

constructed on edge states belonging to topological gap

that dictates their unusual internal phase and intensity

distributions. They sharply contrast with one-dimensional

Airy beams reported in trivial uniform or plasmonic

media.

2 Theoretical model

The propagation dynamics of the light beam in the material

with shallow transverse refractive index modulation defin-

ing topological waveguide array and cubic focusing nonlin-

earity can be described by the dimensionless Schrödinger

equation for dimensionless field amplitude 𝜓 :

i
𝜕𝜓

𝜕z
= − 1

2
Δ𝜓 −(x, y)𝜓 − |𝜓 |2𝜓, (1)

where Δ = 𝜕2
x
+ 𝜕2

y
is the transverse Laplacian and (x, y)

and z are the normalized transverse coordinates and prop-

agation distance, respectively. The function

(x, y) =
∑
m,n

pm,ne
−[(x−xm,n )2+( y−ym,n )

2]∕d2

describes the refractive index distribution in the honey-

combwaveguide arraywithwaveguides having depths pm,n,

identical widths d, and located in positions with coordi-

nates (xm,n, ym,n), see schematic illustration in Figure 1. We

assume that honeycomb array (frequently named “photonic

graphene”) consists of two sublattices that are detuned, i.e.

pm,n = p± 𝛿, with typical value of detuning 𝛿 = 0.5. We

Figure 1: Lattice and band structure. (a) Inversion-symmetry-broken

honeycomb waveguide array with the domain wall indicated by the

dashed rectangle. The depth of the red and blue waveguides is p+ 𝛿
and p− 𝛿, respectively. (b) Band structure of the array from panel (a).

The blue and gray lines represent propagation constants of the valley

Hall edge state and of the bulk states, respectively. (c) First-order

(b′, solid line) and second-order (b′′, dashed line) derivatives of the

propagation constant b of the valley Hall edge state. (d) Field modulus

distribution |𝜓 | of the valley Hall edge state at ky = −0.3Ky
corresponding to the blue dot in panel (b). Panels (a) and (d) correspond

to−20 ≤ x ≤ 20 and−3.5 ≤ y ≤ 3.5 windows.
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set here the following parameter values: Lattice constant

a = 1.6, waveguide width d = 0.5, and depth p = 8. In the

arrays fabricated using direct fs-laser writing in fused sil-

ica [33], [51], [53]–[60] the transverse coordinates (x, y) can

be normalized to the characteristic transverse scale r0 =
10 μm, the propagation distance z is normalized to kr2

0
≈

1.1 mm,with thewavenumber k = 2n0𝜋∕𝜆, where the back-
ground refractive index is n0 = 1.45, and the wavelength

in vacuum 𝜆 = 800 nm. The waveguide depth p is related

to the refractive index change Δn through p = k2r2
0
Δn∕n0,

and p = 8 will result inΔn ∼ 8.8 × 10−4.

Asmentioned above, if one sets the depth of one sublat-

tice to p− 𝛿, while that of the other sublattice to p+ 𝛿, the
inversion symmetry of the array will be broken. Two such

arrays with the opposite signs of detuning can be joined to

create a domain wall. In Figure 1(a) we present a typical

example of such a domain wall highlighted by the dashed

rectangle. Note that the domain wall is periodic in y with

the period Y = 31∕2a. It has already been demonstrated that

such domain walls can support valley Hall topological edge

states [43], [44], [61], [62], since the difference between the

two valley Chern numbers of the same valley across the

domain wall is 1 [63]–[65].

When the array is limited along the x axis, the general

solution of Eq. (1) can be written as

𝜓 = u(x, y) exp(iky y+ ibz),

where b is the propagation constant of the edge state and

ky is its Bloch momentum. Substituting this solution into

Eq. (1), one obtains the equation:

bu = 1

2

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2
+ 2iky

𝜕

𝜕y
− k2

y

)
u+u+ |u|2u, (2)

which in the absence of nonlinearity (i.e. when the term|u|2u is omitted) can be numerically solved to obtain the

relation between b and ky in the first Brillouin zone

[−Ky∕2,Ky∕2]with Ky = 2𝜋∕Y (see the details of the numer-
ical methods in the Appendix A). In this manner, one

obtains the linear band structure of the array displayed

in Figure 1(b). One finds that for this type of the domain

wall, the valley Hall edge state that is shown with blue line

emerges from the lower bulk band (shown with gray lines)

and disappears in the same band (because the system pos-

sesses time-reversal symmetry). The first-order derivative

b′ = db∕dky and the second-order derivative b′′ = d2b∕dk2
y

of propagation constant determine the group velocity and

dispersion of the edge state, respectively, and are shown in

Figure 1(c) by the solid and dashed curves. The valley Hall

edge state moves in the negative y direction when ky < 0

and in the positive y direction when ky > 0. Typical valley

Hall edge state at ky = −0.3Ky, shown in Figure 1(d) features

oscillating and decaying tails at both sides of the interface

reflecting its nontrivial topological nature. By changing the

sign of the detuning 𝛿 one can realize the situation, when

the domain wall contains only deep (red) waveguides. In

this case, the valley Hall edge state will emerge from the

upper bulk band and disappear in the same band, while cor-

responding derivatives b′ and b′′ will be reversed (see [44],

[64]) in comparisonwith the values shown in Figure 1(c).We

would like to note that the domain wall considered here can

support bright valley Hall edge solitons, since for the sign of

detuning considered here the derivative b′′ < 0 for edge

state on which such solitons can be constructed [43]. The

sign of detuning 𝛿 does not affect the conclusions reported

below even though it may change the sign of b′′, in which

case one can construct dark valley Hall edge solitons [44].

Further we consider the 𝛿 = 0.5 case.

As one can see from Figure 1, both group velocity

b′ and dispersion b′′ are the functions of Bloch momen-

tum ky and, therefore, if the momentum of the uncon-

strained (along the y-axis) linear edge state does not change

in the course of evolution, its group velocity does not

change as well. Nevertheless, our aim is to show that

by imposing the proper envelope on the edge state with

selected ky (importantly, such envelope should not be nar-

row) it is possible to realize the situation, when the fea-

tures of this envelope would exhibit acceleration upon

propagation.

3 Self-accelerating envelope

for the valley Hall edge states

The valley Hall edge state displayed in Figure 1(d) is peri-

odic in y, but one can superimpose a broad (in com-

parison with array period Y) envelope on it to construct

on its basis various topological objects. Among them are

localized topological edge solitons bifurcating under the

action of nonlinearity from the extended edge states, whose

theory for continuous media was developed in [42], [44],

[66]–[68]. Here we use a similar approach, but now we

do not impose the requirement of localization on corre-

sponding envelope. Following thismethod,we introduce the

ansatz

𝜓 = (𝜂, z)u(x, y) exp(iky y+ ibz), (3)

plug it into Eq. (1), and use the multiscale approach [42] to

obtain the following nonlinear Schrödinger equation for the

envelope:

i
𝜕

𝜕z
= 1

2
sgn(b′′ )

𝜕2

𝜕𝜂2
− 𝜒 ||2, (4)



3078 — Z. Zhang et al.: Self-accelerating topological edge states

where

𝜂 = y+ b′z|b′′|1∕2 , 𝜒 =
∫

+∞

−∞
dx

∫

Y

0

dy|u|4
is the transverse coordinate running with group veloc-

ity −b′ of the edge state, and effective nonlinear coeffi-

cient determined by the shape of the edge state, respec-

tively. Here we use the standard normalization condition

∫
+∞
−∞ dx∫

Y

0
dy|u|2 = 1 for linear edge state.

The Eq. (4) possesses self-accelerating self-trapped solu-

tions [69] exhibiting parabolic trajectories that represent

nonlinear generalizations of the Airy beams. To obtain

them, one canmove into accelerating coordinate frame 𝜂→

𝜂 − 𝜇z2 that yields the equation:

i
𝜕

𝜕z
= i2𝜇z

𝜕

𝜕𝜂
+ 1

2
sgn(b′′ )

𝜕2

𝜕𝜂2
− 𝜒 ||2, (5)

where 𝜇 is a free parameter determining the parabolic tra-

jectory. Assuming that the solution of this equation can be

written in the form:

(𝜂, z) = 𝑤(𝜂 )√
𝜒

exp
[
i
(
bnlz+ 2𝜇𝜂z+ 2

3
𝜇2z3

)]
, (6)

one arrives at the ordinary differential equation for beam

profile𝑤(𝜂):

− sgn(b′′ )
𝜕2𝑤

𝜕𝜂2
+ 2|𝑤|2𝑤− 4𝜇𝜂𝑤− 2bnl𝑤 = 0. (7)

This equation already does not contain parameters 𝜒 ,

b′, and b′′ depending on themomentum ky of the valley Hall

edge state and can therefore be used to obtain envelopes

for any ky value. Notice that the propagation constant bnl
introduced in Eq. (6) by analogy with propagation constant

of self-sustained states propagating along the straight tra-

jectories, can now be eliminated by shifting the solution

𝑤(𝜂) by bnl∕(2𝜇) in 𝜂. Thus, it makes sense to compare

phase accumulation rate arising due to nonlinearity only for

beams with global intensity maximum in the same trans-

verse location 𝜂. Such nonlinear phase accumulation rate

can be determined at the initial stages of propagation of

the self-accelerating edge state [where cubic contribution∼
(2∕3)𝜇2z3 to phase arising due to propagation along curved
path is still small for 𝜇 ≪ 1] using the expression

bnl ≈
arg⟨(𝜂, z),(𝜂, z+Δz)⟩

Δz − 2𝜇𝜂, (8)

where Δz should be small. We therefore further calculate

bnl for beams with global intensity maximum located at 𝜂 =
0. Due to this requirement, the phase shift calculated using

Eq. (8), may approach some small nonzero value b0 when||max → 0, so it is more convenient to plot the quantity

𝛽 = bnl − b0 as a propagation constant or “energy shift” of

self-accelerating nonlinear state. The so defined quantity is

independent of the 𝜂-location of global maximum of the

beam.

4 Self-accelerating valley Hall edge

states

4.1 Linear case

In the following, we construct both linear and nonlinear

self-accelerating valley Hall edge states by superimposing

the envelope obtained fromEqs. (6) and (7) onto exact valley

Hall edge states and studying their propagation dynamics. If

the nonlinear term in Eq. (7) is omitted, one can obtain the

following explicit solution in the form of linear Airy beam:

𝑤(𝜂 ) = Ai[(4𝜇)1∕3𝜂]. (9)

Here, we used the variable 𝜂 instead of 𝜂 + bnl∕(2𝜇),
since nonlinearity-induced phase shift is irrelevant in this

case. We superimpose such Airy envelope onto the valley

Hall edge state at z = 0, to obtain the initial field distribution

𝜓 (x, y) = (y)u(x, y) exp(iky y) and model its propagation

dynamics in real waveguide array using linear version of

Eq. (1). The so-constructed input represents hybrid state that

is localized across the domain wall due to its topological

nature, and at the same time having localized features along

the domain wall due to oscillations present in the shape of

Airy function (the power of the beam still remains infinite

because oscillating tail does not decay exponentially). We

adopt here sufficiently small value of parameter 𝜇 = 0.002

to ensure that the main lobe of the so-constructed state

is sufficiently wide, so that the envelope equation (4) and

multiscale approach are applicable. Because the frequency

of oscillations on the tail of Airy beam gradually increases,

the validity of this approximation may sooner or later be

violated, but usually this happens very far from the global

beam maximum (in the region, where the amplitude of the

beam becomes very small) and arising distortions do not

notably affect beam evolution.

In Figure 2(a) we illustrate propagation dynamics of

the self-accelerating beam constructed on the valley Hall

edge state with ky = 0. The group velocity of carrier edge

state 𝑣 = −b′ is zero for this momentum value, so such

edge statewith usual localizedGaussian envelopewould not

move and would exhibit diffraction (see the Appendix B).

Nevertheless, the presence of the asymmetric Airy envelope

immediately leads to self-acceleration of the beam along

the domain wall of topological insulator with z (akin to
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(a) (d)

(b) (c)

(e) (f)

Figure 2: Self-accelerating topological edge states in linear regime.

(a) Cross-section |𝜓 (x = 0, y)| illustrating propagation dynamics of
the valley Hall edge state with ky = 0 and superimposed Airy envelope

with 𝜇 = 0.002. The parabolic dashed line is the theoretically predicted

trajectory of the self-accelerating valley Hall edge state. The dynamics

is shown within the window 0 ≤ z ≤ 200 and−80 ≤ y ≤ 80.

(b, c) Same as in (a), but for the valley Hall edge states with Bloch

momenta ky = −0.3Ky and ky = 0.3Ky , respectively. (d) Self-healing

of the self-accelerating valley Hall edge state from (a) with eliminated

second lobe. (e) Field modulus distributions |𝜓 (x, y)| at distances
corresponding to the vertical dashed lines in (a) that clearly illustrate

self-acceleration of the beam along the domain wall. Panels (e) are

shown within the window−20 ≤ x ≤ 20 and−80 ≤ y ≤ 80. (f) Field

modulus distributions at different distances z corresponding to

the vertical dashed lines in (d).

self-acceleration exhibited byusual Airy beams in free space

[3]). This illustrates that even though the momentum of

the carrier edge state is well defined at all propagation

distances, thereby determining the velocity of the carrier

state, its envelope can still shift along the domain wall with

different and varying with z velocity and namely the latter

velocity determines the shift of localized features in beam

profile. The reason is that when superimposing an Airy

envelope (with its characteristic asymmetric momentum

spectrum) onto the original valley edge state, the momen-

tum distribution of the resulting state reflects a convolu-

tion of both components. Thus, even though the original

edge state has zero group velocity, the Airy envelope would

shift the momentum components of the modulated valley

Hall edge state predominantly to ky > 0. The dashed curve

superimposed on Figure 2(a) corresponds to the expected

from the envelope equation y = |b′′|1∕2𝜇z2 trajectory of self-
accelerating beam and it is indeed close to the actual trajec-

tory obtained by simulating beam propagation in the origi-

nal Eq. (1) (the deviation is expected to come from reshaping

of the envelope that is unavoidable due to higher-order

derivatives that are neglected in the envelope equation).

The self-accelerating valley Hall edge state maintains its

profile over sufficiently large propagation distances, with

the width of the main and subsequent lobes and structure

of the beam remaining nearly unchanged (i.e., illustrating

non-diffracting propagation), as it is evident from distri-

butions in the (x, y) plane shown at different distances in

Figure 2(e), which correspond to the vertical dashed lines in

Figure 2(a). The progressively increasing shift of the beam

(acceleration) is also obvious from these plots. One can also

see that radiation into the bulk is absent due to topological

nature of the state.

Since the imposed Airy envelope forces valley Hall

edge state to accelerate in the positive y direction, one may

assume that if the carrier state initially moves in the neg-

ative direction of the y axis, its propagation direction can

be reversed with z due to the impact of the envelope, while

for the state initially moving in the positive direction of

the y axis, the acceleration will further increase the initial

velocity. In Figure 2(b) we show propagation dynamics of

the self-accelerating valley Hall edge state with momentum

ky = −0.3Ky, corresponding to negative group velocity −b′
of the carrier state. This state initially indeed moves in the

negative direction of the y-axis, but then changes its propa-

gation directionwhen acceleration due to the imposed enve-

lope changes the sign of velocity. Remarkably, this state still

evolves practically without changing its envelope. This phe-

nomenon, demonstrated previously for Airy beams in free

space [70], [71], has never been reported in topological insu-

lators, where it is commonly believed that in the absence

of defects or gradients the edge states cannot change their

propagation direction. If the carrier edge state with Bloch

momentum ky = +0.3Ky corresponding to positive group

velocity−b′ is used for the construction of self-accelerating
state, then one observes progressively increasing with dis-

tance z displacement of features of Airy envelope demon-

strated in Figure 2(c).Wenote that the peak amplitude of the

beam in Figure 2(a) and (c) slightly reduces during propaga-

tion, while in Figure 2(b) it changes only weakly, at least at

the propagation distance shown. This is the consequence of

slight reshaping of the beam upon its propagation along the

domain wall (because the imposed envelope does not take

into account the presence of higher-order derivatives that
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were neglected in the envelope equation, see the explana-

tion above). Another reason is that in simulations we use

very large, but finite y-windows, so in contrast to ideal Airy

beam that has long slowly decaying oscillating tail, our input

beam is truncated by the window far away from the main

lobe and this may also lead to slow power transfer from

the main lobe into tails due to self-healing tendency. This

transfer is just delayed in Figure 2(b) leading to practical

invariance of amplitude with z. Note that the reversal of the

propagation direction in Figure 2(b) and enhanced acceler-

ation in Figure 2(c) correspond to distinct modifications of

themomentumdistributions around their originalky values

due to superposition of the envelopes. The theoretical pre-

diction y = −b′z+ |b′′|1∕2𝜇z2 for beam propagation trajec-

tory shown with dashed lines in Figure 2(b) and (c), where

b′ ∼ ±0.5029, respectively, is in reasonable agreement with
actual trajectory obtained on the basis of simulations of

Eq. (1).

One of the most distinguishing features of non-

diffracting beams, including accelerating Airy beams, is

their ability to self-heal from localized introduced perturba-

tions [5]. This property is a consequence of non-diffracting

nature of corresponding beams and infinite power that they

carry under ideal conditions. Physically, when the localized

perturbation is imposed on the beam, it rapidly diffracts in

the course of evolution, while the beam remains unaffected,

so that after sufficiently long distance z one observes visu-

ally the recovery of the ideal beam shape.We confirmed that

this property also holds for self-accelerating valleyHall edge

states. The state in Figure 2(d) with removed second lobe

indeed self-heals upon propagation, while the trajectory of

its motion remains practically unaffected by the introduced

disturbance [compare Figure 2(d) with (a)]. The field modu-

lus distributions at different distances illustrating recovery

of the second lobe that was removed at z = 0 are presented

in Figure 2(f). The comparison of distributions in Figure 2(e)

and (f) also demonstrates that the internal structure of

the beam is recovered after sufficiently large propagation

distance.

It should be stressed that the envelope theory leading to

Eq. (4) requires slow variation of the envelope of the beam

 on one period Y of the domain wall, while increasing

𝜇 reduces the scale of the characteristic features in Airy

beam envelope and simultaneously leads to faster bend-

ing of the beam. Thus, the validity of the envelope theory

requires small values of 𝜇 and increase of this parame-

ter would lead to more pronounced deviations of actual

propagation trajectory from parabolic one (and more pro-

nounced reshaping, especially on the oscillating tails of the

beam). A similar conclusion was obtained for approxima-

tions of the non-diffracting beams in trivial lattices [15], [16].

Nevertheless, we were able to see self-acceleration of the

edge states even for 10 times larger values of 𝜇 ∼ 0.02 indi-

cating on robustness of the phenomenon. In addition, we

found that self-accelerating properties persist, at least at

the initial stages of propagation, even if the beam artifi-

cially apodized with a Gaussian envelope (see the section

on topological protection). Thus we, for the first time to our

knowledge, presented self-accelerating, non-diffracting and

self-healing topological states.

It is worth noting that the trajectory of the acceler-

ating waves can be not only parabolic, see for instance

an example proposed in previous literature [72], [73]. Such

envelopes can be also used to produce self-accelerating val-

ley Hall edge states with different from parabolic trajecto-

ries. We however, would like to leave the investigation of

such envelopes for the future studies and focus more on the

simplest Airy envelope that leads to acceleration along the

parabolic trajectory.

4.2 Nonlinear case

We now take into account nonlinearity of the material and

obtain nonlinear generalizations of self-accelerating valley

Hall edge states. To calculate the envelope, we use Eq. (7)

with cubic nonlinear term and obtain its solutions using

shooting method, assuming that at sufficiently large posi-

tive values of 𝜂, where the envelope function 𝑤(𝜂) decays

exponentially, the nonlinear term can be omitted and the

asymptotic values of the function and its first derivative are

given by𝑤(𝜂) = 𝜎Ai(𝜂) and𝑤′(𝜂) = 𝜎Ai′(𝜂), where 𝜎 is the
free parameter that can be tuned to adjust the position of

the main lobe of the beam (that we require to be located

at 𝜂 = 0). It is known from theory of topological edge soli-

tons [27], [74] that the nonlinearity shifts the propagation

constant of the nonlinear edge state from corresponding

linear eigenvalue, so that the nonlinear state may enter into

the band and couple with the bulk states, thereby losing

its localization. Therefore, when we calculate the family of

nonlinear Airy-like envelopes we track the “energy shift”

𝛽 = bnl − b0 [see Eq. (8)] as a function of peak amplitude

of the edge state to compare it with the width of the gap

to avoid coupling of such nonlinear self-accelerating edge

states with bulk modes.

In Figure 3(a), we display the “energy shift” (blue curve)

as well as the full width at half maximum (FWHM) of

the first lobe in the intensity distribution of the beam

(red curve) as functions of the peak amplitude ||max =|𝑤|max∕𝜒 1∕2 for nonlinear self-accelerating solutions with

𝜇 = 0.002 and ky = 0 (the curve for ky = ±0.3Ky is quite
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(a) (b)

Figure 3: Nonlinear self-accelerating envelopes. (a) Blue curve

(ref. the left y axis): peak amplitude of the nonlinear self-accelerating

beam versus energy shift 𝛽 = bnl − b0. Red curve (ref. the right y axis):

FWHM of the main lobe in the intensity distribution of the nonlinear

self-accelerating solution versus its peak amplitude with ky = 0. The

“energy shift” corresponding to the dots labeled 1–4 is given by 0.006,

0.038, 0.138, and 0.516, respectively. (b) Profiles of the self-accelerating

solutions for different peak amplitudes |𝑤|max, corresponding to the dots
in (a). For all cases: 𝜇 = 0.002.

similar). One finds that increasing peak amplitude leads to

narrowing of all lobes in the profile of the beamandgrowing

“energy shift”. To illustrate the transformation of the enve-

lope, we show in Figure 3(b) the envelopes corresponding

to the dots in Figure 3(a). Note that with increasing peak

amplitude, the widths of different lobes gradually equili-

brate. Because the difference between the top edge of the

gap and the propagation constant of the edge state depends

on momentum ky, one should compare this difference with

nonlinear “energy shift” for different ky values to ensure

that nonlinear self-accelerating edge state will be located

in the gap. The interval between the eigenvalue of linear

valley Hall edge state and top edge of the gap is about

0.31 for ky = ±0.3Ky and about 0.21 for ky = 0. Therefore,

the envelopes corresponding to the dots 1–3 in Figure 3(a)

correspond to nonlinear edge states with propagation con-

stants in the topological gap, while the state with envelope

corresponding to the dot 4 is in the bulk band.

To test robustness of propagation in nonlinear case

we prepared the nonlinear self-accelerating valley Hall

edge state with envelope corresponding to peak ampli-

tude |𝑤|max = 0.25 (or ||max = |𝑤|max∕𝜒 1∕2) and super-

imposed calculated envelope on the linear carrier edge

state. In Figure 4(a) we illustrate the propagation dynam-

ics of such state at ky = 0 in the frames of the original

Eq. (1). The field modulus distributions at different selected

propagation distances are shown in Figure 4(b). The results

clearly demonstrate self-acceleration of the state in the

course of propagation. The propagation dynamics of non-

linear self-accelerating states with ky = ±0.3Ky are shown

in Figure 4(c), (d), (e) and (f ), respectively. The state cor-

responding to ky = −0.3Ky shows somewhat more stable

(a)

(e)

(b)

(d)(c)

(f)

Figure 4: Self-accelerating topological edge states in nonlinear regime.

(a) Evolution dynamics of the nonlinear self-accelerating valley Hall edge

state at ky = 0, for 𝜒 ≈ 0.1592, b′′ ≈ −0.7763, 𝜇 = 0.002, and||max = 0.63. (b) Field modulus distributions |𝜓 (x, y)| at selected
propagation distances. (c, d) Same as in (a, b), but for ky = −0.3Ky , at
𝜒 ≈ 0.1663, |b′| ≈ 0.5029, b′′ ≈ −0.6584, and ||max = 0.61. (e, f) Same

as (c, d) but for and ky = +0.3Ky . Dashed lines in (a, c, e) stand for
the predicted accelerating trajectories. Panels in (a, c, e) are shown in

the window 0 ≤ z ≤ 200,−80 ≤ y ≤ 80. Panels in (b, d, f) are shown in

the window−20 ≤ x ≤ 20 and−80 ≤ y ≤ 80. For all cases: 𝜇 = 0.002.

evolution practically without modifications of the envelope

in comparison with ky = +0.3Ky beam. One can conclude

that self-accelerating edge states persist even in the pres-

ence of nonlinearity of the medium.

Finally, we note that the nonlinear self-accelerating

states exist not only in the focusing medium, but also in

defocusing one, by analogy with topological solitons [75].

The example of the envelope of the nonlinear edge state

in defocusing medium and its propagation dynamics are

presented in the Appendix C. Along the same lines, non-

linear self-accelerating valley Hall edge states can also be

constructed in media with saturable nonlinearity [12], [13]

typical for photorefractive crystals [63], i.e. they are rather

universal.

4.3 Topological protection

The most representative manifestation of the topologi-

cal protection of the edge states in valley Hall systems,
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Figure 5: Topological protection of the self-accelerating topological edge state. (a) Composite photonic graphene lattice with a Z-path domain wall

indicated by the blue color. The arrows indicate the propagation direction of the input beam. (b) Field modulus distributions of a finite-energy

self-accelerating valley Hall edge state at different distances illustrating passage through the Z-shaped region. The insets show the spatial spectrum of

the beam in the Fourier domain with hexagons representing Brillouin zone. All panels are shown within the window−20 ≤ x ≤ 20,−100 ≤ y ≤ 100.

The insets are shown within the window−5 ≤ kx,y ≤ 5.

including valley Hall edge solitons [43], [44], is that they can

circumvent sharp corners without backward reflection or

radiation into the bulk. To prove that such a protection takes

place also for self-accelerating edge states, we designed

here a Z-shaped domain wall depicted in Figure 5(a), that

allows to demonstrate such a behavior. Considering that

the self-accelerating valley Hall edge state at ky = 0.3Ky

always moves in the positive direction of the y-axis [see

Figure 4(e)], we select namely such state for illustration of

such a protection.

As is well known, in valley Hall systems only the states

populating valleys of the same type are topologically pro-

tected [in the first Brillouin zone, the K valleys are located

at (±1∕31∕2, 1∕3)Ky and (0,−2∕3)Ky, while the K
′ valleys

are located at (±1∕31∕2,−1∕3)Ky and (0, 2∕3)Ky]. To clearly

capture the passage of the self-accelerating beam through

Z-shaped region at the domainwall and to be sure that back-

ward reflection is absent, we superimposed the exponential

function exp(0.04y) on the self-accelerating valley Hall edge

state. In Figure 5(b), we show the initial field modulus dis-

tribution of such apodized self-accelerating valley Hall edge

state, while the inset in this figure shows spatial spectrum

of the beam confirming that only K valleys were excited

and that the spectrum is well-localized around correspond-

ing valleys. When the beam reaches z = 50, it circum-

vents the first sharp corner, while at propagation distance

z = 100 it circumvents the second corner. At z = 200, the

largest part of the beam has passed through the Z-shaped

region. Importantly, the beam keeps propagating along the

domain wall, while maintaining its Airy-like envelope (with

clearly resolvable oscillations), even though correspond-

ing lobes gradually broaden (we attribute this slow shape

transformation to the apodization of the input beam). The

insets with spatial spectrum demonstrate the absence of the

inter-valley scattering, since the beam occupies only K val-

leys at all propagation distances. The absence of backscat-

tering is also obvious from spatial field modulus distribu-

tions. Upon further propagation such beam will eventually

evolve into Gaussian-like distribution due to its finite input

power (similar transformation in trivial medium is illus-

trated in [3]). At the same time, our investigation demon-

strates that too long tail affects the self-accelerating edge

state in the inverted space – the longer is the tail of the

edge state, the wider is the initial spectrum (it exhibits a

stripe-like distribution that may extend away from the K

valleys due to rapid oscillations on the tail of the beam far

away from its main lobe). Such an expansion of spectrum

may eventually lead to excitation of the K′ valleys.

5 Conclusion and outlook

In this work, both linear and nonlinear self-accelerating

topological valley Hall edge states are predicted and ana-

lyzed. If the characteristic features of the envelope that

is superimposed onto the topological edge state are suffi-

ciently broad, the self-accelerating topological edge states

can be constructed that preserve their shapes in the course

of propagation, just like nondiffracting beams, but also
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accelerate along the domain wall. The self-accelerating

topological edge states may reverse the direction of their

motion during propagation. In addition to the topological

protection, the self-accelerating topological edge states can

also self-heal themselves if they are partially obstructed.

Our study thereby connects the two previously indepen-

dent fields – the self-accelerating beams and the topological

edge states. It may inspire new ideas and realizations in

cold atoms, acoustics, nonlinear physics, quantum optics,

andmicro/nanomaterials. Self-accelerating beams reported

here can be potentially realized in waveguide arrays fab-

ricated by the fs direct laser writing in dielectrics or in

exciton–polariton systems [76], [77].

The study performed here highlights the power of

the envelope physics applied to topological edge states.

Namely, constructing different types of topological objects

on the edge states allows to study nontrivial transforma-

tions/evolution dynamics of their envelopes and their inter-

actions in topological materials. This concept can be inter-

esting not only from the point of view of nonlinear topo-

logical materials [27], [74], but also for non-Hermitian [29],

[78], [79], quantum [30], [80], and programmable topological

photonics [81]. Our results on self-accelerating topological

states can be extended to other types of the beams with

different envelopes [17], [82] and potentially to non-paraxial

settings [83]–[87] since valley Hall edge states have been

well addressed in such settings [88], [89].

Acknowledgments: The authors appreciate the anony-

mous reviewers for their valuable comments that help

improve the work greatly.

Research funding: This work was supported by the Nat-

ural Science Basic Research Program of Shaanxi Province

(2024JC-JCQN-06, 2025JC-QYCX-006) and theNational Natural

Science Foundation of China (12474337). YVK acknowledges

funding by the Russian Science Foundation (grant 24-12-

00167) and partially by the research project FFUU-2024-0003

of the Institute of Spectroscopy of the Russian Academy of

Sciences.

Author contributions: All authors have accepted respon-

sibility for the entire content of this manuscript and con-

sented to its submission to the journal, reviewed all the

results and approved the final version of the manuscript.

YQZ conceived the idea. YVK, MRB, and YDL supervised

the project. ZZ and YQZ finished the numerical simulations.

All authors wrote the paper and contributed greatly to the

analysis.

Conflict of interest: Authors state no conflict of interest.

Data availability: The datasets generated during and/or

analyzed during the current study are available from the

corresponding author on reasonable request.

Appendix A: Numerical methods

A.1 The plane-wave expansion method

By inserting the ansatz 𝜓 = u(x, y) exp(ikyy+ ibz) into

Eq. (1), one obtains Eq. (2).Weuse the plane-wave expansion

method to solve Eq. (2) by neglecting the nonlinear term

(that transforms this equation into linear eigenvalue

problem). To solve it we expand u and  into the Fourier

series in a supercell with the sufficient number of harmon-

ics:

u =
∑
m,n

cm,n exp
(
iKmx + iKny

)
,

 =
∑
l,s

𝑣l,s exp
(
iKlx + iKs y

)
, (10)

where cm,n and 𝑣l,s are the Fourier coefficients, Km,l =
2(m, l)𝜋∕Dx , Kn,s = 2(n, s)𝜋∕Dy, Dx,y are the sizes of the

supercell along the x, y axes, and (m, n, l, s) are the integers.

Due to periodicity of the system in the y direction, the Dy

size of the supercell can be selected equal to the Y period.

Plugging the above series into the linear version of Eq. (2),

after simple algebraic transformations one obtains a series

of linear equations with different (m, n, l, s):

− 1

2

[
K2
m
+ (Kn + ky )

2
]
cm,n +

∑
l,s

𝑣l,scm−l,n−s = bcm,n. (11)

Rewriting Eq. (11) in matrix format and diagonalizing

the matrix, one obtains the eigenvalues b for a given ky (i.e.

the spectrum) and the corresponding eigenvectors cm,n that

allow to construct the eigenmodes u of the array according

to Eq. (10).

A.2 The beam propagation method

Tomodel the propagation of the beamwe rewrite the Eq. (1)

into
𝜕𝜓

𝜕z
= 𝜓 +𝜓 (12)

with  = (i∕2)(𝜕2
x
+ 𝜕2

y
) and  = i(+ |𝜓 |2 ) being linear

diffraction and nonlinear operators, respectively. For small

propagation steps, one can treat/apply linear and nonlin-

ear operators successively at each propagation step. For

instance, applying the Fourier transform to 𝜓 one obtains

{𝜓} = − i

2

(
𝜔2
x
+𝜔2

y

)
𝜓̂ ,

where 𝜓̂ is the Fourier transform of 𝜓 , 𝜔x,y are the fre-

quencies. This allows to obtain complex field amplitude in

Fourier domain on the next step dz as

𝜓̂ (z+ dz) = exp

[
− i

2

(
𝜔2
x
+𝜔2

y

)
dz

]
𝜓̂ (z). (13)
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(a) (b)

Figure A1: Topological edge state superimposed with a Gaussian

envelope. (a) Propagation dynamics of the valley Hall edge state with

superimposed Gaussian envelope at x = 0. The dashed line represents

the trajectory of the beam center. (b) Field modulus distributions in the

(x, y) plane at different distances z illustrating diffraction of such beam.

By taking inverse Fourier transform and applying the

nonlinear operator one eventually obtains

𝜓 (z+ dz) = exp
(
dz

)

−1{𝜓̂ (z+ dz)}, (14)

where −1 is the inverse Fourier transform operator.

Appendix B: Edge state with

a Gaussian envelope

To illustrate that the group velocity of the edge state with

simple Gaussian envelope is determined by the −b′ (that
implies zero group velocity at ky = 0) we demonstrate here

the dynamics for the edge state with sufficiently broad

envelope exp(−y2∕25). The width of Gaussian envelope is

selected here such as to be equal to the width of the first

lobe of the Airy envelope used in Figure 2.

As one can see from the evolution dynamics in the x =
0 cross-section, the beam shown in Figure A1(a) does not

exhibit acceleration in the course of evolution. Its integral

center

ȳ = ∬ y|𝜓 |2dxdy
∬ |𝜓 |2dxdy ,

indicated by the horizontal dashed line in Figure A1(a),

remains ȳ = 0 during propagation, in clear contrast with

evolution of self-accelerating beam in Figure 2(a). The field

modulus distributions in the (x, y) plane shown at different

distances z in Figure A1(b) also reveal diffraction of the

beam without the shift of its integral center.

(a) (b)

Figure A2: A self-accelerating topological edge state in defocusing

nonlinear medium. (a) A nonlinear self-accelerating envelope. (b) Cross-

section of the nonlinear self-accelerating valley Hall edge state during

propagation in a self-defocusing nonlinear Kerr medium. The dashed

curve is the predicted parabolic trajectory that is same as that

in Figure 4(d). The panel is shown in−80 ≤ y ≤ 80 and 0 ≤ z ≤ 200.

Appendix C: Self-accelerating valley

Hall edge state in self-defocusing

Kerr medium

The nonlinear self-accelerating valley Hall edge states also

exist in defocusing nonlinear Kerr medium. The envelope

for such beams can be obtained by solving the ordinary

differential equation

𝜕2𝑤

𝜕𝜂2
− 2|𝑤|2𝑤− 4𝜇

(
𝜂 + bnl

2𝜇

)
𝑤 = 0, (15)

which can be obtained from the governing equation with

defocusing Kerr nonlinearity

i
𝜕𝜓

𝜕z
= − 1

2
Δ𝜓 −(x, y)𝜓 + |𝜓 |2𝜓, (16)

using the same procedure, as described in the main text.

In Figure A2(a), we display an example of the envelope

for such self-accelerating beam corresponding to ||max ∼
0.1. By superimposing this envelope on the linear valley

Hall edge state, the nonlinear self-accelerating valley Hall

edge state is constructed. In Figure A2(b), we show the cross-

section of the nonlinear self-accelerating valley Hall edge

state with ky = −0.3Ky during its propagation in defocusing

medium. Just as in the case illustrated in Figure 4(d) in the

main text, one observes that the beam changes its propaga-

tiondirectionupon evolution,whilemaintaining its internal

structure.
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