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Abstract: We identify and classify topologically protected

singularities for the reflection coefficient of transdimen-

sional plasmonic systems. Originating from nonlocal elec-

tromagnetic response due to vertical electron confinement

in the system, such singularities lead to lateral (angular)

Goos–Hänchen shifts on the millimeter (milliradian) scale

in the visible range, greatly exceeding those reported pre-

viously for artificially designed metasurfaces, offering new

opportunities for quantum material development.

Keywords: Goos–Hänchen effect; transdimensional plas-

monic films; topologically protected singularities

1 Introduction

It has been known that the reflection of a linearly polarized

optical beam of finite transverse extent incident on a plane

surface does not exactly follow the Snell’s lawof geometrical

optics [1], [2]. Instead, the reflected beam experiences slight

lateral in-plane displacement and angular deflection in the

plane of incidence – the phenomenon commonly referred

to as the Goos–Hänchen (GH) effect. Originating from the

spatial dispersion of reflection or transmission coefficients

due to the finite transverse size of the beam (and so nonlocal

in its nature), the GH effect occurs for both reflected and

refracted light in realistic optical systems. It was observed

in a variety of systems (see Ref. [2]) including plasmonic

metamaterials [3], graphene [4], and even neutron scatter-

ing experiments [5]. These days the effect attracts much

attention as well [6]–[8] due to the new generation of mate-

rials being available – quantum nanomaterials of reduced
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dimensionality, materials that can enhance nonlocal sub-

wavelength light propagation to offer new directions for

quantum optics, quantum nanophotonics, and quantum

computing application development [9], [10].

Plasmonic transdimensional (TD) quantum materials

are atomically thin metal (or semiconductor) films of pre-

cisely controlled thickness [11]. Currently available due to

great progress in nanofabrication techniques [12]–[18], such

materials offer high tailorability of their electronic and opti-

cal properties not only by altering their chemical and/or

electronic composition (stoichiometry, doping) but also by

merely varying their thickness (number of monolayers)

[19]–[32]. They provide a new regime – transdimensional,

in between three (3D) and two (2D) dimensions, turning

into 2D as the film thickness tends to zero. In this regime,

the strong vertical quantum confinement makes the linear

electromagnetic (EM) response of the TD film nonlocal, or

spatially dispersive, and the degree of nonlocality can be

controlled by varying the film thickness [22], [26]. That is

what makes plasmonic TD films indispensable for studies

of the nonlocal light–matter interactions at the nanoscale

[28]–[32].

The properties of the TD plasmonic films can be

explained by the confinement-induced nonlocal EM

response theory [22], [23] built on the Keldysh–Rytova (KR)

electron interaction potential [33]. The theory is verified

experimentally in a variety of settings [13]–[16]. It accounts

for vertical electron confinement due to the presence of

substrate and superstrate of dielectric permittivities less

than that of the film, whereby the thickness of the film

becomes a parameter to control its nonlocal EM response.

The KR model covers both ultrathin films of thickness

much less than the half-wavelength of incoming light

radiation and conventional films as thick as a few optical

wavelengths [22], [23]. The nonlocal EM response of TD

plasmonic systems enables a variety of new effects such

as thickness-controlled plasma frequency red shift [15],

low-temperature plasma frequency dropoff [16], plasma

mode degeneracy lifting [26], a series of quantum-optical

[28], [34] and nonlocal magneto-optical effects [23], as well

as thermal and vacuum field fluctuation effects responsible

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/nanoph-2025-0266
mailto:ibondarev@nccu.edu
https://orcid.org/0000-0003-0739-210X
https://orcid.org/0000-0002-5101-191X


4514 — S.-A. Biehs and I. V. Bondarev: Goos–Hänchen effect singularities in transdimensional plasmonic

for near-field heat transfer [14], [30] and Casimir interaction

phenomena [31], [32].

Here, we focus on the confinement-induced nonlocal-

ity of the EM response of the TD plasmonic film to study

theoretically the GH effect for an incident laser beam.

Using the nonlocal KR model, analytical calculations and

numerical analysis, we identify and classify topologically

protected singularities for the nonlocal reflection coeffi-

cient of the system. Such singularities are shown to lead to

giant lateral and angular GH shifts in the millimeter and

milliradian range, respectively, to greatly exceed those of

microscale reported for beams of finite transverse extent

with no material-induced nonlocality [2]–[7]. They appear

in TD materials with broken in-plane reflection symmetry

(substrate and superstrate of different dielectric permittivi-

ties) where due to the confinement-induced nonlocality the

eigenmode degeneracy is lifted to create the points of topo-

logical darkness in the visible range not existing in standard

local Drude materials.

2 The Goos–Hänchen shift

The theory of the GH shift was originally formulated by Art-

mann back in 1948 [35]. The geometry of the effect is shown

in Figure 1. After reflectance at an interface, the lateral and

angular shifts of an incoming p-polarized wave in medium

1 (refractive index n1) are given by [2], [35]–[37]

ΔGH = n1 cos 𝜃i
𝜕𝜑p

𝜕k
(1)

and

ΘGH = −
𝜃2
0

2
k0n1

cos 𝜃i|Rp| 𝜕|Rp|
𝜕k

, (2)

Figure 1: GH shiftsΔGH andΘGH with TiN plasmonic slab. A detector

placed a distance l from the slab surface measures the shiftΔtotal =ΔGH

+ l tan(ΘGH)≈ΔGH + lΘGH.

respectively. Here, k = k0n1sin𝜃i is the wavevector in-plane

projection, 𝜃i is the angle of incidence, k0 = 𝜔∕c, and 𝜃0 =
2∕(𝑤0k0n1) is the angular spread of an incident Gaussian

light beam of waist𝑤0. The p-wave reflection coefficient is

written as Rp = |Rp|ei𝜑p in the complex exponential form.

Both shifts can be seen being spatially dispersive, withΔGH

being sensitive to reflectivity phase jumps and ΘGH to zero

reflection itself so that large effects are highly likely for all

kinds of zero reflection modes in the system. Phase jumps

and singularities make the phase ill-defined, in which case

the reflection coefficient absolute value must go to zero for

causality reasons. In nonlocal materials such as our TD plas-

monic films, phase jumps and singularities come frommate-

rial spatial dispersion in addition to that of the light beam

itself. This is precisely what we study here. The respective

extra terms are derived for the structure shown in Figure 1

and can be found in Appendix A. Expressions similar to

Eqs. (1) and (2) can be written for s-polarized waves as well.

However, as they show no peculiarities such as those we are

about to discuss, we leave them out (see Appendix A). The

derivations of relevance can also be found in Refs. [2], [37].

3 Confinement-induced nonlocal

electromagnetic response

The electrostatic Coulomb field produced by confined

distance-separated charge carriers outside of their confine-

ment region starts playing a perceptible role with confine-

ment size reduction [33], [38]. The Coulomb interaction of

charges confined is stronger than that in a homogeneous

medium with the same dielectric permittivity constant due

to the increased field contribution from outside dielectric

environment, given that it has lower dielectric permittivity.

That is why to describe the optical properties of TD plas-

monic films we use the confinement-induced nonlocal EM

response theory built on the Keldysh–Rytova (KR) electron

interaction potential [22], [23]. This theory applies nicely to

our configuration of an optically dense metallic material

slab (plasmonic film) in region 2 of thickness d surrounded

by semi-infinite dielectrics of constant permittivities 𝜖1 (top)

and 𝜖3 (bottom), to result in the in-plane EM response of

medium 2 (confined region) as follows

𝜖2(𝜔, k) = 𝜖b

[
1−

𝜔2
p
(k)

𝜔(𝜔+ iΓD )

]
. (3)

Here, 𝜖b (≫ 𝜖1, 𝜖3) is the constant background permittivity

of the optically dense plasmonic material of the film, ΓD is

its damping constant, and its plasma frequency
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𝜔 p(k) =
𝜔3D

p√
1+ 1∕(𝜖̃kd)

, 𝜖̃ = 𝜖b
𝜖1 + 𝜖3

(4)

is nonlocal (dependent on the in-plane electron momentum

k = k0n1 sin𝜗i) due to the vertical electron confinement,

turning in the limit ofd→∞ into𝜔3D
p
=

√
4𝜋e2N3D∕

(
𝜖bm

∗)
of the standard local (Drude) EM response of 3D metals

with electron effective mass m∗ and volumetric electron

density N3D [22]. More precisely, if 𝜖̃kd ≫ 1 (relatively thick

film), then 𝜔 p = 𝜔3D
p
. If 𝜖̃kd ≪ 1 (thin enough film), then

𝜔 p =
√
4𝜋e2𝜖̃N2Dk∕

(
𝜖bm

∗)withN2D = N3Dd being the sur-

face electron density, consistent with plasma frequency of

2D electron gas sandwiched between top (𝜖1) and bottom

(𝜖3) dielectric materials. Films with 𝜖̃kd = 𝜖̃dk0n1sin𝜗i ≲ 1

are referred to as TD films here, so that even relatively

thick films can be in the nonlocal TD regime if 𝜗i is small

enough.

This theoretical model is verified experimentally

[13]–[16], which is why we choose to set up

𝜖2(𝜔, k) = 𝜖TiN(𝜔, k) (5)

in our numerical studies, with TiN material parameters

taken from experimental work [15] and collected in Table 1.

The beam waist value is taken from Ref. [37], where it

was used to simulate optical reflection processes. Note that

ΓD starts increasing rapidly for decreasing d ≲ 10 nm [15].

However, for the range of d used here, it is equal to the bulk

value presented in the table.

With Eqs. (3)–(5), the derivative 𝜕𝜖2∕𝜕k in the nonlocal
reflection coefficient expressions above reads as follows

𝜕𝜖TiN(𝜔, k)

𝜕k
= −

𝜖b𝜔
2
p
(k)

k(𝜖̃kd + 1)𝜔(𝜔+ iΓD )

= 𝜖̃d
[
𝜖TiN(𝜔, k)− 𝜖b

]
(𝜖̃kd + 1)2

. (6)

It can be seen not only being nonzero at finite d but also

being both positive and negative depending on the fre-

quency and direction of the incoming light beam. It disap-

pears for both d→ 0 and d→∞ as it should to indicate the

absence of plasmonicmaterial and tomake the EM response

of thick plasmonic films local in accord with the standard

Drude model, respectively.

Table 1:Material and Gaussian light beam parameters used.

𝝐b (TiN) 𝝐

(air)

𝝐

(MgO)

𝝎
3D
p
(TiN),

eV

𝚪D (TiN),

eV

𝒘 (beam

waist), μm

9.1 1.0 3.0 2.5 0.2 32

4 Reflection singularities

For a free standing plasmonic film of thickness d in air

(Figure 1), the p-polarized wave reflection coefficient is [39]

Rp =
r12
p
+ r23

p
e2i𝛾2d

1+ r12
p
r23p e

2i𝛾2d
, (7)

with medium 1 (superstrate) and medium 3 (substrate) hav-

ing the same permittivities 𝜖1 = 𝜖3 = 1. Formedium 2 (film),

we use 𝜖2 = 𝜖TiN taking a TiN example of TD material that

surpasses noble metals such as Au and Ag [40]. The lat-

ter have exceptional plasmonic properties but relatively

low melting temperatures making them incompatible with

semiconductor fabrication technologies. On the contrary,

transition metal nitrides have low-loss plasmonic response,

high melting point, and structural stability that makes them

capable of forming stoichiometrically perfect TDfilms down

to 1 nm in thickness at room temperature [13], [15]. The

Fresnel reflection coefficients r
i j
p (i, j = 1, 2, 3) for interfaces

between medium 1 and 2 and between medium 2 and 3 are

defined as follows

r
i j
p =

𝛾i𝜖 j − 𝛾 j𝜖i

𝛾i𝜖 j + 𝛾 j𝜖i
, (8)

where 𝛾i =
√
k2
0
𝜖i − k2 are the wave vectors components

normal to the interface. Here, r23
p
= −r12

p
as 𝜖1 = 𝜖3 = 1,

in which case zeroes of Rp are determined by the Brew-

ster mode (BM) condition r12
p
= 0 at the film–air interface,

whereby 𝛾 1𝜖2 = 𝛾2𝜖1, leading to the dispersion relation

k = 𝜔

c

√
𝜖′
TiN

𝜖′
TiN

+ 1
. (9)

Also, zeros of Rp can come from the film standingwave (SW)

condition, 1− exp(2i𝛾2d) = 0, in which case

k =
√

𝜔2

c2
𝜖′
TiN

−
(
n𝜋

d

)2
. (10)

Here, n = 1, 2, 3,… and 𝜖′
TiN

= Re 𝜖TiN. Lastly, zero reflection

can also occur at the Christiansen point (CP) where 𝜖′
TiN

= 1.

If one uses the local Drude model (a “workhorse” routinely

used in plasmonics), then 𝜔CP = 4 × 1015 rad∕s comes out
of it for any angle of incidence, whereas in the nonlocal KR

model used here, the confinement-induced nonlocality of

the EM response function 𝜖TiN(𝜔, k) makes the CP depend

on k and thus on the incidence angle.

Figure 2 shows the inverse reflectivity function 1∕|Rp|2
and reflection phase 𝜑p∕𝜋 calculated from Eqs. (7) and (8)

for the 40 nm thick free standing TiN slab with nonlocal EM
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(a)

(b)

Figure 2: Inverse reflectivity |Rp|−2 (a) and reflection phase 𝜑p∕𝜋 (b)

for the 40 nm thick free-standing nonlocal TiN film. Shown are the

(n = 1)-SW (upper dashed line), the nonlocal CP (lower dashed line),

and the BM (solid line).

response. The 40 nm thickness is chosen here and below

as an example to show the GH effect enhancement in the

visible range; otherwise, it shifts to either IR or UV as can

be seen from Eq. (52) (Appendix B.1). Reflectivity reduction

and phase jumps can be seen when the SW, BM, or CP

mode is excited in the system. The BM still exists below the

bulk TiN plasma frequency 𝜔3D
p
= 3.8 × 1015 rad∕s, making

the GH shifts observable for 𝜔 < 𝜔3D
p
, including the visible

range that is impossible to access with local Drude-like plas-

monic materials. Figure 3, calculated from Eqs. (1) and (2)

for the same example, shows strong lateral and angular GH

shifts when the BM is excited, up to ≈80 μm and ≈30mrad,
respectively. TD plasmonic materials thereby open access

to the GH effect observation with visible light due to their

remarkable property of the confinement-induced nonlocal

EM response.

For TD plasmonic films sandwiched between super-

strates and substrates with 𝜖1 ≠ 𝜖3, the in-plane reflection

symmetry is broken and top-bottom interface mode degen-

eracy is lifted. Figure 4 shows the birth and development

of phase singularities in this case as with 𝜖1 = 1 (air) the

substrate permittivity rises up to 𝜖3 = 3 (MgO typically used

in TiN thin film systems [15]). It can be seen that just a

slight substrate–superstrate dielectric permittivity differ-

ence gives birth to the two phase singularities close to

(a)

(b)

Figure 3: |ΔGH| in μm (a) and |ΘGH| in mrad (b) calculated for
p-polarized light wave incident on the 40 nm thick TiN film with inverse

reflectivity and reflection phase shown in Figure 2.

the BM phase jump. They have opposite winding numbers

(topological charges)

C = 1

2𝜋∮𝛼

∇𝜑 p ⋅ ds = ±1, (11)

where𝛼 is a closed integration path around the phase singu-

larity point. There is also another phase singularity on the

SW branch, which moves for larger substrate permittivities

close to the SW and BM crossing point. Such singularities

result in zero reflection previously reported as “points of

topological darkness” for specially designed metasurfaces

[41], [42] and multilayer nanostructures [43], [44]. Here, we

observe these topologically protected singularity points in

mere nonlocal TD films. Remarkably, though, due to the

plasma frequency decreasewith thickness d in our case [15],

[22], the gap in Figure 4 between the low-frequency opposite

topological charge singularities widens in thinner films (not

shown), to red-shift the lower- and blue-shift the higher-

frequency singularity points, respectively. By reducing d in

a controllable way in our case, it can, therefore, be possible

to access the low frequency phase singularity point with

He-Ne laser at 𝜆 = 632.8 nm (3 × 1015 rad∕s) to observe an
enhanced GH effect in the visible range. This remarkable

feature is only offered by the TDplasmonic films due to their

confinement-induced nonlocality and can never be realized

with local Drude-like materials.
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(a)

(b)

Figure 4: Reflection phase 𝜑p∕𝜋 calculated for a TiN film of d = 40 nm

with varied 𝜖3 (substrate) and 𝜖1 = 1 (superstrate). Vertical line is the

d = 0 BM, dashed lines are the first SWs of Eq. (10) with n = 0.5, 1, and

solid line is the gBM of Eq. (14) (see text). Green circles mark the phase

singularity points.

5 Discussion

To understand the origin of the topological singularities

discussed, it is instructive to represent the condition Rp = 0

in the form

r23
p
e2i𝛾2d = −r12

p
(12)

with dissipation temporarily neglected. In this case, the

interface reflection coefficients are real numbers for all 𝜔

where 𝜖2(𝜔, k) > 0 (and 𝛾2 > 0 accordingly) so that our TD

film behaves as a dielectric. The LHS of this equation makes

a circle in the complex plane of radius r23
p
with phase 𝜃 =

2𝛾2d, while the RHS is a real number varying between −1
and+1 as𝜔 and 𝜃 change. This is why the equality can only

be achieved if the LHS is a real number as well, yielding

two cases for Eq. (12) to fulfill. They are (1) e2i𝛾2d = +1, r23
p
=

−r12
p
and (2) e2i𝛾2d = −1, r23

p
= r12

p
. Here, the first equations

are the SW condition 1− e2i𝛾2d = 0 and its alternative 1+
e2i𝛾2d = 0. Both of them lead to the same dispersion relation

of Eq. (10), but the former for n = 1, 2, 3,… and the latter

for n = 0.5, 1.5, 2.5,… describing SWs with multiples of a

quarter wavelength and so to be referred to as standing

quarter waves (SQW), accordingly. The second equation of

case 1 is per Eq. (8) fulfilled if

𝛾1𝜖3 = 𝜖1𝛾3. (13)

This is the substrate–superstrate interface BM condition,

which can only be realized hypothetically for d = 0, and so

to be refereed to as zero-thickness BM (zBM). Similarly, the

second equation of case (2) is fulfilled if

𝛾2
2
𝜖1𝜖3 = 𝜖2

2
𝛾3𝛾1. (14)

For 𝜖3 = 𝜖1, this reduces to the symmetric in-plane interface

condition leading to the BM dispersion relation of Eq. (9).

However, since it also holds for a broken in-plane reflec-

tion symmetry with 𝜖3 ≠ 𝜖1, we refer to the solution of this

equation as the generalized BM (gBM).

The two simultaneous equations of cases 1 and 2 are

represented by the lines in the 2D configuration space

spanned by frequency and angle of incidence. The solutions

(a)

(b)

Figure 5: Graphical illustration of the solutions of Eq. (12). (a) Real and

imaginary parts of the LHS (solid lines) and RHS (dashed lines) of Eq. (12)

for a few incidence angles. (b) Projection of (a) on the plane spanned by

𝜔 and real part. Angles are chosen to show the three solution cases to

yield phase singularities in an air/TiN/MgO structure with d = 150 nm.

Green circles mark the phase singularity points.
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to Eq. (12) are given by the intersection of these lines. This

is where the phase singularity points come from that we

obtain at certain frequencies and incident angles. Addition-

ally, there is a singularity coming from the trivial solution of

Eq. (12), to give case 3 where r23
p
= r12

p
= 0, or r23

p
= −r12

p
and

r23
p
= r12

p
simultaneously. This leads to the phase singularity

at the intersection of the air–TiN and TiN–MgO interface

BMs, or more generally, at the intersection of zBM and gBM

lines in the configuration space. A complimentary analysis

of the Christiansen points can be found in Appendix B.

Figure 5(a) shows the real and imaginary parts of

Eq. (12) calculated for a thicker TiN film of d = 150 nm (to

include more solution points) as functions of frequency for

a few incident angles fixed. In Figure 5(b) that presents a

projection of (a), solution cases 1, 2, and 3 discussed above

aremarked accordingly. Here, case 1 can be seen to generate

an infinite number of discrete solution points for a single

60◦ incident angle as 𝜖1 and 𝜖3 in Eq. (13) are frequency

independent constants. Case 2 yields the solution points at

different incident angles 68.3◦, 74◦, 76◦ (not shown), etc.

(also an infinite number, in principle) due to the strong gBM

frequency dependence in Eq. (14). The case 3 solution point

can be seen at the intersection of the two lines of the 60◦

(a)

(b)

Figure 6: Absolute values of lateral (a) and angular (b) GH shifts |ΔGH|
(μm) and |ΘGH| (mrad) calculated neglecting dissipation for the
air/TiN/MgO system with 40 nm thick TiN film. Green (red) dashed line is

the SW (SQW) with n = 1 (n = 0.5) of Eq. (10). Vertical orange dashed line

is the zBM of Eq. (13). White dashed line is the gBM from Eq. (14). Circles

indicate the three cases of phase singularity points.

incidence angle, to yield the phase singularity point that can

be shifted down to the visible𝜔 for thinner films (see below)

due to the confinement-induced nonlocal EM response.

The impact of phase singularities on the GH shifts is

shown in Figure 6 for the air/TiN/MgO system of the 40 nm

thick TiN film with dissipation neglected. Comparing to

Figure 4(b), the GH shifts can be seen to be very pronounced

at the phase singularity points, which move with dissipa-

tion just slightly (not shown), for all three cases discussed.

Using thinner TD films with broken in-plane symmetry, it is

even possible to make these GH shift singularities observ-

able in the visible range under He-Ne laser excitation (𝜔 =
3 × 1015 rad∕s). Figure 7 shows the GH shifts under such

excitationwith angle of incidence varied around 𝜃i = 62.42◦

for the same air/TiN/MgO system (dissipation included)with

TiN film thickness varied around d = 31.7 nm to encounter

the case 3 phase singularity point. For d slightly thicker or

thinner than that the singularity shows up slightly red- or

blue-shifted, depending on its topological charge, making

ΔGH of Eq. (1) change its sign as d decreases. Similarly, the

(a)

(b)

Figure 7: Lateral (a) and angular (b) GH shiftsΔGH (mm) andΘGH (rad)

calculated for the nonlocal dissipative air/TiN/MgO system with TiN

thickness in the vicinity of d = 31.7 nm and 𝜃i = 62.42◦ of the He-Ne

laser beam (case 3 phase singularity point).
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sign of ΘGH of Eq. (2) changes as the incidence angle varies

around 𝜃i = 62.42◦ of the case 3 phase singularity point.

Most important though is that both lateral and angular GH

shifts shown are extremely large, in the millimeter and a

few tens of milliradian range, respectively, over an order of

magnitude greater than those shown inFigure 3 for a similar

in-plane symmetric TD film system.

6 Conclusions

To summarize, we show that the TD plasmonic films

with broken in-plane reflection symmetry can feature an

extraordinarily large GH effect in the visible range due

to the topologically protected phase singularities of their

reflection coefficient.We classify the phase singularities and

provide a detailed analysis for the conditions under which

they emerge in the simplest possible system of a single TD

plasmonic film (TiN) deposited on a low-permittivity dielec-

tric substrate (MgO) in air. We emphasize that the existence

of a phase singularity for a single plasmonic film in the visi-

ble stems from the confinement-induced EM response non-

locality (in-plane momentum dependence) of the system,

with plasma frequency decreasing as the film gets thinner

[15]. We note also that this confinement-induced nonlocality

comes as a product of thickness by the in-planemomentum.

So, the nonlocal plasma frequency can be red-shifted (and

thus brought to the visible) by simultaneous reduction of

thickness and in-plane momentum through the incident

angle change of the incoming light beam. It is this that

provides such a remarkable opportunity to have the strong

GH effect in the visible range for not very thin (31–32 nm,

Figure 7) TiN films, which can be routinely fabricated in the

lab and are considered here theoretically as a demonstra-

tive example. This is not possible for conventional (about an

order of magnitude thicker) thin metallic films due to their

local EM response with plasma frequency being a constant

in the near-UV.

Previous studies reported an overall GH shift of 325 μm
by coupling incident light to a surface plasmonpolariton of a

plasmonic film through the use of a prism [36], as well as lat-

eral and angular GH shifts as large as 70 times 785 nm inci-

dent wavelength and 200 μrad, respectively, for artificially
designed hybrid multilayer metasurface structures [45]. In

contrast, our analysis here reveals even greater lateral and

angular GH shifts ∼0.4 mm (632 times the wavelength) and

∼40 mrad for visible He-Ne laser light with simple TD plas-

monic films, where Nature itself does the job to greatly

enhance the GH effect, indicating that such systems could

provide a new flexible quantum material platform to offer

newopportunities for quantumoptics, quantumcomputing,

and biosensing application development.
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Appendix A: GH shifts for Gaussian

light beams

As it is generally accepted in the literature [46], [47], we

assume incoming light to impinge from medium 1 (refrac-

tive index n1) on the surface of medium 2 in the form of an

incident p-polarized Gaussian beam with the electric field

vector component as follows (k0 = 𝜔∕c)

E
inc
p
(xi, yi, zi ) ∝ e

ik0n1zi−k0n1
x2
i
+ y2

i
2(L+izi )

(
x̂i − iẑi

xi
L+ izi

)
. (15)

Here, (xi, yi, zi) are the coordinates in the Cartesian ref-

erence frame formed by the orthonormal basis vector set

(x̂i, ŷi, ẑi ) attached to the center of the beam cross section

such that ẑi sets up its propagation direction and x̂i lies

in the plane of incidence pointing in the direction off the

surface, L = k0𝑤
2
0
∕2 with𝑤0 representing the beam waist.

In full analogy, by implementing the boundary conditions,

a similar expression can be written down for Erefl
p

in the

(x̂r, ŷr, ẑr ) reference frame attached to the center of the

cross section of the reflected beam. The total GH shift can

then be calculated as the mean value

⟨xr⟩ = ∫ dxr ∫ dyr I(xr, yr, zr )xr∫ dxr ∫ dyr I(xr, yr, zr )
(16)

of the centroid displacement for the reflected beam [47],

where I(xr, yr, zr ) ∝ |Erefl
p
(xr, yr, zr )|2 is the reflected beam

intensity in the far-field regime. This yields
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⟨xr⟩ = 1

k0
Im

𝜕 lnRp

𝜕𝜃i
− zr
k0L

Re
𝜕 lnRp

𝜕𝜃i
(17)

with Rp representing the Fresnel reflection coefficient for

p-polarized light, whereby for a detector placed a distance

zr = l above the interface one obtains the total GH shift as a

sum of the lateralΔGH and angularΘGH shifts of the form

Δtotal = ΔGH + l tan(ΘGH) ≈ ΔGH + lΘGH, (18)

ΔGH = n1 cos(𝜃i ) Im

[
1

Rp

𝜕Rp

𝜕k

]
,

ΘGH = −
𝜃2
0

2
k0n1 cos(𝜃i ) Re

[
1

Rp

𝜕Rp

𝜕k

]
.

(19)

Here, 𝜃0 = 𝜆∕(𝜋w0) = 2∕(𝑤0k0n1) and the partial deriva-

tives over 𝜃i are replaced by those over k = k0n1sin(𝜃i). An

in-depth analysis of theGHexpressions canbe found inRefs.

[2], [37].

For a material with a local (k-independent) EM

response, the derivatives over k in Eq. (19) can only be

nonzero due to the cross-sectional inhomogeneity of the

incoming light beam as can be seen from Eqs. (15)–(17) and

the general structure of the p-wave reflection coefficient

[39],

Rp =
r12
p
+ r23

p
e2i𝛾2d

1+ r12
p
r23p e

2i𝛾2d
, r

i j
p =

𝛾i𝜖 j − 𝛾 j𝜖i

𝛾i𝜖 j + 𝛾 j𝜖i
,

𝛾i =
√
k2
0
𝜖i − k2

(20)

(i, j = 1, 2, 3), written for a typical case of a finite-thickness

material slab of thickness d with local EM response 𝜖2 =
𝜖2(𝜔) sandwiched between semi-infinite superstrate and

substrate dielectrics of constant permittivities 𝜖1 and 𝜖3,

respectively. The s-wave reflection coefficient Rs can be

obtained by replacing r
i j
p with r

i j
s = (𝛾i − 𝛾 j )∕(𝛾i + 𝛾 j ) in the

above equations. Thus, in Eq. (19), one has

ΔGH = Δloc
GH

= n1 cos(𝜃i ) Im

[
1

Rp

(
𝜕Rp

𝜕k

)
loc

]
,

ΘGH = Θloc

GH
= −

𝜃2
0

2
k0n1 cos(𝜃i ) Re

[
1

Rp

(
𝜕Rp

𝜕k

)
loc

]
.

(21)

For a nonlocal material 𝜖2 = 𝜖2(𝜔, k), and then there are

extra contributions to add to the above, those proportional

to 𝜕𝜖2(𝜔, k)∕𝜕k, whereby Eq. (19) takes the form

ΔGH = Δloc
GH

+Δnloc
GH

(k), ΘGH = Θloc

GH
+Θnloc

GH
(k) (22)

with additional nonlocal terms

Δnloc
GH

(k) = n1 cos(𝜃i ) Im

[
1

Rp

(
𝜕Rp

𝜕k

)
nloc

]
,

Θnloc

GH
(k) = −

𝜃2
0

2
k0n1 cos(𝜃i ) Re

[
1

Rp

(
𝜕Rp

𝜕k

)
nloc

]
,

(23)

which do not appearwhen thematerial-induced nonlocality

is neglected.

In order to calculate the GH shifts in Eq. (22), the partial

derivative of the reflection coefficient Rp over k should be

obtained first.With its definition given by Eq. (20), following

is the full list of equations we used to calculate 𝜕Rp∕𝜕k with
both local and nonlocal terms included.

𝜕r
i j
p

𝜕k
=

(
𝜕r

i j
p

𝜕k

)
loc

+
(
𝜕r

i j
p

𝜕k

)
nloc

(24)

with (
𝜕r

i j
p

𝜕k

)
loc

= −
Ai j

B2
i j

B′
i j,loc

+ 1

Bi j
A′
i j,loc

,

(
𝜕r

i j
p

𝜕k

)
nloc

= −
Ai j

B2
i j

B′
i j,nloc

+ 1

Bi j
A′
i j,nloc

,

(25)

where

r
i j
p =

Ai j

Bi j
, Ai j = 𝛾i𝜖 j − 𝛾 j𝜖i, Bi j = 𝛾i𝜖 j + 𝛾 j𝜖i, (26)

A′
i j,loc

= k

(
𝜖i
𝛾 j

−
𝜖 j

𝛾i

)
,

A′
i j,nloc

= 𝜕𝜖i
𝜕k

(
𝜖 jk

2
0

2𝛾i
− 𝛾 j

)
−

𝜕𝜖 j

𝜕k

(
𝜖ik

2
0

2𝛾 j
− 𝛾i

)
,

(27)

B′
i j,loc

= −k
(
𝜖i
𝛾 j

+
𝜖 j

𝛾i

)
,

B′
i j,nloc

= 𝜕𝜖i
𝜕k

(
𝜖 jk

2
0

2𝛾i
+ 𝛾 j

)
+

𝜕𝜖 j

𝜕k

(
𝜖ik

2
0

2𝛾 j
+ 𝛾i

)
.

(28)

The nonlocal term in Eq. (24) can be seen to be propor-

tional to 𝜕𝜖i∕𝜕k which in our configuration comes from the

nonlocal EM response 𝜖i=2 = 𝜖2(𝜔, k) of medium 2 situated

in between dielectric media with constant 𝜖1 (superstrate)

and 𝜖3 (substrate). In view of this, the 𝜕Rp∕𝜕k derivative

splits into the local and nonlocal contributions as follows

𝜕Rp

𝜕k
=

(
𝜕Rp

𝜕k

)
loc

+
(
𝜕Rp

𝜕k

)
nloc

(29)

with (
𝜕Rp

𝜕k

)
loc

= − C

D2
D′
loc

+ 1

D
C′
loc
,(

𝜕R
i j
p

𝜕k

)
nloc

= − C

D2
D′
nloc

+ 1

D
C′
nloc

,

(30)
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where

Rp =
C

D
, C = r12

p
+ r23

p
e2i𝛾2d, D = 1+ r12

p
r23
p
e2i𝛾2d (31)

and

C′
loc

=
(
r12
p

)′

loc
+
(
r23
p

)′

loc
e2i𝛾2d − r23

p
e2i𝛾2d

2ikd

𝛾2
,

C′
nloc

=
(
r12
p

)′

nloc
+
(
r23
p

)′

nloc
e2i𝛾2d + r23

p
e2i𝛾2d

ik2
0
d

𝛾2

𝜕𝜖2
𝜕k

, (32)

D′
loc

=
[(
r12
p

)′

loc
r23
p
+ r12

p

(
r23
p

)′

loc
− r12

p
r23
p

2ik

𝛾2

]
e2i𝛾2d,

D′
nloc

=
[(
r12
p

)′

nloc
r23
p
+ r12

p

(
r23
p

)′

nloc
− r12

p
r23
p

ik2
0

𝛾2

𝜕𝜖2
𝜕k

]
e2i𝛾2d.

(33)

Here, it can be seen that due to the presence of 𝛾2 =√
k2
0
𝜖2 − k2, as long as medium 2 is nonlocal, the local con-

tribution is formally nonlocal aswell, being also contributed

by the nonlocal termproportional to 𝜕𝜖2∕𝜕k. The latter does
not exist if medium 2 is local, in which case the former

is the only nonzero local contribution, thus justifying its

name.

Equations similar to the above can also be obtained for

the s-polarization. Redefining Aij and Bij of Eq. (26) as

Āi j = 𝛾i − 𝛾 j, B̄i j = 𝛾i + 𝛾 j, r
i j
s =

Āi j

B̄i j
, (34)

one obtains

𝜕r
i j
s

𝜕k
=

(
𝜕r

i j
s

𝜕k

)
loc

+
(
𝜕r

i j
s

𝜕k

)
nloc

(35)

with (
𝜕r

i j
s

𝜕k

)
loc

= −
Āi j

B̄2
i j

B̄′
i j,loc

+ 1

B̄i j
Ā′
i j,loc

,

(
𝜕r

i j
s

𝜕k

)
s,nloc

= −
Āi j

B̄2
i j

B̄′
i j,nloc

+ 1

B̄i j
Ā′
i j,nloc

,

(36)

where

Ā′
i j,loc

= k

(
1

𝛾 j
− 1

𝛾i

)
, Ā′

i j,nloc
= 𝜕𝜖i

𝜕k

k2
0

2𝛾i
−

𝜕𝜖 j

𝜕k

k2
0

2𝛾 j
, (37)

B̄′
i j,loc

= −k
(
1

𝛾 j
+ 1

𝛾i

)
, B̄′

i j,nloc
= 𝜕𝜖i

𝜕k

k2
0

2𝛾i
+

𝜕𝜖 j

𝜕k

k2
0

2𝛾 j
. (38)

This gives

𝜕Rs
𝜕k

=
(
𝜕Rs
𝜕k

)
loc

+
(
𝜕Rs
𝜕k

)
nloc

(39)

with (
𝜕Rs
𝜕k

)
loc

= − C̄

D̄2
D̄′
loc

+ 1

D̄
C̄′
loc
,(

𝜕R
i j
s

𝜕k

)
nloc

= − C̄

D̄2
D̄′
nloc

+ 1

D̄
C̄′
nloc

,

(40)

where

C̄ = r12
s
+ r23

s
e2i𝛾2d, D̄ = 1+ r12

s
r23
s
e2i𝛾2d (41)

and

C̄′
loc

=
(
r12
s

)′
loc

+
(
r23
s

)′
loc
e2i𝛾2d − r23

s
e2i𝛾2d

2ikd

𝛾2
,

C̄′
nloc

=
(
r12
p

)′

nloc
+
(
r23
s

)′
nloc

e2i𝛾2d + r23
s
e2i𝛾2d

ik2
0
d

𝛾2

𝜕𝜖2
𝜕k

, (42)

D̄′
loc

=
[(
r12
s

)′
loc
r23
s
+ r12

s

(
r23
s

)′
loc

− r12
s
r23
s

2ik

𝛾2

]
e2i𝛾2d,

D̄′
nloc

=
[(
r12
s

)′
nloc

r23
s
+ r12

s

(
r23
s

)′
nloc

− r12
s
r23
s

ik2
0

𝛾2

𝜕𝜖2
𝜕k

]
e2i𝛾2d.

(43)

The set of equations above is used to numerically eval-

uate the GH shifts.

Appendix B: Classification of EM

modes

B.1 Preserved in-plane reflection symmetry:
TiN film free standing in air

Here, we analyze the EM modes of a finite-thickness TiN

film free standing in air, in order to be able to identify

those contributing to the GH shifts. In what follows, the

“prime”-sign (′) and “double prime”-sign (′′) abbreviate the

real Re(…) part and imaginary Im(…) part, respectively.

We start with the interface EM modes between two

infinitely extended media [48]. They are the Brewster mode

and the surface mode. Both of them can be present at the

two air/TiN interfaces separating media 1 and 3 (air above

and below the TiN film) frommedium 2 (the film itself), and

both are described by the condition

k = 𝜔

c

√
𝜖TiN

𝜖TiN + 1
. (44)

This can be obtained from either r12
p
= −r23

p
= 0 with

𝜖′
TiN

≥ 0 (𝜔 ≥ 𝜔p) or r
12
p
= −r23

p
= ∞with 𝜖′

TiN
< 0 (𝜔 < 𝜔p)
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in Eq. (20), to give for media 1 and 3 (air) the Brewster mode

in the propagating wave region k ≤ 𝜔∕c and the surface

mode in the evanescent wave region k > 𝜔∕c, respectively.
Both of them lead to Rp = 0 according to Eq. (20) and thus

to the stronger GH effect as per Eq. (19). To obtain the cor-

responding dispersion relations, Eq. (44) should be solved

with dissipation included for either the complex valued k

at a given real frequency 𝜔 or the complex valued 𝜔 at a

given real valued in-plane momentum k. Depending on the

physical situation, either approach has to be used [48].

Neglecting the dissipation in Eq. (44) leads to the ideal-

ized solution with real valued k and 𝜔, which for nonlocal

𝜖TiN(𝜔, k) of Eqs. (3)–(5) with ΓD = 0 takes the following

form

𝜔2 = 1

2

[
k2c2

𝜖b + 1

𝜖b
+𝜔2

p
(k)

]

±

√
1

4

[
k2c2

𝜖b + 1

𝜖b
+𝜔2

p
(k)

]2
− k2c2𝜔2

p
(k). (45)

Here, the +(−) sign solution describes the Brewster (sur-

face) mode in the propagating (evanescent) wave region.

With 𝜔2
p
(k) of Eq. (4), in the limit d→∞, the well-known

local dispersion relations can be recovered [48].

In the finite-thickness films, in addition to the inter-

face modes, there are also standing waves to represent the

eigenmodes of the film itself. The standing wave modes

are responsible for enhanced transmission and so reduced

reflection of the film. For our nonlocal free standing TD

plasmonic film of thickness d, the standard standing wave

condition is 𝛾2 = 𝜋n∕dwith n ∈ ℕ, the same as that studied
for polaritonic waves in thin dielectric films previously [49],

yielding

k =
√

𝜔2

c2
𝜖TiN −

(
𝜋n

d

)2
, (46)

to give

𝜔 =
√

k2c2

𝜖b
+𝜔2

p
(k)+ c2

𝜖b

(
𝜋n

d

)2
(47)

for 𝜖TiN(𝜔, k) of Eqs. (3)–(5) with dissipation neglected as

before. Again, in the limit d→∞, one obtains the local

version of the standing wave solutions in the TD plasmonic

film. These solutions are similar but not exactly the same as

those reported previously for the local standing polaritonic

waves [49] due to the different in-plane EM responses of the

metallic and dielectric thin films.

It should be noted that Eq. (47) can be generalized to

include dissipative effects, too, if one starts from the con-

straint |Rp|2 = 0 as given by Eq. (20) with r12
p
= −r23

p
can-

celed out to exclude the interface modes already discussed.

Then,

1+ e2i(𝛾2−𝛾
∗
2 )d = 2Re

(
e−2i𝛾

∗
2
d
)
, (48)

which can be brought to the trigonometrical form

sin
[(
𝛾 ′
2
+ 𝛾 ′′

2

)
d
]
sin

[(
𝛾 ′
2
− 𝛾 ′′

2

)
d
]
= 0

yielding (
𝛾 ′
2
± 𝛾 ′′

2

)
d = 𝜋n, n = 0,±1,±2,±3,… , (49)

where 𝛾 ′
2
and 𝛾 ′′

2
, the real and imaginary parts of 𝛾2, can be

obtained from its complex exponential form

𝛾2 = k0

√
𝜖TiN − (k∕k0 )2 = 𝛾 ′

2
+ i𝛾 ′′

2

= |𝛾2| ei(Arg(𝛾2 )+2𝜋m)∕2, m = 0, 1,

|𝛾2| = k0

{[
𝜖′
TiN

− (k∕k0 )2
]2 + 𝜖′′ 2

TiN

}1∕4
,

Arg(𝛾2 ) = arctan

[
𝜖′′
TiN

𝜖′
TiN

− (k∕k0 )2
]
.

Plugging them in Eq. (49) leads after straightforward simpli-

fications to the transcendental equation as follows

sin

{
1

2
arctan

[
𝜖′′
TiN

𝜖′
TiN

− (k∕k0 )2
]
± 𝜋

4

}
= 𝜋n√

2 k0d
{[

𝜖′
TiN

− (k∕k0 )2
]2 + 𝜖′′ 2

TiN

}1∕4 , (50)

n = 0,±1,±2,±3,…

The transcendental equation (50) sets up the EMmodes

of the TD film that are responsible for its zero reflection

and thus for either enhanced transmission or enhanced

absorption of external EM radiation incident on the film. It

can be solved for𝜔 analytically. In the negligible dissipation

case, one has 𝜖′′
TiN

≪ |𝜖′
TiN

− (k∕k0 )2| to obtain
k0

√|𝜖′
TiN

− (k∕k0 )2| = 𝜋n

d
, n ∈ ℕ,

which after plugging 𝜖′
TiN
(𝜔, k) in it leads to the generalized

form of Eq. (47) as follows

𝜔 =
√

k2c2

𝜖b
+𝜔2

p
(k)+ sign

[
𝜔2 −𝜔2

p
(k)− (kc∕

√
𝜖b )

2
]
c2

𝜖b

(
𝜋n

d

)2
, n ∈ ℕ. (51)
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This includes both propagating waves of Eq. (47) and

evanescent waves as well, in medium 2 (TiN film), which

come out as solution branches with 𝜔2 > 𝜔2
p
+ (kc∕√𝜖b )

2

and 𝜔2 < 𝜔2
p
+ (kc∕√𝜖b )

2, respectively. In the strong dis-

sipation case, where 𝜖′′
TiN

≫ |𝜖′
TiN

− (k∕k0 )2|, the proper-

ties of the arctangent allow one to rewrite Eq. (50) in the

form

sin
{
𝜋

4
sign

[
𝜖′
TiN

− (k∕k0 )2
]
± 𝜋

4

}
= 𝜋n

k0d
√
2𝜖′′

TiN

,

with the only legitimate solution (the solution that

stays asymptotically correct as d→∞) given by

𝜖′
TiN

− (k∕k0 )2 = 0 and n = 0. With our nonlocal 𝜖′
TiN
(𝜔, k)

of Eqs. (3)–(5), this yields the dispersion equation for the

fundamental plasma mode of the finite-thickness TD film

𝜔 =
√

k2c2

𝜖b
+𝜔2

p
(k), n = 0,

which can be combined with Eq. (51) to give the final stand-

ing wave solution as follows

𝜔 =
√

k2c2

𝜖b
+𝜔2

p
(k)+ sign

[
𝜔2 −𝜔2

p
(k)− (kc∕

√
𝜖b )

2
]
c2

𝜖b

(
𝜋n

d

)2
, n = 0, 1, 2, 3,… (52)

However, one has to remember that here, contrary to the

n ≠ 0 low-dissipative modes of Eq. (51), the fundamental

mode with n = 0 is associated with strong dissipation of EM

radiation absorbed by the TD film to generate the in-plane

plasma waves in the system.

Figure 8 shows anddescribes in the caption the features

of the propagating and evanescent wave dispersion rela-

tions given by Eq. (52)with n = 0, 1, 2, and 3, presented in the

dimensionless (𝜔, k)-space for a few free standing TiN films

of decreasing thickness. The Brewster and surface modes of

Eq. (45) are also shown. Note that due to the in-plane reflec-

tion symmetry of the free standing TDfilm system, allmodes

shown lead to zero p-wave reflection coefficient in Eq. (20)

as it follows from thediscussion above. The detailed analysis

and general properties of the evanescent wave solutions in

TD plasmonic films can be found in Refs. [26], [28]. The GH

shift calculations require the knowledge of the propagating

wave solutions, which we are, therefore, focusing on below.

Figures 9 and 10 show the calculated inverse reflectiv-

ities and discuss in the captions some of the propagating

wave dispersion relations in the (𝜔, 𝜃i)-space, described

by local (Drude) and nonlocal KR in-plane EM response

functions as given by Eqs. (3) and (4) for infinitely large

and finite d, respectively. It can be seen that the disper-

sion relations of Eqs. (45) and (47) for the Brewster modes

and standing wave modes with losses neglected are in full

agreement with direct numerical calculations of Eq. (20)

including losses. It can also be seen that at small angles of

incidence, i.e., for small k, the nonlocality of the in-plane

EM response plays an important role. More features in the

(𝜔, 𝜃i)-space can be seen in Figures 11–14. Figures 11 and 12

show the phases (normalized by 𝜋) of the reflection coef-

ficients whose inverse squares are shown in Figures 9 and

10, respectively. Figures 13 and 14 present the respective GH

shifts, where it can be seen that due to the EM response non-

locality, the large GH shifts can be obtained for frequencies

below the bulk plasma frequency𝜔3D
p
, for example, by using

He-Ne laser light.

B.2 Broken in-plane reflection symmetry:
TiN film on MgO substrate

In this case, there are two different (inequivalent) inter-

faces with their respective interface modes. Our TD plas-

monic TiN film (medium 2) is now sandwiched between air

(medium 1) and a MgO substrate with 𝜖MgO = 3.0 (medium

3). The top-bottom interface mode degeneracy is lifted as

compared to the free standing plasmonic film case. How-

ever, we show inwhat follows that the propagating standing

waves of the film can still provide zero reflection given

that proper Brewster mode constraints are fulfilled at both

of the inequivalent interfaces, which is possible at mode

intersection points in the (𝜔, k)-space. They are the (topo-

logical) phase singularity points to replace the lines of the

free standing film case and thus to greatly enhance the GH

effect.

For the air/TiN interface Brewster and surface modes

one still has Eq. (45), whereas for the MgO/TiN interface

𝜔2 = 1

2

(
k2c2

𝜖b + 𝜖3
𝜖b𝜖3

+𝜔2
p
(k)

)

±

√
1

4

(
k2c2

𝜖b + 𝜖3
𝜖b𝜖3

+𝜔2
p
(k)

)2

−
k2c2𝜔2

p
(k)

𝜖3
, (53)

where +(−) correspond to the Brewster (surface) mode in
the propagating (evanescent) wave region of medium 3 and

𝜖3 = 𝜖MgO. The propagating modes of the TiN film itself are
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Figure 8: Propagating and evanescent standing wave solutions with n = 0, 1, 2, and 3 calculated for the free standing TiN films of decreasing

thickness d from Eq. (52) with frequency𝜔 in units of𝜔3D
p
and in-plane momentum k in units of

√
𝜖b 𝜔

3D
p
∕c. In a relatively thick film (d = 100 nm),

the n ≠ 0-modes can be seen to group around the fundamental plasma mode (n = 0, shown by blue and black dashed line for nonlocal KR and local

Drude in-plane EM response given by Eqs. (3) and (4) for finite and infinitely large d, respectively); propagating modes are above and evanescent

modes are below the n = 0-mode. In the limit d→∞, all of them congregate together to form the multiply degenerate bulk plasma mode with

standard low-k dispersion𝜔 ∼ 𝜔3D
p
. As d decreases, all n ≠ 0-modes spread out to reflect the strengthening of the vertical confinement in the TD film

system. In ultrathin films (d = 5 nm), only the fundamental n = 0-mode remains with low-k dispersion distinctly different for nonlocal and local

in-plane EM response of the film (𝜔 ∼
√
k versus𝜔 ∼ 𝜔3D

p
) [22], [26]. Purple dashed and dotted lines indicate the Brewster and surface modes,

respectively, of Eq. (45).

still given by the standing wave solutions of Eq. (47). How-

ever, contrary to thick films where𝜔 p(k) ∼ 𝜔3D
p
is the same

for all modes, for the TD plasmonic film system 𝜔 p(k) ∼
𝜔3D

p

√
kd𝜖b∕(𝜖1 + 𝜖3 ) as per Eq. (4), which is different from

𝜔p(k) of the free standing TD film case.

All modes of relevance to the GH effect in our system

can be summarized as follows:

(1.) The air/TiN interface Brewster mode described by the

+ sign branch of Eq. (45), to yield r12
p
= 0;

(2.) The MgO/TiN interface Brewster mode described by

the + sign branch of Eq. (53), to yield r23
p
= 0;

(3.) The propagating modes of the TiN film given by

Eq. (52), originating from Eq. (48) with 𝛾 ′′
2
= 0, to yield

1− e2i𝛾2d = 0 for 𝛾2 = 𝜋n∕d with n = 0, 1, 2,…;

(4.) For TD films, of significance can also be the Brewster

mode of a hypothetical interface between medium

1 and medium 3, in which case by analogy with

Eq. (44) one has k = (𝜔∕c)
√
𝜖3∕(𝜖3 + 1), or 𝜔 =

kc
√
(𝜖3 + 1)∕𝜖3, to yield r13p = 0;

(5.) From Eq. (20), it can be seen that 𝜖′
2
(k) = 1

(air/TiN interface Christiansen point), or

𝜔 = 𝜔 p(k)
√
𝜖b∕(𝜖b − 1) as per Eq. (4), leads to

r12
p
= 0;

(6.) Similarly, 𝜖′
2
(k) = 𝜖3 (MgO/TiN interface Christiansen

point), or 𝜔 = 𝜔 p(k)
√
𝜖b∕(𝜖b − 𝜖3 ), leads to r

23
p
= 0.

There is a simplemethod to find the zeroes of the reflec-

tion coefficient in Eq. (20). As they come from the numerator

N(𝜔, k) = r12
p
+ r23

p
e2i𝛾2d, (54)

to find themwe start with the Brewster mode of a hypothet-

ical interface betweenmedium 1 and 3 (air/MgO)mentioned
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Figure 9: Inverse reflectivity |Rs∕p|−2 for s-polarized (top panel) and
p-polarized (bottom panel) light calculated for a 40 nm thick TiN film

using the local (Drude) in-plane EM response function one can obtain

from Eqs. (3) and (4) in the limit d→∞. The white solid line is the

Brewster mode of Eq. (45); it can be seen to only exist for p-polarized

light (bottom panel). The horizontal dashed line at𝜔 = 4 × 1015 rad∕s
indicates the Christiansen point (see the text below). Two other dashed

lines shown are tilted, depend on the angle of incidence. They are the

n = 0 fundamental plasma mode (lower dashed line) and the n = 1

standing wave mode (upper dashed line), both given by Eq. (47).

For all modes mentioned, the reflectivity can be seen to be close to zero

for both s- and p-polarized light.

in (4.) above. This is the case where 𝛾 1𝜖3 = 𝛾3𝜖1. Using this

inside r13
p
= 0 leads to r12

p
= −r23

p
, now for TD plasmonic film

systems with broken in-plane reflection symmetry. This is

possible because r12
p
and r23

p
are functions of 𝜔 and k, and

their equality implies nothing but their intersection point

in the (𝜔, k)-space as opposed to their exact coincidence

(identity) in the degenerate case of the preserved in-plane

reflection symmetry of free standing TD films. Hence, one

has

N(𝜔, k) = r12
p
+ r23

p
e2i𝛾2d = r23

p

(
−1+ e2i𝛾2d

)
. (55)

This expression is now zero in the following cases:

(A) If we assume that r13
p
= 0 and 𝛾 1𝜖3 = 𝛾3𝜖1 are fulfilled,

then N(𝜔, k) = 0 if r23
p
= 0. That means the reflection

coefficientRp can only be zero at the crossing points of

the Brewster mode of the air/MgO interface from (4.)

and the Brewster mode of theMgO/TiN interface from

(2.).

Figure 10: Same as in Figure 9 but now for a 40 nm thick TiN film

described by the nonlocal KR in-plane EM response function given

by Eqs. (3) and (4). Shown are the n = 0 fundamental plasma mode

(lower dashed curve) and the n = 1 standing wave (upper dashed curve)

of Eq. (47) as well as the Brewster mode of Eq. (45) (solid line for

p-polarization). The behavior of all modes can be seen to drastically

change for small angles of incidence (cf. also Figure 8).

(B) If we assume that r13
p
= 0 and 𝛾 1𝜖3 = 𝛾3𝜖1 are fulfilled,

then N(𝜔, k) = 0 if
(
−1+ e2i𝛾2d

)
= 0. That means the

reflection coefficient Rp can only be zero at the cross-

ing points of the Brewster mode of the air/MgO inter-

face from (4.) and the standing wave modes from (3.).

(C) From the condition (A) that when r13
p
= 0 and 𝛾 1𝜖3 =

𝛾3𝜖1 are fulfilled and r23
p
= 0, then Rp = 0, it follows

also that when r13
p
= 0 and r12

p
= 0 are fulfilled there is

zero of Rp, because r
23
p
= −r12

p
. This means that when

the Brewster mode of the air/MgO interface from (4.)

and the Brewster mode of the air/TiN interface from

(1.) cross then there is a zero reflection point, too.

Additionally, one has:

(D) Since r12
p
= 0 is also fulfilled for the Christiansen point

in (5.), there is another possible zero at the crossing

point of the Christiansenmode from (5.) and the Brew-

ster mode of the MgO/TiN interface from (2.).

(E) Since r23
p
= 0 is also fulfilled for the Christiansen

point in (6.), there is another possible zero at the

crossing point of the Christiansen mode from (6.)
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Figure 11: Phase (normalized by 𝜋) for the reflection coefficients

calculated using the local (Drude) in-plane EM response function,

whose inverse squares are shown in Figure 9. The dashed and solid lines

are the same as in Figure 9. The phase jumps can be seen at the n = 1

standing wave mode (upper dashed line) for both s- and p-polarizations.

Extra phase jumps occur between the dashed lines and close to

the Brewster mode (solid line) for s- and p-polarizations, respectively.

and the Brewster mode of the MgO/TiN interface

from (2.).

(F) The above solutions come from either intersection of

the Brewster and Christiansen modes or the inter-

section of the Brewster mode of the (hypotheti-

cal) medium 1/medium 3 interface and the stand-

ing waves of medium 2. On closer inspection of

Eq. (54), however, one finds another class of solu-

tions, which is associated not with the standing

waves fulfilling
(
−1+ e2i𝛾2d

)
= 0 but with those ful-

filling
(
1+ e2i𝛾2d

)
= 0. This comes from the con-

straint r12
p
= r23

p
, which can be the case when 𝛾2

2
𝜖1𝜖3 =

𝜖2
2
𝛾3𝛾1. It leads to the analogue of Eq. (47) with n =

0.5, 1.5, 2.5,…

Figure 15 shows and comments in the caption on how cases

(A), (B), and (C) can be understood in terms of the mode

intersection points in the (𝜔, k)-space. Figures 16 and 17

show and comment on the above listed singularity locations

in the inverse reflectivity and reflection coefficient phase in

the (𝜔, 𝜃i)-space.

Figure 12: Phase (normalized by 𝜋) for the reflection coefficients

described by the nonlocal KR in-plane EM response function, whose

inverse squares are shown in Figure 10. The dashed and solid lines are

the same as in Figure 3. The impact of the EM response nonlocality can

be seen at small angles of incidence.

Note that cases (B) and (F) above are referred to as

cases 1 and 2 in the main text. In these two cases, the phase

singularities are defined by the intersection of the stand-

ing wave mode dispersion curves with the two different

Brewster mode dispersion curves. Note also that in our

configuration, cases (C) and (E) coincide with the energet-

ically lowest phase singularity of case 1 in the main text,

or (B) here, which is red-shifted for thinner films due to

the nonlocal in-plane EM response effect. Moreover, cases

(A) and (D) herein define another phase singularity not

covered by cases (B) and (F), or cases 1 and 2 in the main

text.

Finally, wewould like to stress that the Brewstermodes

discussed here to provide the most important singularity

points are those given by the reflection coefficient zeros

(also known as improper modes [50]), to which, therefore,

it is impossible to assign a group velocity. In contrast, the

surface modes are those given by the poles of the reflection

coefficient [26]. They are the proper eigenmodes confined

to the interface [28], to which one can assign both phase

and group velocity. The differences between the two can be

clearly seen in Figures 8 and 15 for the TD films with and

with no in-plane reflection symmetry, respectively.
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Figure 13: GH shiftsΔGH in μm (top) andΘGH in mrad (bottom)

for p-polarized light impinging on a 40 nm thick local TiN film

with inverse reflectivity and phase shown in Figures 9 and 11,

respectively. The solid and dashed lines are the same as in the

bottom panel of Figure 9. It can be seen that the lateral shift

ΔGH (top) is particularly large for the Brewster mode (solid line)

and the standing wave solutions with n = 0 (fundamental plasma

mode) and n = 1, as well as for the Christiansen point (at small

angels of incidence). The angular shiftΘGH (bottom) is particularly

large when the Brewster mode condition (solid line) and the n = 1

standing wave condition (upper dashed line) are fulfilled.

Figure 14: Same as in Figure 13 for p-polarized light impinging on

a 40 nm thick nonlocal TiN film with inverse reflectivity and phase

shown in Figures 10 and 12, respectively. The lines are the same

as in Figure 10. The impact of the EM response nonlocality

can be seen at small angles of incidence.
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Figure 15: Same as in Figure 8 for air/TiN/MgO TD films. Purple dashed and dotted lines show the split-up nondegenerate Brewster and surface

modes, respectively, given by Eq. (45) for the air/TiN interface and by Eq. (53) for the TiN/MgO interface. Purple solid line is the Brewster mode

of the hypothetical air/MgO interface introduced in (4.), discussed in (A)–(C), and referred to as zero Brewster mode (zBM) in the main text. The zBM

intersection points with standing wave modes (including the n = 0 fundamental plasma mode) are the phase singularity points (or points of topo-

logical darkness) to yield Rp = 0 and thus to greatly enhance the GH effect.

Figure 16: Inverse reflectivity 1∕|Rp|2 for a 150 nm thick TiN film on MgO calculated using the nonlocal KR in-plane EM response as given

by Eqs. (3) and (4) with losses neglected by setting ΓD = 0. The figure presents the features listed in the text. They are as follows: (1.) the air/TiN

interface Brewster mode is shown by the (upper) yellow dashed line; (2.) the MgO/TiN interface Brewster mode is shown by the (lower) yellow dashed

line; (3.) the standing wave solutions for n = 1, 2, 3 from Eq. (47) are shown by the green dashed lines; (4.) the vertical dashed orange line indicates

the hypothetical MgO/Air interface Brewster mode (also called zBM in the main text); (5.) and (6.) the blue dashed lines mark the two Christiansen

points. Additionally presented are the generalized Brewster mode (gBM) from (F) by the white dashed line and the standing wave solutions with

n = 0.5, 1.5, 2.5, 3.5 from Eq. (47), or the condition in (F), by the red dashed lines. The reflection zeros can be seen at the crossing points of the standing

waves from (3.) (green dashed lines) and the zBM from (4.) (vertical dashed line), as described in (B) in the text. More reflection zeroes can be seen

at the intersection of the standing wave solutions from (F) (red dashed lines) and the gBM from (F). All the Brewster modes can be seen to intersect

with one of the Christiansen points and the n = 1 standing wave mode. There is also the intersection of the Brewster modes (2.), (3.) with the

Christiansen point at the 60◦ incidence angle and𝜔 = 3.55 × 1015 rad∕s, to provide another reflection zero (barely seen) corresponding
to (A) and (D) listed in the text. All these intersection points provide the phase singularities to enhance the GH shifts.
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(a)

(b)

Figure 17: Singularities of the inverse reflectivity to contribute to the GH

effect enhancement. (a) Inverse reflectivity 1∕|Rp|2 as in Figure 16 for
a 150 nm thick TiN film on MgO and (b) the phase 𝜋-normalized of the

respective reflection coefficient – both graphs are zoomed in to include

a smaller range of angles of incidence. The lines are the same as in

Figure 16. The labeled green circles mark the mode intersection points

and the phase singularities as per the classification (A)–(F) in the text,

to enhance the respective GH shifts.
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