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Section A. Phenomenological theory of q-BIC 

To describe the occurrence of q-BIC cascades, we used Friedrich-Wintgen mechanism, in 
which radiation losses can be coherently suppressed when there are two interfering modes 
of close frequency with only one open radiation channel [S1]. In a ring resonator, due to axial 
symmetry, the radiation channels are separated by the azimuthal index m, since the overlap 
integral of fields E of different symmetries in an axially symmetric structure always vanishes. 
In this case, each mode of the radial gallery interacts with the mode of the axial ring gallery, 
the amplitudes of which are described by the dynamic equation [S2]: 

𝐻 = (
1 𝜘
𝜘 2

) − 𝑖 (
𝛾1 √𝛾1𝛾2

√𝛾1𝛾2 𝛾2

), (1) 

the frequencies 𝜔1 and 𝜔2 and the corresponding damping rates 𝛾1,2 are the eigenvalues of 
non-interacting modes. The off-diagonal elements of the Hamiltonian have the meaning of 
the coupling coefficient in the near field 𝜘, and √𝛾1𝛾2 is the interference in the far field. It is 
important to note, that it is sufficient to take into account only two modes for a qualitative 
explanation of the occurrence of a q-BIC, since the eigenfrequencies of other modes opera-
ting in the same radiation channel are far from each other.  

The characteristic equation for the Hamiltonian (1) is 

̃
2 − [(1 + 2) + 𝑖(𝛾1 + 𝛾2)]̃+ [(12 − 𝜘2) + 𝑖(𝛾12 + 𝛾21 − 2𝜘√𝛾1𝛾2)] = 0, (2)    

Now we introduce new notations for simplicity: 0 ≡ (1 + 2)/2;  Ω ≡ 1 − 2;  𝛾s ≡ 𝛾1 +
𝛾2;  𝛾d ≡ 𝛾1 − 𝛾2;  𝛾0 ≡ √𝛾1𝛾2. Then, Eq. (2) can be rewritten in the next form 

[̃ − (0 + 𝑖
𝛾s

2
)]

2

=
1

4
[(Ω2 + 4𝜘2 − 𝛾s

2) + 2𝑖(Ω𝛾d + 4𝜘𝛾0)]. (3) 

The solution for Eq. (3) is: 

̃ = (0 + 𝑖
𝛾s

2
) +

1

2
√(Ω2 + 4𝜘2 − 𝛾s

2) + 2𝑖(Ω𝛾d + 4𝜘𝛾0). (4) 

Let’s consider this root (Eq. (4)) in detail. We can introduce by definition two quantities: 
𝑎 ≡ Ω2 + 4𝜘2 − 𝛾s

2 and 𝑏 ≡ 2(Ω𝛾d + 4𝜘𝛾0). From the basic complex calculus, it is straight-

forward to show that: 𝑟 + 𝑖𝑠 = √a + 𝑖𝑏   ⇒   (𝑟 + 𝑖𝑠)2 = 𝑎 + 𝑖𝑏 ⇒ 𝑎 = 𝑟2 − 𝑠2;  𝑏 = 2𝑟𝑠. 
The substitution of 𝑠 = 𝑏/(2𝑟) into equation for 𝑎 leads to a biquadratic equation for 𝑟: 

𝑟2 −
𝑏2

4𝑟2 − 𝑎 = 0 ⇒ 𝑟4 − 𝑎𝑟2 −
𝑏2

4
= 0.  (5) 

Equation (5) has the next solutions for 𝑟 and 𝑠: 
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𝑟± = ±
1

√2
√𝑎 + √𝑎2 + 𝑏2   ;   𝑠± =

𝑏

2𝑟±
. (6) 

Note that 𝑟± ∈ ℝ and 𝑟±
2 ≥ 0. Substitution of Eq. (6) in Eq. (4) gives two eigenfrequencies: 

̃± = (0 + 𝑟±) + 𝑖
1

2
(𝛾s +

𝑏

2𝑟±
) =   

= (0 ±
1

2√2
√𝑎 + √𝑎2 + 𝑏2) + 𝑖

1

2
(𝛾s ±

√2𝑏

√𝑎+√𝑎2+𝑏2

). (7) 

Consider the imaginary part 
𝑏

√𝑎+√𝑎2+𝑏2

 as a function of Ω. We can find the roots for the 

derivative 𝜕 (
𝑏

√𝑎+√𝑎2+𝑏2

) /𝜕Ω = 0, which are: Ω1 =
𝜘𝛾d

𝛾0
 and Ω2 = −

𝛾0𝛾d

𝜘
. The main term is 

Ω1, which provides exact zero for the derivative, therefore the ̃ at Ω1 always has an extremum 

value in the imaginary part. Finally, substitution of Ω1 in Eq. (7) for ± correspond the q-BIC 

with coupling coefficient:   

𝜘q−BIC =
(1−2)√𝛾1𝛾2

(𝛾1−𝛾2)
. (8) 

In an ideal case, if this condition (8) is met, one of the solutions to the Hamiltonian beco-
mes purely real, and the second will have double losses. The purely real eigenvalue of the 
Hamiltonian will correspond to a bound state in the continuum with infinite quality factor. 
But for a finite open resonator, unlike periodic metasurfaces [S2], an infinite quality factor 
cannot be realized as a consequence of finiteness in all three dimensions, but if this condition 
is met, the quality factor of one of the modes increases by several orders of magnitude. 

The coupling coefficient 𝜘 of two modes can be obtained by fitting the eigenvalues of each 
azimuthal harmonic m using the solution of Hamiltonian (1). Using this method, the eigenva-
lues were fitted and the coupling coefficients 𝜘 for each harmonic were obtained, Figure A1. 
When the 𝜘 is close to be real valued, the strong coupling regime is achived.  

 

Fig. A1 | Coupling coefficient 𝜘 for modes with azimuthal indices m = 3-8. The red and blue dots represent 
the real and imaginary parts of the coupling coefficient, respectively. 
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Section B. Experimental methods  

 

Fig. B1 | (a) The photograph of the experimental setup (anechoic chamber). (b) Calculated and 
experimental extinction spectra σext and (c) calculated near-field distributions. The ring resonator 
parameters are given in the caption to Fig. 2 (c) 

 
Experimental near-fields and far-field extinction spectra were measured in an anechoic 
chamber (Fig. B1(a)). Scattering spectra were measured using broadband rectangular horn 
antennas (frequency range from 0.75 to 18 GHz) and Vector Network Analyzer “Rohde & 
Schwarz”. The experimental sample was located in the middle of the distance between the 
source and receiver antennas, the total distance between which was about 4 meters. This 
experimental setup is suitable for transmission coefficient measurements. If the free-space 

transmission coefficient 𝑆21
𝑏

 and this coefficient with presence of the resonator 𝑆21 are obtai-

ned, then the imaginary part of the relation 𝑆21/𝑆21
𝑏 − 1 is proportional to the scattering cross-

section, according to optical theorem [S3]. The near-field magnetic field distribution was 
measured using only one radiating horn antenna; the second antenna was replaced by a 
Langer EMV Technik magnetic field probe attached to an automatic scanner. 

Our experiments were carried out on a sample with an outer radius Rout = 57.1 mm, an 
inner radius Rin = 46.2 mm, a height h in the range from 23.5 to 27.7 mm, corresponding to 
W/h from 0.393 to 0.464, which covers the entire required range of geometric parameters. 
The dielectric constant of a ceramic sample made of (Ca0.67La0.33)(Al0.33Ti0.67)O3 is ε ≈ 43, and 
the loss is tan 𝛿 ≈  0.4e − 4 at 3GHz. Additional details on the samples preparation can be 
found in [S4]. All experimental data were collected in the frequency range from 2 to 4 GHz 
and TE polarized wave.  

A ring with parameters Rin/Rout = 0.81 and W/h = 0.429 was used as a sensor to determine 
the dielectric constant (Fig. 6). The inner hole was filled with PLA plastic with varying degrees 
of filling (25, 50, 75 and 100%) and lossy substances such as sugar, salt and ECCOSTOCK Pow-
ders [S5] the effective dielectric constant of which depends on density. 

We used COMSOL Multiphysics to calculate extinction spectra σext, eigenvalues, and field 
distributions. Figure B1 (b,c) demonstrates the possibility of unambiguous interpretation of 
resonances in the anti-crossing region due to the calculation of the field distribution in the 
resonator plane. Once again, we note the excellent agreement between the experimental 
and calculated extinction spectra. The magnetic field distribution in the cross-sectional plane 
of the ring resonator is shown in Fig. 2c.  
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Two low-frequency resonances (red and green circles) with two field maxima along the 
radius belong to the axial gallery (r=2, z=2, m=4,5) (marked in Fig. B1(b) with the green circle), 
and resonances with one maximum along the radius (blue and orange) belong to the radial 
gallery (r=1, z=0, m=4,5), marked with red circle. The aspect ratio W/h=0/3986 determines 
the position of the resonances immediately after the anti-crossing of the two galleries.  

Section C. Numerical calculations  
The numerical and theoretical description of photonic properties of dielectric resonators was 
obtained with COMSOL Multiphysics package, which provide calculations of scattering 
spectra, eigenvalues, and field distributions. The scattering maps of the dielectric ring were 
calculated taking into account axial symmetry, which allows to use 2D geometry. To calculate 
the scattering spectra in the low-frequency range, it is enough to sum the finite series of 
cylindrical harmonics [S6]. In all calculations, the scattering cross-section σsca was normalized 
to the geometric shadow, which is equal to S = 2Routh for a dielectric ring resonator and S = 
Lh for a cuboid. 

Scattering spectra obtained experimentally or numerically were interpreted used the 
QNM theory [S7, S8], which makes it possible to obtain the scattering response from each 
mode separately under a plane wave excitation, the sum of all mode contributions provide 
the total scattering spectra. To reproduce the experimental scattering spectrum in Fig. 4, we 
account for 150 quasinormal modes, which were normalized with PML-norm [S9]. 

Using the QNM theory, it can be demonstrated that when changing the incident wave 
incidence orientation, some of the eigenmodes and q-BIC can be forbidden due to symmetry 
[S10]. For this purpose, we calculated the intensities of eigenmodes responses considering 
the incident plane wave orientation for the case of 𝜑 = 0𝑜 (k parallel to the width of the 
cuboid. Fig. C1, left) and 𝜑 = 90𝑜 degrees (k parallel to the length of the cuboid. Fig. C1, right). 

 

Fig. C1 | Map of eigenvalues for the case of two plane wave incidence orientations: (left, k parallel to the width 
of the cuboid) 𝜑 = 0𝑜 deg and (right, k parallel to the length of the cuboid) 90𝑜 deg. Structure: cuboid with the 
same parameters as in Fig. 5 in the main text.  

 
In the case of split ring resonator and cuboid, both the amplitude and the line shape of 

the resonance depend on the incidence angle, and the eigenvalues remain constant. For exa-
mple, Fig. C1 shows that for different orientations of the cuboid relative to the incident plane 
wave,  for the case of 0 degrees of incident wave, it is possible to observe twice as few reso-
nances and anti-crossings in scattering as for 90 degrees. 
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Section D. Cascades of q-BICs in near infrared region  
To demostrate the cascades of q-BICs in resonant nanostructures we consider the ring with 
permittivity ε ≈ 12.145 + 𝑖6.97 ∙ 10−13 [S11], which correspond to Silicon at 𝜆 = 1.45 um near 
the telecom wavelength, and geometrical parameters:  radius ratio Rin/Rout = 0.81, and vari-
able radius-to-height ratio Rout/h in the range from 1.4 to 2.6. Indeed, the cascades are ob-
served for the optical-range materials in both eigenfrequenciec and extinction spectra, as 
shown in Fig. D1. For the azimuthal number 𝑚 = 10  the Q factor achives magnitude of  106 
(Fig. D1(b)), and the increase of Q factor for neighbour harmonics can be fitted with the ex-
ponential function with coefficient of 1.82𝑚 (Fig. 1D (d)).  

When the radius-to-height ratio reaches Rout/h ~ 2.13,  we obtain nanoresonator, which 
support the cascade of q-BICs. In this particular case parameters of the ring are the next: 
width Rout-Rin = 215 nm; outer radius Rout = 1130 nm and height h = 530 nm.  

 

Fig. D1 | Cascades of q-BICs for nanoresonator with permittivity ε ≈ 12.145 + 𝑖6.97 ∙ 10−13. (a) Formation of anti-
crossings for a several azimuthal harmonics from m = 4 to m = 10 (solid-curve branches are the high-Q branches) 
upon changes in the aspect ratio Rout/h. (b) Q factor dependencies on the aspect ratio Rout/h for the high-Q bran-
ches. (c) Calculated extinction spectra for a several aspects ratios Rout/h. (d) Close-to-exponential growth of the 
Q factor with increase of the azimuthal number m. The black dashed curve correspond to the fit function 
𝑒1.82𝑚−2, the pink markers shows the maximal value of Q factor for branches in (b). 
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Section E. Neural Network model for determining permittivity from 

extinction spectra  

 

We used “Python” programming language and “TensorFlow” library to create the model of 

Neural Network (NN).  The scattering map from Fig. 4 (b) in the main text was used as the 

training data. The model tree is shown in Fig. E1., where the number of input neurons corre-

sponds to the number of frequency points of the calculated spectra (N). The experimental 

spectrum was fed to the input of the model. The data were then processed by two neuron 

layers by changing the dimensionality and applying the «ReLu» activation function, and in 

the last layer, the data dimensionality was reduced to a regular column vector using the 

«Softmax» activation function. The output of the “Softmax” is a column vector of the proba-

bilities that a given spectrum corresponds to some filler material with permittivity 𝜀𝑓 in the 

range from 1 to 20. The scalar product of the probability and permittivity vectors is equal to 

the average value of the permittivity in the frequency range under study.  

 

Fig. E1 | The block-scheme of Neural Network with two neural layers with the “ReLu“ activation function, and 
the additional output layer with “Softmax“ activation function. 
 

There are many methods for determining the permittivity in the microwave range, in-
cluding methods using a coaxial conductor [S12], a waveguide [S13], capacitor plates [S14], 
and free-space measurements [S15]. A coaxial conductor is convenient for handling liquids 
and semi-solid materials. Often, this approach requires the purchase of expensive equip-
ment. All methods are typically used for small samples (several hundreds of micrometers 
thick) with low losses and provide accuracy ∼1−3% [S12, S14]. In this work, we propose an 
alternative setup of the contactless method for macroscopic samples, in which the filler ma-
terial is placed inside the hole of ring resonator, and achieve accuracy ∼5%, which is sufficient 
for demonstrating a proof of concept. 
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As for the optical range, we believe that the cascades of q-BICs can be used in sensing 
applications and for amplification of the second harmonic generation, however these effects 
are out of scope of this work. 
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