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Abstract: We study the impact of structural disorder on a

radiative lifetime of symmetry-protected bound state in the

continuum (BIC) and a bright mode in a one-dimensional

periodic chain of coupled Mie resonators. Through exper-

imental, simulation, and theoretical approach, we reveal an

unusual linear decay in the radiative quality factor of the

BIC with the increase of the disorder amplitude, contrasting

with the quadratic decay observed in recent studies.We also

investigate modes with different symmetries and show that

the behavior of the quality factor in a strongly disordered

system depends on the mode’s multipolar origin. In addi-

tion, we found that in a disordered finite chain, the qual-

ity factor of Fabry–Pérot modes is governed by intraband

interactions of modes. To study the behavior of localized

states in disordered systems, we also analyze the emergence
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of Anderson localization. Our findings are pivotal for the

practical application of BICs, particularly in natural and self-

assembled photonic structures where structural disorder

plays a crucial role.

Keywords: bound states in the continuum; Mie resonances;

structural disorder

1 Introduction

The concept of bound states in the continuum (BICs) was

introduced in quantum mechanics in 1929 [1], and over the

last decade, BICs have become a prominent phenomenon

in optics [2]–[14]. BICs are nonradiative states that remain

localized in the continuum of propagating waves of the

environment. In theory, these states have an infinite radia-

tive quality (Q) factor, giving rise to a variety of applica-

tions, including nonlinear optics [2], enhancement of non-

linear harmonic generation [3]–[5], optical modulators, las-

ing [6]–[10], sensing technologies [11], [12], and achieving

strong coupling phenomena [13], [14]. However, practical

aspects such as the finite size of the sample,material absorp-

tion, and defects created during the resonator fabrication

limit the Q factor of BICs [15]–[18]. Nanostructure fabri-

cation techniques like ultraviolet [19] and electron-beam

lithography [18] enable precise structural configurations

with resolutions down to a few nanometers [20]; however,

lithographyoften introduces surface roughness. Amongvar-

ious factors, scattering losses due to fabrication imperfec-

tions or disorder are the primary limitation on the Q value

of BICs, a challenge commonly encountered in the develop-

ment of high-Q on-chip resonators [16], [17], [21].

Structural defects, which can be considered as pertur-

bations introduced to photonic structures, can either dete-

riorate or enhance the optical properties of a structure [22].

Recent studies have highlighted that in systems with inten-

tional structural defects, they can improve electromagnetic

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/nanoph-2025-0225
mailto:bogdan.taurus@gmail.com
mailto:z.sadrieva@metalab.ifmo.ru
https://orcid.org/0000-0001-8299-3226
mailto:ekaterina.maslova@metalab.ifmo.ru
https://orcid.org/0000-0002-6300-7934
https://orcid.org/0000-0002-7701-8247


3134 — R. Nazarov et al.: Mie resonators with structural disorder

field enhancement [23] and localization [24] and stabilize

topological states [25]–[28]. In work [29], structural disorder

leads to the emergence of a bound state in the continuum

band in configurations involvingmultiple chains and layers.

Novel strategies for achieving disorder-resistant ultrahigh

Q factors using Brillouin zone folding in BIC metasurfaces

have been proposed recently [30]. Moreover, a merging BIC

was found to exhibit significantly reduced radiation losses

compared to an isolated BIC within a similarly disordered

metasurface [31]. Overall, the development and stability

of resonant optical effects resistant to structural defects

remain a key challenge in the contemporary nanophotonics

research [23], [32]–[36].

Here, we present both experimental and theoretical

analyses of the Q factor for BIC and guided leaky mode

in a chain of Mie-resonant ceramic disks with structural

disorder. We show that radiative Q factor decreases linearly

with increasing disorder amplitude, in contrast to the one-

dimensional periodic structure composed of two layers of

dielectric rods considered in our previous work [34]. We

verify our results experimentally in the radiofrequency (RF)

range. In contrast to the optical range, RF experiments allow

us to neglect the surface roughness of the structural ele-

ments and consider only their deviation from the initial

position.

2 Regular periodic chain

2.1 Infinite chain

Let us consider an infinite periodic chain of ceramic disks

with period L (see the inset in Figure 1(a)). According to

Bloch’s theorem, the electric field of an eigenmode in a

coaxial structure can be written as:

E(r, 𝜙, z) = Um,kz
(r, z)e±ikzz±im𝜙, (1)

where kz is the Bloch wave vector, m is the projection of

the angular momentum (magnetic quantum number), and

Um,kz
(r, z) is the periodic function of z with period L. The

modes propagating in the+z and−z directions are degener-
ate, which leads to± signs in the exponential. Similarly, due

to the rotational symmetry, modes with ±im𝜙 are degener-

ate. The periodic Bloch amplitude can be expanded into a

Fourier series:

Um,kz
(r, z) =

∑
n

C
n
m,kz

(r)ei2𝜋nz∕L, (2)

where C
n
m,kz

(r) is the Fourier coefficient and n is an inte-

ger indicating the diffraction order. In the subwavelength

regime, 𝜆 > L, we only have one open diffraction channel,

(a)

(b) (c)

Figure 1: Eigenmode analysis. (a) Band diagram for the infinite chain

of the ceramic disks. The circles show the eigenfrequencies of the finite

chain consisting of 10 disks. The inset shows a 3D model of the chain.

(b) Radiative losses dependencies for eigenmodes of the infinite chain

in the presence and absence of loss. (c) Side and front views of the distri-

bution of the azimuthal electric field of the MD and MQ eigenmodes.

i.e., only the zeroth Fourier coefficient C0
m,kz

(r) is nonzero

and contributes to the far-field.

The modes with m = 0 have well distinctive polariza-

tions, i.e., they can be divided into purely magnetic (TE)

and electric (TM) types, while the modes with m ≠ 0 have

a hybrid polarization [37]. Ought to this fact the modes with

m = 0 can be symmetry-protected BICs at theΓ-point, while
modes with m ≠ 0 can turn into a BIC only due to fine

tuning parameters of the system. An additional advantage

of the modes with m = 0 from the experimental point of

view is that they can be selectively excited by the magnetic

of electric probe antenna. Therefore, further we will focus

only to themodes withm = 0.Wewill study two fundamen-

tal TE (magnetic) modes representing a chain of coupled

magnetic dipoles (MD) andmagnetic quadrupoles (MQ). The

polarization of the modes is the following E = (0, E𝜙, 0) and

H = (Hr, 0,Hz).

We start our study with numerical simulations of the

eigenmodes of the infinite chain composed of ceramic disks
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with permittivity 𝜀 = 44, loss tangent tan𝛿 = 10−4, disk

radius R = 15 mm, disk height h = 20 mm, and chain period

L = 34 mm. The fundamental magnetic Mie modes of the

disk are magnetic dipole (MD) and magnetic quadrupole

(MQ). Their field distribution is shown in Figure 1(c). Due

to the coupling of the disks, the MD and MQ bands are

formed. Figure 1(a) shows the band diagram of the infinite

chain, where the bottom branch (orange line) corresponds

to the MD mode and the top branch (blue line) – to the

MQ mode. The complete band structure accounting other

Mie resonances are shown in Figure S1. Although the MQ

mode belongs to the radiative continuum, in fact, in the

Γ point, this state is low-radiative with damping constant

𝛾 = 10−4 GHz in the lossy case. However, without material

absorption, 𝛾 tends toward zero in the center of the Bril-

louin zone (Figure 1(b)). Taking into account the symme-

try of the field distribution, one can conclude that it is

a symmetry-protected BIC [38]. Due to large permittivity,

modes are highly localized within the disks; therefore, the

total Q factor of BIC is limited by the inverse value of tan𝛿,

i.e., about 10,000. In contrast, the MD branch exhibits rather

large radiative losses (orange line in Figure 1(b)), so it corre-

sponds to the bright mode.

2.2 Finite chain

In the experiment, we deal with chains of a finite length.

In this case, the ends of the chain play the role of partially

reflecting mirrors and, thus, the chain can be considered a

Fabry–Pérot resonator. As a result, for a chain of N scatter-

ers, the continuous band of an infinite chain is replaced by

a finite set of N Fabry–Pérot resonances at the frequencies

corresponding to the quantized quasi-wave vector Δkz =
𝜋∕[(N + 1)L] [39], [40]. Therefore, in afinite chain, a genuine

BIC turns into a quasi-BICwith a finiteQ factor. The resonant

state with the highest Q factor has a quantized wave vector

closest to the BIC one. For N = 10, in Figure 1(a), eigenfre-

quencies associated with MD and MQ branches are shown

with circle markers, and quasi-BIC appear in the vicinity of

the Γ point.

3 Effect of disorder

3.1 Numerical analysis

We investigate the effect of structural disorder in theory

and then confirm it with experiments, considering consider

finite chains composed of 10, 30, and 50 disks. We intro-

duce uncorrelated disorder to the structure by shifting the

Figure 2: Schematic representation of a disordered chain of disks

with period L. The disorder is induced by shifting the z-coordinates

of the disks’ centers by 𝛿zi , where i is the number of the disk.

coordinates of the disks’ centers by 𝛿zi along the z-axis

(Figure 2). The shift is given by

𝛿zi = 𝜚iL𝜎, (3)

where 𝜎 is the disorder amplitude, 𝜚i is a random vari-

able distributed uniformly within the interval [−1; 1], and
i is the number of the disk. Thus, by applying 𝛿zi to the

z-coordinates of the disks’ centers, we provide a random

shift and regulate its magnitude by changing 𝜎. To analyze

the evolution of theQ factor, we calculate the eigenmodes of

the chain. In particular, for a given value of 𝜎, an ensemble

of a hundred randomly generated chains are examined.

Among the obtained solutions, we select the fundamental

Fabry–Pérot mode, i.e., the closest resonance to the Γ point,

which could be associated with a quasi-BIC. For N = 10, the

fundamental mode is quite easy to find even for a large 𝜎.

As the chain length increases, a more complex behavior is

observed: (i) many defect modes with electromagnetic field

localized in dimers or trimers (see the field distribution in

the Section V of Supplementary Material) appear; (ii) there

are two sets of similarly modulated Fabry–Pérot modes: the

first, second, and so on caused by the field localization at

the different ends of the chain. To distinguish proper eigen-

modes and perform their statistical analysis, we have devel-

oped and implemented a postprocessing algorithm with

manual control realized in MatLab software. The algorithm

employs the 3-sigma rule for small values of 𝜎. In ambigu-

ous cases, we compared the frequency of a mode with the

average values for the previous 𝜎 using the band diagram.

We avoided defect modes with field localized on dimers and

trimers and prioritized those whose field was distributed

more uniformly and widely along the length of the chain.

Due to the described difficulties, for long chains, we only

considered 𝜎 up to 0.15.

As shownpreviously, due to thefinite size of a structure,

a nonradiative genuine BIC transforms into a quasi-BICwith

a finite Q factor [40], [41]. In addition to radiative losses, we
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Figure 3: Total Q factor of the quasi-BIC depending on the disorder

parameter 𝜎 for different numbers of disks in the chain N. We examined

an ensemble of 100 chains for each value of disorder amplitude.

The inset shows the Q factor dependencies in double logarithmic scale.

With the background color, we distinguish the leading channel of losses.

For small 𝜎, the losses due to the finite size dominate; for large 𝜎,

structural disorder plays the main role.

introduce material absorption as a tangent loss of tan𝛿 =
10−4, estimated from Ref. [42]. For high-refractive index

ceramics, in which the electromagnetic field is mainly con-

centrated inside the resonators, the maximum achievable

value of Q is limited by the inverse loss tangent, i.e., 104.

For instance, in a lossless chain of 50 disks, the Q factor of

a quasi-BIC is almost 105, while in the lossy case, it is about

9,000 (see Figure 3, green markers). With increasing N , the

Q factor approaches its limit of 104 defined only by material

absorption.

In general, the presence of disorder leads to the mixing

of modes with the different wave vectors [34], [43]. For an

infinitely long periodic chain, weak disorder leads to the

slight change of the wave vector, which in turn provides

a quadratic decline of radiative lifetime and the Q factor.

This is due to the fact that, in the vicinity of the Γ point,

the dependence of Q factor from wave vector is quadratic

[38]. Moreover, a disorder introduced into the system leads

to additional radiative losses. Thus, the overall Q factor is

determined by

1

Qtot

= 1

QN

+ 1

Qabs

+ 1

Qdis

, (4)

where losses due to the finite size, material absorption, and

parasitic rescattering on structural disorder are summed.

In the case of finite chain, among the observed loss mech-

anisms, the dominant one can be distinguished. While 𝜎 is

small, the Q factor is approximately constant, and its value

is determined by the losses stemming from the finite size

and absorption [34]. For example, for an ordered chain with

N = 10, Q is 2,600, see the blue markers in Figure 3. With

increasing 𝜎, the Q factor becomes sensitive to structural

disorder. Starting from 𝜎 ≈ 0.02, the Q factor decreases

notably. Once the disorder amplitude reaches a threshold of

𝜎 ≈ 0.05, its further increase results in a sublinear decay of

the Q factor, indicating that the scattering effects due to the

structural disorder dominate over those of finite size and

absorption. In otherwords, as the disorder increases, reach-

ing approximately several percent of the period, the intra-

band interactions enhance, resulting in mixing of modes

and decreasing of the Q factor. In this case, as we show

below, the Q factor decay law depends on multipolar origin

of the BIC. Notably, the Q factor decay law tends to a linear

function as the number of discs increases. In contrast to

the obtained results, recently it has been shown that in a

two-layered one-dimensional periodic structure composed

of two arrays of Teflon dielectric rods, Q factor decreases

quadratically with 𝜎 [34]. Since Teflon has a lower per-

mittivity compared to ceramics, we have decided to check

whether the permittivity value affects the Q factor decrease

law, see Figure S4 in the Supplementary Material. We con-

sider 𝜀 = 15 and 𝜀 = 6 and conclude that regardless of its

value, Q decays linearly. For smaller values of 𝜀, the field

is localized weakly, and our method cannot define Q factor

in the case of disorder properly. It is notable that in Ref.

[34] the authors consider a q-BIC associated with amagnetic

dipolemode (MD), whereas our study focuses on amagnetic

quadrupole q-BIC (MQ).We have calculated theQ factor of a

magnetic dipole q-BIC in a ceramic grating with the optical

contrast and cross section similar to those of the chain, see

Figure S9 in Supplementary Material. In addition to simula-

tions, we have developed a theoretical model, see Section 4,

and obtained the Q factor of the magnetic dipole mode in

a chain of lossless circular rods with the same permittivity

as for the disks (see Figure S10 Supplementary Material). As

a result, we have obtained a near-quadratic decaying of

the Q factor of the dipole q-BIC. Thus, within the specified

range of permittivity 6 ≤ 𝜀 ≤ 44, the optical contrast has no

impact on the law governing the decrease in the Q factor,

i.e., the general sublinear behavior is maintained. Based

on the comparison of q-BICs for MD and MQ modes, we

can assume that the Q factor dependence on 𝜎 is related

to the multipolar origin of the mode. It has been shown

recently that in a periodic array with a regular asymme-

try, the scaling law of the Q factor depends on the origin

of the mode [44]. Moreover, disorder acts as an effective

perturbation with respect to the wave vector, leading to a

shift in the position of the q-BIC, which is originally located
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at the Γ point when 𝜎 = 0 (Figure 1(a)). According to the

results of the article [45], the quality factor of the q-BIC for

the different multipoles demonstrates distinct asymptotic

behavior as a function of the wave vector upon deviation

from the Γ point. Following these ideas, rather strong resis-

tance of the quadrupole q-BIC compared to the dipole q-

BIC can be attributed to the high field localization of the

MQ mode, see Figure S11 in Supplementary Material. That

is, unlike dipolar BICs, which show a quadratic decay of the

Q factor due to symmetric perturbations near the Γ-point
[34], [46], the MQ-BIC exhibits a linear decay, illustrating

the influence of its multipolar nature and field localization

properties.

For large 𝜎 values, the difference between the average

Q factors of chains with different lengths starts to decline,

and at 𝜎 > 0.15, it becomes negligible, manifesting spatial

localization of the mode at a scale less than the length of the

structure [34].

In addition to uniform distribution discussed above,

we have investigated the normally distributed random dis-

placements of the disks center of the lossless chain. In

both cases, the Q factor decays almost linearly. More details

are provided in Sections II and IV of the Supplementary

Material. Although only longitudinal disorder is considered

in this study, we expect that transverse disorder would

destroy BIC more slowly than the longitudinal one since

the distance between disks along z is fixed. Furthermore,

the introduction of such disorder disrupts the system’s rota-

tional symmetry. As a result, the evolution of the Q factor

becomesmore complex. However, these suggestions require

more detailed investigation and are beyond the scope of the

present work.

3.2 Experimental study of BIC and non-BIC
modes

We considered a chain of 10 cylindrical resonators made

of a low-loss microwave ceramic material based on the

LaAlO3–CaTiO3 system, with nominal permittivity 𝜀 = 44,

and the tangent loss tan𝛿 = 1 × 10−4 at a frequency of

1 GHz, as previously described in Refs. [39], [40]. Each res-

onator has a diameter of 30 mm and a height of 20 mm. All

the resonators have their axis aligned along a straight line.

To control their positions along their common axis, a holder

made of a microwave transparent material was designed

and fabricated. As the holder material, Styrofoam with

(𝜀 ≈ 1.02− 1.04) and negligible losses was chosen. Despite

its very low weight, this material is rigid enough and has

the sufficient rigidity to ensure precise placement of the res-

onators. A CNC milling machine was used to cut the holder

out of a 5 cm thick foam slab. A cavity was cut out to place

the disc resonators coaxially, with varying spacing between

them.

Tomeasure the transmission and reflection coefficients

of the structure, a Keysight (Agilent) E8362C Vector Net-

work Analyzer (VNA) was used with a pair of magnetic

dipole antennas connected to the VNA ports, see Figure 4

(a). The antennas’ axes were aligned with the axis of the

disk chain. The size of the magnetic antennas was chosen so

that their own resonances (at about 5 GHz) were high above

the frequency band of interest (2–3 GHz). Therefore, in the

frequency band of 2–3 GHz, their parameters are almost

independent of the frequency. Thus, the measured complex

values of S21 of this setup are proportional to the trans-

mission and reflection coefficients of the resonator chain.

Figure 4: Experimental setup and transmittance spectrum of the finite chain. (a) Photo and scheme of the setup and samples. 1 – antennas, 2

– ceramic discs, 3 – foam holder. (b) Comparison of simulated (red curves) and experimental (blue curves) transmission spectrum of the 10-disk chain

after taking into account the spectral shift 𝛿f . Panels (c) and (d) show the distribution of the electric field in the 10-disk chain for MD and MQ

eigenmodes. Gray regions correspond to the radiation continuum, while the region of waveguide (WG) modes is indicated with the background color.
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We needed a large number of frequency samples to ensure

sufficient resolution and carefully observe high-Qmodes in

the transmission spectrum. We decided to take measure-

ments at twenty points in the interval 𝜎 ∈ [0; 0.2] with an
increment of 0.01. For each disorder level 𝜎, we performed

10measurements, corresponding to 10 independent realiza-

tions of the disorder configuration. Then, for each measure-

ment, we plotted the modulus of the vector S12 depending

on the signal frequency and used these plots to determine

the peak in the vicinity of the assumed resonant frequency

f0. It is important to note that, regardless of the level of

disorder, we observe a resonant transmission through the

chain. Examples of transmittance spectra in the presence

of disorder are provided in Figure S8 in Supplementary

Material.

A representative measured transmission spectrum for

a chain of 10 disks placed equidistantly is plotted in

Figure 4(b). We observe two resonant transmission bands

corresponding to the MD and MQ modes. The resonances

lying in the unshaded area correspond to the waveguide

modes, and those in the gray area are leaky modes coupled

to the radiation continuum. The simulated spectra show

good agreement with our experiment, but there are fre-

quency shifts 𝛿f = 0.013 GHz and 𝛿f = 0.022 GHz for the

MD and MQ modes, respectively. Two anomalous peaks

within the band gap observed at about 1.55 and 2 GHz

in experiment correspond to modes with m ≠ 0, compare

with Figure S1 in Supplementary Material. Thesemodes are

excited due to imperfect alignment of antennas.

First, we focus on the MQ mode turning into BIC. We

observe 10 peaks in the spectrum, as it should be for a

chain of 10 disks. The last peak, i.e., the highest-frequency

one, corresponds to a quasi-BIC, and its field distribution

is plotted in Figure 4(c) and (d). The loaded Q factor is

extracted as Q = f0∕Δ f , where Δ f is the full width of the

local maximum in the transmission spectrum at frequency

f0. The width and resonant frequency are extracted by fit-

ting the transmission spectrum with the Fano formula [47].

The calculated and extracted Q factors and the approxima-

tion of the obtained dependencies are plotted in Figure 5.

As we mentioned above, two regions can be discerned in

terms of the dominant loss mechanism. At low 𝜎, Q factor is

mainly determinedby thematerial absorption and radiative

losses due to the finite size of the structure. However, the

loaded Q is lower than the calculated one by∼700. It can be
explained by coupling to antennas and parasitic scattering

due to noncoaxial arrangement of the disks in the chain [40].

As the disorder amplitude increases, the difference becomes

less significant, and both theoretical and experimental Q

factors decay linearly with respect to 𝜎.

Figure 5: Theoretical and experimental dependencies of the total Q

factor of a quasi-BIC on the disorder parameter. The markers show the

average Q, while bars depict the standard deviation. In transmittance

measurements, the chain was reassembled 10 times for each disorder

amplitude 𝜎. In simulations, an ensemble of 100 chains was studied.

Next, we consider the MD mode, whose spectrum is

shown in Figure 4(b). Contrary to the MQ mode, here, we

see 7 distinct peaks instead of 10. The other three peaks

cannot be determined even in simulation because of their

low Q factor. The peaks merge with the background or the

4th peak since its shape has notable asymmetry. To analyze

robustness of the MD mode against structural disorder, we

measure transmittance for a chain with varying amplitude

of disorder 𝜎 ≤ 0.15. Then we extract the Q factors of the

4th and 5th peaks and compare them with the predictions

from simulation of eigenmodes, see Figure 6. In the case

𝜎 = 0, the first mode corresponding to the peak with the

lowest frequency has a lowQ factor. The introduction of dis-

order causes this low Q resonance to mix with neighboring

modes, resulting in a constant value of the average quality

factor. Additionally, due to the limitations of the numerical

method, it is not possible to determine this trend more

precisely. Othermodes have a higherQ factor; hence,we can

observe the effect of disorder. Specifically, theQ factor of the

5th peak decays differently from that observed for the MD

quasi-BIC from Figure S10 of Supplementary Material and

the extracted exponent is∼0.5, indicating a sublinear decay
(Figure 6(b)). This results from the complex interaction of it

with neighboring modes, which may have either higher or

lower Q factors.

Although our experimental platform is implemented in

the microwave regime, the observed linear decay trend of

the Q factor is expected to appear in optical systems as well,

particularly in dielectric structures supporting high-quality
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(a)

(b)

Figure 6: Total Q factor dependencies from disorder parameter for leaky

mode. Results on panel (a) corresponds to the 4th peak, while in panel

(b), the fitting results for 5th peak are listed. In the experiment,

5 different measurements were made for one value of disorder,

while we consider 10 different chains during simulation.

multipolar resonances. This is in line with recent optical-

domain studies where multipolar BICs show enhanced

robustness to structural disorder (see Ref. [44]).

4 Analytical model

Here, we develop an analytical model that accounts for

pairwise interactions between all resonators in the array.

This model enables the analysis of the complex eigenfre-

quencies in a disordered array, as it incorporates the depen-

dence of the coupling constant on the distance between the

resonators.

Due to the interaction between Mie modes of the

disks, resonant transmission occurs. It is clearly seen from

Figure 4(b) that the signal drops dramatically for reso-

nances above the light line. It happens due to the coupling to

the radiation continuum. All this can be described in terms

of coupled mode theory [48].

It is well known that the mode amplitude 𝜓 in a sys-

tem of N resonators can be described by the differential

equation as follows [48], [49]:

i ̇|𝜓⟩ = M̂|𝜓⟩, (5)

with matrix elements M̂.

After the substitution of 𝜓 = 𝜓0e
i𝜔t, one can get the

eigenvalue problem for the matrix M̂:

det(M̂ −𝜔Î ) = 0. (6)

Matrix M̂ has a form:

Mi, j = Ω𝛿i,i + 𝜅i, j(1− 𝛿i, j ), (7)

where Ω is the complex resonant frequency of a single

resonator, 𝜅 i, j is the complex coupling coefficient, which

depends on the distance between the i-th and j-th resonators

in the chain, and 𝛿i, j is the Kronecker delta. Here, we assume

that the imaginary part of Ω is only responsible for the

coupling to the radiation continuum due to the absence

of the material absorption. In our case, the diagonal ele-

ments of the matrix M̂ are set to the eigenfrequency of the

quadrupolemodeΩ = 2.141+ 0.001iGHz. Note that we take

into account the interaction between all the disks in the

chain, i.e., we consider all off-diagonal terms of the coupling

matrix. To analyze the coupling coefficients in the case of

disorder, we simulated two lossless disks with varying dis-

tance L using COMSOL Multiphysics and obtained the fre-

quencies of the symmetric and antisymmetric eigenmodes.

Finally, the complex coupling coefficient can be found as

follows [41]:

𝜅 = Ωa −Ωs

2
, (8)

where the indexes i, j are omitted for convenience. The

computed dependence of the complex coupling coefficient

on the random distances between the disks L is shown in

Figure 7.

The effective Hamiltonian M̂ generated for an ensem-

ble of one hundred random samples at the specified ampli-

tude of disorder 𝜎 is employed to calculate the eigenmode

spectrum of the system. TheQ factor of the quasi-BIC for the

chain of 10 lossless disks, calculated via theoretical model

and simulation, is shown in Figure 8(a). The approximation

is also presented for comparison. It can be observed that

the results are in a good agreement, although the standard

deviation is larger than that obtained from COMSOL Mul-

tiphysics simulations. This discrepancy can be attributed
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Figure 7: Dependence of coupling coefficient from the distance between

two disks. The values are obtained by Eq. (8).

to the absence of an automatic filtering mechanism for

selecting meaningful solutions in the theoretical approach,

a feature that is available in COMSOL Multiphysics through

mode profile selection. As it will be discussed further, for a

larger value of 𝜎, we observe mixing of 10th and 9th eigen-

modes. In order to distinguish the quasi-BIC, we employed

either the maximum real part of the frequency filter or

the maximum Q factor filter. However, the two filtering

algorithms yield the same approximation of Q(𝜎). Finally,

both the theoretical approach and the simulation exhibit

a consistent sublinear dependence of the Q factor on the

disorder amplitude.

Furthermore, we examine the behavior of the funda-

mental mode and its two neighboring modes in relation to

the disorder parameter. As illustrated in Figure 8(b), for val-

ues of 𝜎 below approximately 0.05, these modes remain dis-

tinct. However, as the disorder increases, a chaotic regime

emerges, and the fundamental mode (j = 10) predomi-

nantly mixes with the next Fabry–Pérot mode (j = 9). This

provides an explanation for the substantial decrease of the

Q factor, for 𝜎 exceeding the threshold value, as demon-

strated in both the theoretical and experimental results, see

Figure 5.

5 Anderson localization

Anderson localization, characterized by the emergence of

localized states, is a remarkable phenomenon observed

in disordered systems [43], [50], [51]. It has been well

studied in various physical systems, especially in 1D pho-

tonic structures [52]–[54]. In general, disorder disrupts the

effective transport of energy through the system, leading

(a)

(b)

Figure 8: Analytical results. (a) Comparison of Q factor obtained from

the solution of eigenvalue problem and simulation for the lossless chain

of 10 disks. (b) Behavior of the real part of the 8th, 9th, and 10th

eigenfrequencies as a function of the disorder parameter 𝜎 for 100

realizations. j denotes the index of the eigenfrequency. The background

indicate the dominant loss mechanism: finite-size effects for weak

disorder, and structural fluctuation for 𝜎 ≳ 0.5. In addition, these colors

distinguishes the chaotic regime, where the eigenfrequencies begin to

mix, from regular unmixed one.

to suppressed transmission efficiency [55]. In the case of

finite structure, the localization effect occurs when the field

becomes confined to a region smaller than the system’s

characteristic size [56]. This results in the formation of local-

ized states for which the transmitted field decays along the

chain [43].

Here, we examine the influence of disorder on the

transmitted field and the emergence of localized states in

a disordered chain. For this, we calculated the evolution of
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Figure 9: Numerically calculated localization length for the chain of 10

disks. The map highlights the upper and lower band edges and indicates

the frequency of the q-BIC.

a localization length Λ determined by transmittance T as

follows [57]:
1

Λ = − ⟨ln T⟩
NL

, (9)

where N in our case is equal to 10. Figure 9 shows the local-

ization length as a function of 𝜎. It is possible to distinguish

10 bright lines, which correspond to the 10 Fabry–Pérot

modes. Among them, quasi-BIC is observed at the highest

frequency. Moreover, the behavior of localization length

indicates the presence of two regimes (Figure 9). Namely,

at small 𝜎, the resonant modes are well separated, while

as the disorder increases, they start to mix. At the first

regime, the localization length is comparable to the chain

length or longer. The localization length is physically limited

by both the finite chain size and the presence of nonzero

material absorption. At the second regime, the localization

length decreases dramatically, indicating the emergence of

Anderson-like localization [43], [51], [57]. This, in turn, leads

to the appearance of the spatial localized field along the

disordered chain [58]. This behavior of the modes is the

same as shown in Figure 8(b).

Furthermore, the localization length assumes small but

nonzero in the vicinity of the band edgewithin the band gap

(Figure 9). The band gap facilitates the formation of a highly

localized field in a small region of the disordered system

[57]. However, it is important to note that, irrespective of the

level of disorder, both the simulation and the experiment

demonstrate a resonant transmission through the chain,

as illustrated in Figure S13 in the Supplementary Material.

This fact serves to prove that our investigation is focused

on the destroying of BIC rather than the spatial localization

of the field in disordered media. In addition, while BICs

arise due to the symmetry of modes in periodic systems,

Anderson localization occurs as a result of strong disorder.

In our system, increased disorder leads to mode mixing

and a transition from extended quasi-BIC states to localized

states, forming a bridge between the two regimes.

6 Conclusions

In conclusion, we have studied how uncorrelated structural

disorder affects a symmetry-protected at-Γ BIC and a non-

BIC mode in a one-dimensional periodic array composed

of ceramic disks. In the experiment, we have selectively

excited magnetic quadrupole and magnetic dipole modes

with zero orbital angular momentum and measured the

transmission spectra using coaxially placed loop antennas.

We have extracted the Q factor from the experimental

data for arrays with 10 disks, revealing different asymptotic

depends of the Q factor on the disorder amplitude for the

symmetry-protected BIC and non-BIC modes, respectively.

Moreover, coupled mode theory predicts a sublinear decay

of theQ factor, which is corroborated by both our numerical

simulations and experimental results. The behavior of theQ

factor for themagnetic dipolemodehas been examined, and

awell-knownquadratic decay has been revealed. Therefore,

we can conclude that, in the case of strongly disordered

finite chain, where neighboring modes start to mix and

Anderson localization appears, the intraband interaction

became significant, and the Q factor decreasing depends on

the multipole origin of the quasi-BIC. Moreover, we found

that in a disordered finite chain, the quality factor behavior

depends on the resonance order and its interaction with

neighboring modes, which may have either high or low Q

factors. Additionally, theoretical analysis predicts the range

of disorder amplitude at which the chaotic regime emerges,

which aligns with the estimated value from the simulations.
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