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Abstract: We study the impact of structural disorder on a
radiative lifetime of symmetry-protected bound state in the
continuum (BIC) and a bright mode in a one-dimensional
periodic chain of coupled Mie resonators. Through exper-
imental, simulation, and theoretical approach, we reveal an
unusual linear decay in the radiative quality factor of the
BIC with the increase of the disorder amplitude, contrasting
with the quadratic decay observed in recent studies. We also
investigate modes with different symmetries and show that
the behavior of the quality factor in a strongly disordered
system depends on the mode’s multipolar origin. In addi-
tion, we found that in a disordered finite chain, the qual-
ity factor of Fabry—Pérot modes is governed by intraband
interactions of modes. To study the behavior of localized
states in disordered systems, we also analyze the emergence

*Corresponding author: Andrey Bogdanov, Qingdao Innovation and
Development Center of Harbin Engineering University, Qingdao, 266500,
China; and School of Physics and Engineering, ITMO University, St. Peters-
burg, 197101, Russia, E-mail: bogdan.taurus@gmail.com

Ravshanjon Nazarov and Zarina Kondratenko (Sadrieva), Qingdao
Innovation and Development Center of Harbin Engineering University,
Qingdao, 266500, China; and School of Physics and Engineering, ITMO
University, St. Petersburg, 197101, Russia,

E-mail: z.sadrieva@metalab.ifmo.ru (Z. Kondratenko (Sadrieva)).
https://orcid.org/0000-0001-8299-3226 (Z. Kondratenko (Sadrieva))
Denis Khanabiev, Elizaveta Chernysheva, Alexandra Dudnikova,
Mikhail Sidorenko and Ekaterina Maslova, School of Physics and
Engineering, ITMO University, St. Petersburg, 197101, Russia,

E-mail: ekaterina.maslova@metalab.ifmo.ru (E. Maslova).
https://orcid.org/0000-0002-6300-7934 (E. Maslova)

Vyacheslav Istomin, Physics and Mathematics Lyceum 239, St. Peters-
burg, 191144, Russia

Jinhui Shi, Qingdao Innovation and Development Center of Harbin Engi-
neering University, Qingdao, 266500, China.
https://orcid.org/0000-0002-7701-8247

of Anderson localization. Our findings are pivotal for the
practical application of BICs, particularly in natural and self-
assembled photonic structures where structural disorder
plays a crucial role.
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1 Introduction

The concept of bound states in the continuum (BICs) was
introduced in quantum mechanics in 1929 [1], and over the
last decade, BICs have become a prominent phenomenon
in optics [2]-[14]. BICs are nonradiative states that remain
localized in the continuum of propagating waves of the
environment. In theory, these states have an infinite radia-
tive quality (Q) factor, giving rise to a variety of applica-
tions, including nonlinear optics [2], enhancement of non-
linear harmonic generation [3]-[5], optical modulators, las-
ing [6]-[10], sensing technologies [11], [12], and achieving
strong coupling phenomena [13], [14]. However, practical
aspects such as the finite size of the sample, material absorp-
tion, and defects created during the resonator fabrication
limit the Q factor of BICs [15]-[18]. Nanostructure fabri-
cation techniques like ultraviolet [19] and electron-beam
lithography [18] enable precise structural configurations
with resolutions down to a few nanometers [20]; however,
lithography often introduces surface roughness. Among var-
ious factors, scattering losses due to fabrication imperfec-
tions or disorder are the primary limitation on the Q value
of BICs, a challenge commonly encountered in the develop-
ment of high-Q on-chip resonators [16], [17], [21].

Structural defects, which can be considered as pertur-
bations introduced to photonic structures, can either dete-
riorate or enhance the optical properties of a structure [22].
Recent studies have highlighted that in systems with inten-
tional structural defects, they can improve electromagnetic

B 0pen Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/nanoph-2025-0225
mailto:bogdan.taurus@gmail.com
mailto:z.sadrieva@metalab.ifmo.ru
https://orcid.org/0000-0001-8299-3226
mailto:ekaterina.maslova@metalab.ifmo.ru
https://orcid.org/0000-0002-6300-7934
https://orcid.org/0000-0002-7701-8247

3134 =— R.Nazarov et al.: Mie resonators with structural disorder

field enhancement [23] and localization [24] and stabilize
topological states [25]-[28]. In work [29], structural disorder
leads to the emergence of a bound state in the continuum
band in configurations involving multiple chains and layers.
Novel strategies for achieving disorder-resistant ultrahigh
Q factors using Brillouin zone folding in BIC metasurfaces
have been proposed recently [30]. Moreover, a merging BIC
was found to exhibit significantly reduced radiation losses
compared to an isolated BIC within a similarly disordered
metasurface [31]. Overall, the development and stability
of resonant optical effects resistant to structural defects
remain a key challenge in the contemporary nanophotonics
research [23], [32]-[36].

Here, we present both experimental and theoretical
analyses of the Q factor for BIC and guided leaky mode
in a chain of Mie-resonant ceramic disks with structural
disorder. We show that radiative Q factor decreases linearly
with increasing disorder amplitude, in contrast to the one-
dimensional periodic structure composed of two layers of
dielectric rods considered in our previous work [34]. We
verify our results experimentally in the radiofrequency (RF)
range. In contrast to the optical range, RF experiments allow
us to neglect the surface roughness of the structural ele-
ments and consider only their deviation from the initial
position.

2 Regular periodic chain

2.1 Infinite chain

Let us consider an infinite periodic chain of ceramic disks
with period L (see the inset in Figure 1(a)). According to
Bloch’s theorem, the electric field of an eigenmode in a
coaxial structure can be written as:

E(r, $,2) = Uy, (1, 2)ex"7Em9, 00

where k, is the Bloch wave vector, m is the projection of
the angular momentum (magnetic quantum number), and
Uk, (r, 2) is the periodic function of z with period L. The
modes propagating in the +z and —z directions are degener-
ate, which leads to + signs in the exponential. Similarly, due
to the rotational symmetry, modes with +im¢ are degener-
ate. The periodic Bloch amplitude can be expanded into a
Fourier series:

Uy, (1,2) = Y Ch (et @
n

where C} , (r) is the Fourier coefficient and n is an inte-
ger indicating the diffraction order. In the subwavelength
regime, 4 > L, we only have one open diffraction channel,
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Figure 1: Eigenmode analysis. (a) Band diagram for the infinite chain

of the ceramic disks. The circles show the eigenfrequencies of the finite
chain consisting of 10 disks. The inset shows a 3D model of the chain.

(b) Radiative losses dependencies for eigenmodes of the infinite chain

in the presence and absence of loss. (c) Side and front views of the distri-
bution of the azimuthal electric field of the MD and MQ eigenmodes.

i.e,, only the zeroth Fourier coefficient Com’k (r) is nonzero
and contributes to the far-field. ’

The modes with m = 0 have well distinctive polariza-
tions, i.e., they can be divided into purely magnetic (TE)
and electric (TM) types, while the modes with m # 0 have
a hybrid polarization [37]. Ought to this fact the modes with
m = 0 can be symmetry-protected BICs at the ['-point, while
modes with m # 0 can turn into a BIC only due to fine
tuning parameters of the system. An additional advantage
of the modes with m = 0 from the experimental point of
view is that they can be selectively excited by the magnetic
of electric probe antenna. Therefore, further we will focus
only to the modes with m = 0. We will study two fundamen-
tal TE (magnetic) modes representing a chain of coupled
magnetic dipoles (MD) and magnetic quadrupoles (MQ). The
polarization of the modes is the following E = (0, E;, 0) and
H=(H,,0,H,).

We start our study with numerical simulations of the
eigenmodes of the infinite chain composed of ceramic disks
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with permittivity e = 44, loss tangent tans =107, disk
radius R = 15 mm, disk height h = 20 mm, and chain period
L = 34 mm. The fundamental magnetic Mie modes of the
disk are magnetic dipole (MD) and magnetic quadrupole
(MQ). Their field distribution is shown in Figure 1(c). Due
to the coupling of the disks, the MD and MQ bands are
formed. Figure 1(a) shows the band diagram of the infinite
chain, where the bottom branch (orange line) corresponds
to the MD mode and the top branch (blue line) - to the
MQ mode. The complete band structure accounting other
Mie resonances are shown in Figure S1. Although the MQ
mode belongs to the radiative continuum, in fact, in the
I point, this state is low-radiative with damping constant
y = 10~* GHz in the lossy case. However, without material
absorption, y tends toward zero in the center of the Bril-
louin zone (Figure 1(b)). Taking into account the symme-
try of the field distribution, one can conclude that it is
a symmetry-protected BIC [38]. Due to large permittivity,
modes are highly localized within the disks; therefore, the
total Q factor of BIC is limited by the inverse value of tané,
i.e., about 10,000. In contrast, the MD branch exhibits rather
large radiative losses (orange line in Figure 1(b)), so it corre-
sponds to the bright mode.

2.2 Finite chain

In the experiment, we deal with chains of a finite length.
In this case, the ends of the chain play the role of partially
reflecting mirrors and, thus, the chain can be considered a
Fabry—Pérot resonator. As a result, for a chain of N scatter-
ers, the continuous band of an infinite chain is replaced by
a finite set of N Fabry—Pérot resonances at the frequencies
corresponding to the quantized quasi-wave vector Ak, =
7 /[(N + L] [39], [40]. Therefore, in a finite chain, a genuine
BIC turns into a quasi-BIC with a finite Q factor. The resonant
state with the highest Q factor has a quantized wave vector
closest to the BIC one. For N = 10, in Figure 1(a), eigenfre-
quencies associated with MD and MQ branches are shown
with circle markers, and quasi-BIC appear in the vicinity of
the I point.

3 Effect of disorder

3.1 Numerical analysis

We investigate the effect of structural disorder in theory
and then confirm it with experiments, considering consider
finite chains composed of 10, 30, and 50 disks. We intro-
duce uncorrelated disorder to the structure by shifting the
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Figure 2: Schematic representation of a disordered chain of disks
with period L. The disorder is induced by shifting the z-coordinates
of the disks’ centers by 6z, where i is the number of the disk.

coordinates of the disks’ centers by 6z; along the z-axis
(Figure 2). The shift is given by

5Zi = OiLU, (3)

where o is the disorder amplitude, o; is a random vari-
able distributed uniformly within the interval [—1; 1], and
i is the number of the disk. Thus, by applying 6z; to the
z-coordinates of the disks’ centers, we provide a random
shift and regulate its magnitude by changing ¢. To analyze
the evolution of the Q factor, we calculate the eigenmodes of
the chain. In particular, for a given value of ¢, an ensemble
of a hundred randomly generated chains are examined.
Among the obtained solutions, we select the fundamental
Fabry-Pérot mode, i.e., the closest resonance to the I" point,
which could be associated with a quasi-BIC. For N = 10, the
fundamental mode is quite easy to find even for a large o.
As the chain length increases, a more complex behavior is
observed: (i) many defect modes with electromagnetic field
localized in dimers or trimers (see the field distribution in
the Section V of Supplementary Material) appear; (ii) there
are two sets of similarly modulated Fabry—Pérot modes: the
first, second, and so on caused by the field localization at
the different ends of the chain. To distinguish proper eigen-
modes and perform their statistical analysis, we have devel-
oped and implemented a postprocessing algorithm with
manual control realized in MatLab software. The algorithm
employs the 3-sigma rule for small values of ¢. In ambigu-
ous cases, we compared the frequency of a mode with the
average values for the previous ¢ using the band diagram.
We avoided defect modes with field localized on dimers and
trimers and prioritized those whose field was distributed
more uniformly and widely along the length of the chain.
Due to the described difficulties, for long chains, we only
considered o up to 0.15.

As shown previously, due to the finite size of a structure,
anonradiative genuine BIC transforms into a quasi-BIC with
a finite Q factor [40], [41]. In addition to radiative losses, we
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Figure 3: Total Q factor of the quasi-BIC depending on the disorder
parameter o for different numbers of disks in the chain N. We examined
an ensemble of 100 chains for each value of disorder amplitude.

The inset shows the Q factor dependencies in double logarithmic scale.
With the background color, we distinguish the leading channel of losses.
For small o, the losses due to the finite size dominate; for large o,
structural disorder plays the main role.

introduce material absorption as a tangent loss of tané =
107, estimated from Ref. [42]. For high-refractive index
ceramics, in which the electromagnetic field is mainly con-
centrated inside the resonators, the maximum achievable
value of Q is limited by the inverse loss tangent, i.e., 10%.
For instance, in a lossless chain of 50 disks, the Q factor of
a quasi-BIC is almost 10°, while in the lossy case, it is about
9,000 (see Figure 3, green markers). With increasing N, the
Q factor approaches its limit of 10* defined only by material
absorption.

In general, the presence of disorder leads to the mixing
of modes with the different wave vectors [34], [43]. For an
infinitely long periodic chain, weak disorder leads to the
slight change of the wave vector, which in turn provides
a quadratic decline of radiative lifetime and the Q factor.
This is due to the fact that, in the vicinity of the I" point,
the dependence of Q factor from wave vector is quadratic
[38]. Moreover, a disorder introduced into the system leads
to additional radiative losses. Thus, the overall Q factor is
determined by

1 1 1 1
—=_—+ + = @
Qtot QN Qabs

Quis

where losses due to the finite size, material absorption, and
parasitic rescattering on structural disorder are summed.
In the case of finite chain, among the observed loss mech-
anisms, the dominant one can be distinguished. While o is
small, the Q factor is approximately constant, and its value
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is determined by the losses stemming from the finite size
and absorption [34]. For example, for an ordered chain with
N =10, Q is 2,600, see the blue markers in Figure 3. With
increasing o, the Q factor becomes sensitive to structural
disorder. Starting from o = 0.02, the Q factor decreases
notably. Once the disorder amplitude reaches a threshold of
o = 0.05, its further increase results in a sublinear decay of
the Q factor, indicating that the scattering effects due to the
structural disorder dominate over those of finite size and
absorption. In other words, as the disorder increases, reach-
ing approximately several percent of the period, the intra-
band interactions enhance, resulting in mixing of modes
and decreasing of the Q factor. In this case, as we show
below, the Q factor decay law depends on multipolar origin
of the BIC. Notably, the Q factor decay law tends to a linear
function as the number of discs increases. In contrast to
the obtained results, recently it has been shown that in a
two-layered one-dimensional periodic structure composed
of two arrays of Teflon dielectric rods, Q factor decreases
quadratically with ¢ [34]. Since Teflon has a lower per-
mittivity compared to ceramics, we have decided to check
whether the permittivity value affects the Q factor decrease
law, see Figure S4 in the Supplementary Material. We con-
sider € =15 and € = 6 and conclude that regardless of its
value, Q decays linearly. For smaller values of ¢, the field
is localized weakly, and our method cannot define Q factor
in the case of disorder properly. It is notable that in Ref.
[34] the authors consider a g-BIC associated with a magnetic
dipole mode (MD), whereas our study focuses on a magnetic
quadrupole g-BIC (MQ). We have calculated the Q factor of a
magnetic dipole g-BIC in a ceramic grating with the optical
contrast and cross section similar to those of the chain, see
Figure S9 in Supplementary Material. In addition to simula-
tions, we have developed a theoretical model, see Section 4,
and obtained the Q factor of the magnetic dipole mode in
a chain of lossless circular rods with the same permittivity
as for the disks (see Figure S10 Supplementary Material). As
a result, we have obtained a near-quadratic decaying of
the Q factor of the dipole g-BIC. Thus, within the specified
range of permittivity 6 < £ < 44, the optical contrast has no
impact on the law governing the decrease in the Q factor
ie., the general sublinear behavior is maintained. Based
on the comparison of q-BICs for MD and MQ modes, we
can assume that the Q factor dependence on o is related
to the multipolar origin of the mode. It has been shown
recently that in a periodic array with a regular asymme-
try, the scaling law of the Q factor depends on the origin
of the mode [44]. Moreover, disorder acts as an effective
perturbation with respect to the wave vector, leading to a
shift in the position of the q-BIC, which is originally located
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at the I point when o = 0 (Figure 1(a)). According to the
results of the article [45], the quality factor of the g-BIC for
the different multipoles demonstrates distinct asymptotic
behavior as a function of the wave vector upon deviation
from the I" point. Following these ideas, rather strong resis-
tance of the quadrupole g-BIC compared to the dipole g-
BIC can be attributed to the high field localization of the
MQ mode, see Figure S11 in Supplementary Material. That
is, unlike dipolar BICs, which show a quadratic decay of the
Q factor due to symmetric perturbations near the I'-point
[34], [46], the MQ-BIC exhibits a linear decay, illustrating
the influence of its multipolar nature and field localization
properties.

For large o values, the difference between the average
Q factors of chains with different lengths starts to decline,
and at o > 0.15, it becomes negligible, manifesting spatial
localization of the mode at a scale less than the length of the
structure [34].

In addition to uniform distribution discussed above,
we have investigated the normally distributed random dis-
placements of the disks center of the lossless chain. In
both cases, the Q factor decays almost linearly. More details
are provided in Sections II and IV of the Supplementary
Material. Although only longitudinal disorder is considered
in this study, we expect that transverse disorder would
destroy BIC more slowly than the longitudinal one since
the distance between disks along z is fixed. Furthermore,
the introduction of such disorder disrupts the system’s rota-
tional symmetry. As a result, the evolution of the Q factor
becomes more complex. However, these suggestions require
more detailed investigation and are beyond the scope of the
present work.

(b)

EC WG modes
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3.2 Experimental study of BIC and non-BIC
modes

We considered a chain of 10 cylindrical resonators made
of a low-loss microwave ceramic material based on the
LaAlO;-CaTiO4 system, with nominal permittivity € = 44,
and the tangent loss tand =1 x 10~*at a frequency of
1 GHz, as previously described in Refs. [39], [40]. Each res-
onator has a diameter of 30 mm and a height of 20 mm. All
the resonators have their axis aligned along a straight line.
To control their positions along their common axis, a holder
made of a microwave transparent material was designed
and fabricated. As the holder material, Styrofoam with
(e =~ 1.02 — 1.04) and negligible losses was chosen. Despite
its very low weight, this material is rigid enough and has
the sufficient rigidity to ensure precise placement of the res-
onators. A CNC milling machine was used to cut the holder
out of a 5 cm thick foam slab. A cavity was cut out to place
the disc resonators coaxially, with varying spacing between
them.

To measure the transmission and reflection coefficients
of the structure, a Keysight (Agilent) E8362C Vector Net-
work Analyzer (VNA) was used with a pair of magnetic
dipole antennas connected to the VNA ports, see Figure 4
(a). The antennas’ axes were aligned with the axis of the
disk chain. The size of the magnetic antennas was chosen so
that their own resonances (at about 5 GHz) were high above
the frequency band of interest (2—3 GHz). Therefore, in the
frequency band of 2-3 GHz, their parameters are almost
independent of the frequency. Thus, the measured complex
values of S,; of this setup are proportional to the trans-
mission and reflection coefficients of the resonator chain.

WG modesRC
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after taking into account the spectral shift 6f. Panels (c) and (d) show the distribution of the electric field in the 10-disk chain for MD and MQ
eigenmodes. Gray regions correspond to the radiation continuum, while the region of waveguide (WG) modes is indicated with the background color.
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We needed a large number of frequency samples to ensure
sufficient resolution and carefully observe high-Q modes in
the transmission spectrum. We decided to take measure-
ments at twenty points in the interval ¢ € [0; 0.2] with an
increment of 0.01. For each disorder level o, we performed
10 measurements, corresponding to 10 independent realiza-
tions of the disorder configuration. Then, for each measure-
ment, we plotted the modulus of the vector S;, depending
on the signal frequency and used these plots to determine
the peak in the vicinity of the assumed resonant frequency
fo- It is important to note that, regardless of the level of
disorder, we observe a resonant transmission through the
chain. Examples of transmittance spectra in the presence
of disorder are provided in Figure S8 in Supplementary
Material.

A representative measured transmission spectrum for
a chain of 10 disks placed equidistantly is plotted in
Figure 4(b). We observe two resonant transmission bands
corresponding to the MD and MQ modes. The resonances
lying in the unshaded area correspond to the waveguide
modes, and those in the gray area are leaky modes coupled
to the radiation continuum. The simulated spectra show
good agreement with our experiment, but there are fre-
quency shifts 6f = 0.013 GHz and 6f = 0.022 GHz for the
MD and MQ modes, respectively. Two anomalous peaks
within the band gap observed at about 1.55 and 2 GHz
in experiment correspond to modes with m # 0, compare
with Figure S1in Supplementary Material. These modes are
excited due to imperfect alignment of antennas.

First, we focus on the MQ mode turning into BIC. We
observe 10 peaks in the spectrum, as it should be for a
chain of 10 disks. The last peak, i.e., the highest-frequency
one, corresponds to a quasi-BIC, and its field distribution
is plotted in Figure 4(c) and (d). The loaded Q factor is
extracted as Q = f;/Af, where Af is the full width of the
local maximum in the transmission spectrum at frequency
fo- The width and resonant frequency are extracted by fit-
ting the transmission spectrum with the Fano formula [47].
The calculated and extracted @Q factors and the approxima-
tion of the obtained dependencies are plotted in Figure 5.
As we mentioned above, two regions can be discerned in
terms of the dominant loss mechanism. At low o, Q factor is
mainly determined by the material absorption and radiative
losses due to the finite size of the structure. However, the
loaded Q is lower than the calculated one by ~700. It can be
explained by coupling to antennas and parasitic scattering
due to noncoaxial arrangement of the disks in the chain [40].
As the disorder amplitude increases, the difference becomes
less significant, and both theoretical and experimental Q
factors decay linearly with respect to o.
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Figure 5: Theoretical and experimental dependencies of the total Q
factor of a quasi-BIC on the disorder parameter. The markers show the
average Q, while bars depict the standard deviation. In transmittance
measurements, the chain was reassembled 10 times for each disorder
amplitude ¢. In simulations, an ensemble of 100 chains was studied.

Next, we consider the MD mode, whose spectrum is
shown in Figure 4(b). Contrary to the MQ mode, here, we
see 7 distinct peaks instead of 10. The other three peaks
cannot be determined even in simulation because of their
low Q factor. The peaks merge with the background or the
4th peak since its shape has notable asymmetry. To analyze
robustness of the MD mode against structural disorder, we
measure transmittance for a chain with varying amplitude
of disorder ¢ < 0.15. Then we extract the Q factors of the
4th and 5th peaks and compare them with the predictions
from simulation of eigenmodes, see Figure 6. In the case
o =0, the first mode corresponding to the peak with the
lowest frequency has a low Q factor. The introduction of dis-
order causes this low Q resonance to mix with neighboring
modes, resulting in a constant value of the average quality
factor. Additionally, due to the limitations of the numerical
method, it is not possible to determine this trend more
precisely. Other modes have a higher Q factor; hence, we can
observe the effect of disorder. Specifically, the Q factor of the
5th peak decays differently from that observed for the MD
quasi-BIC from Figure S10 of Supplementary Material and
the extracted exponent is ~0.5, indicating a sublinear decay
(Figure 6(b)). This results from the complex interaction of it
with neighboring modes, which may have either higher or
lower Q factors.

Although our experimental platform is implemented in
the microwave regime, the observed linear decay trend of
the Q factor is expected to appear in optical systems as well,
particularly in dielectric structures supporting high-quality
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5 different measurements were made for one value of disorder,

while we consider 10 different chains during simulation.

multipolar resonances. This is in line with recent optical-
domain studies where multipolar BICs show enhanced
robustness to structural disorder (see Ref. [44]).

4 Analytical model

Here, we develop an analytical model that accounts for
pairwise interactions between all resonators in the array.
This model enables the analysis of the complex eigenfre-
quencies in a disordered array, as it incorporates the depen-
dence of the coupling constant on the distance between the
resonators.

Due to the interaction between Mie modes of the
disks, resonant transmission occurs. It is clearly seen from
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Figure 4(b) that the signal drops dramatically for reso-
nances above the light line. It happens due to the coupling to
the radiation continuum. All this can be described in terms
of coupled mode theory [48].

It is well known that the mode amplitude y in a sys-
tem of N resonators can be described by the differential
equation as follows [48], [49]:

ily) = Mly), 6)

with matrix elements M.
After the substitution of y = y e, one can get the
eigenvalue problem for the matrix M:

det(M — wl) = 0. 6)
Matrix M has a form:
Mi,j = Q‘Si,i + Ki,j(l - 51',]'), )

where € is the complex resonant frequency of a single
resonator, k;; is the complex coupling coefficient, which
depends on the distance between the i-th and j-th resonators
in the chain, and 6,»’ j is the Kronecker delta. Here, we assume
that the imaginary part of Q is only responsible for the
coupling to the radiation continuum due to the absence
of the material absorption. In our case, the diagonal ele-
ments of the matrix M are set to the eigenfrequency of the
quadrupole mode € = 2.141 4 0.001i GHz. Note that we take
into account the interaction between all the disks in the
chain, i.e., we consider all off-diagonal terms of the coupling
matrix. To analyze the coupling coefficients in the case of
disorder, we simulated two lossless disks with varying dis-
tance L using COMSOL Multiphysics and obtained the fre-
quencies of the symmetric and antisymmetric eigenmodes.
Finally, the complex coupling coefficient can be found as
follows [41]:

— Qa — Qs

= TR
where the indexes i,j are omitted for convenience. The
computed dependence of the complex coupling coefficient
on the random distances between the disks L is shown in
Figure 7.

The effective Hamiltonian M generated for an ensem-
ble of one hundred random samples at the specified ampli-
tude of disorder ¢ is employed to calculate the eigenmode
spectrum of the system. The Q factor of the quasi-BIC for the
chain of 10 lossless disks, calculated via theoretical model
and simulation, is shown in Figure 8(a). The approximation
is also presented for comparison. It can be observed that
the results are in a good agreement, although the standard
deviation is larger than that obtained from COMSOL Mul-
tiphysics simulations. This discrepancy can be attributed

®
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Figure 7: Dependence of coupling coefficient from the distance between
two disks. The values are obtained by Eq. (8).

to the absence of an automatic filtering mechanism for
selecting meaningful solutions in the theoretical approach,
a feature that is available in COMSOL Multiphysics through
mode profile selection. As it will be discussed further, for a
larger value of o, we observe mixing of 10th and 9th eigen-
modes. In order to distinguish the quasi-BIC, we employed
either the maximum real part of the frequency filter or
the maximum Q factor filter. However, the two filtering
algorithms yield the same approximation of Q(o). Finally,
both the theoretical approach and the simulation exhibit
a consistent sublinear dependence of the Q factor on the
disorder amplitude.

Furthermore, we examine the behavior of the funda-
mental mode and its two neighboring modes in relation to
the disorder parameter. As illustrated in Figure 8(b), for val-
ues of o below approximately 0.05, these modes remain dis-
tinct. However, as the disorder increases, a chaotic regime
emerges, and the fundamental mode (j =10) predomi-
nantly mixes with the next Fabry—Pérot mode (j = 9). This
provides an explanation for the substantial decrease of the
Q factor, for o exceeding the threshold value, as demon-
strated in both the theoretical and experimental results, see
Figure 5.

5 Anderson localization

Anderson localization, characterized by the emergence of
localized states, is a remarkable phenomenon observed
in disordered systems [43], [50], [51]. It has been well
studied in various physical systems, especially in 1D pho-
tonic structures [52]-[54]. In general, disorder disrupts the
effective transport of energy through the system, leading
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Figure 8: Analytical results. (a) Comparison of Q factor obtained from
the solution of eigenvalue problem and simulation for the lossless chain
of 10 disks. (b) Behavior of the real part of the 8th, 9th, and 10th
eigenfrequencies as a function of the disorder parameter ¢ for 100
realizations. j denotes the index of the eigenfrequency. The background
indicate the dominant loss mechanism: finite-size effects for weak
disorder, and structural fluctuation for ¢ 2> 0.5. In addition, these colors
distinguishes the chaotic regime, where the eigenfrequencies begin to
mix, from regular unmixed one.

to suppressed transmission efficiency [55]. In the case of
finite structure, the localization effect occurs when the field
becomes confined to a region smaller than the system’s
characteristic size [56]. This results in the formation of local-
ized states for which the transmitted field decays along the
chain [43].

Here, we examine the influence of disorder on the
transmitted field and the emergence of localized states in
a disordered chain. For this, we calculated the evolution of
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Figure 9: Numerically calculated localization length for the chain of 10
disks. The map highlights the upper and lower band edges and indicates
the frequency of the g-BIC.

a localization length A determined by transmittance T as
follows [57]: . a7
n

AN ®
where N in our case is equal to 10. Figure 9 shows the local-
ization length as a function of ¢. It is possible to distinguish
10 bright lines, which correspond to the 10 Fabry—Pérot
modes. Among them, quasi-BIC is observed at the highest
frequency. Moreover, the behavior of localization length
indicates the presence of two regimes (Figure 9). Namely,
at small o, the resonant modes are well separated, while
as the disorder increases, they start to mix. At the first
regime, the localization length is comparable to the chain
length or longer. The localization length is physically limited
by both the finite chain size and the presence of nonzero
material absorption. At the second regime, the localization
length decreases dramatically, indicating the emergence of
Anderson-like localization [43], [51], [57]. This, in turn, leads
to the appearance of the spatial localized field along the
disordered chain [58]. This behavior of the modes is the
same as shown in Figure 8(b).

Furthermore, the localization length assumes small but
nonzero in the vicinity of the band edge within the band gap
(Figure 9). The band gap facilitates the formation of a highly
localized field in a small region of the disordered system
[57]. However, it is important to note that, irrespective of the
level of disorder, both the simulation and the experiment
demonstrate a resonant transmission through the chain,
as illustrated in Figure S13 in the Supplementary Material.
This fact serves to prove that our investigation is focused
on the destroying of BIC rather than the spatial localization
of the field in disordered media. In addition, while BICs

R. Nazarov et al.: Mie resonators with structural disorder = 3141

arise due to the symmetry of modes in periodic systems,
Anderson localization occurs as a result of strong disorder.
In our system, increased disorder leads to mode mixing
and a transition from extended quasi-BIC states to localized
states, forming a bridge between the two regimes.

6 Conclusions

In conclusion, we have studied how uncorrelated structural
disorder affects a symmetry-protected at-I" BIC and a non-
BIC mode in a one-dimensional periodic array composed
of ceramic disks. In the experiment, we have selectively
excited magnetic quadrupole and magnetic dipole modes
with zero orbital angular momentum and measured the
transmission spectra using coaxially placed loop antennas.
We have extracted the Q factor from the experimental
data for arrays with 10 disks, revealing different asymptotic
depends of the Q factor on the disorder amplitude for the
symmetry-protected BIC and non-BIC modes, respectively.
Moreover, coupled mode theory predicts a sublinear decay
of the Q factor, which is corroborated by both our numerical
simulations and experimental results. The behavior of the Q
factor for the magnetic dipole mode has been examined, and
awell-known quadratic decay has been revealed. Therefore,
we can conclude that, in the case of strongly disordered
finite chain, where neighboring modes start to mix and
Anderson localization appears, the intraband interaction
became significant, and the Q factor decreasing depends on
the multipole origin of the quasi-BIC. Moreover, we found
that in a disordered finite chain, the quality factor behavior
depends on the resonance order and its interaction with
neighboring modes, which may have either high or low Q
factors. Additionally, theoretical analysis predicts the range
of disorder amplitude at which the chaotic regime emerges,
which aligns with the estimated value from the simulations.
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