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Abstract: Electro-optic modulators (EOMs) underpin a wide
range of critical applications in both classical and quan-
tum information processing. While these devices have been
extensively optimized in a wide range of materials from
ferroelectric insulators like lithium niobate to semiconduc-
tors like gallium arsenide and indium phosphide, there is
a need to explore new design and manufacturing methods
with a view towards improving device performance. Here,
we demonstrate true push-pull EOMs in a suspended GaAs
photonic integrated circuit (PIC) platform by exploiting the
orientation induced asymmetry of the Pockels r,; coeffi-
cient, and folding the two arms of a cm-scale Mach—Zehnder
interferometer (MZI) modulator along two orthogonal crys-
tal axes. Our work also shows the potential of incorporat-
ing ideas from micro-electro-mechanical systems (MEMS) in
integrated photonics by demonstrating high-performance
active devices built around cm-scale suspended waveguides
with sub-pm optical mode confinement.

Keywords: electro-optic modulators; photonic integrated
circuits; gallium arsenide; Pockels coefficient

1 Introduction

Electro-optic modulators (EOMs) are critical for mapping
analog and digital signals from the microwave to the optical
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domain for a wide range of applications in both classical and
quantum information processing. These span from devel-
oping transceivers for fiber-optic communication systems
[1], [2] to radio-over-fiber applications in microwave pho-
tonics [3]. Recently, their performance (propagation loss and
electro-optic coupling strength) has been improved to the
point that they are leading candidates for building efficient
microwave to optical photon transducers [4], [5], despite
the ~10°x difference between the wavelengths of the fields
involved (cm for the microwave, pm for the optical) [6]-[8].

Both historically and recently [1], [2], state-of-the-art
EOMs have been built around ferroelectric insulators [9]
like lithium niobate [2], lithium tantalate [10] and barium
titanate [11], [12] due to their high Pockels coefficient and
low intrinsic optical absorption. On the other hand, fer-
roelectric insulators have certain intrinsic material limita-
tions. These include long-term stability exemplified by the
relaxation of the electro-optic response [6] and the resulting
DC bias drift [1], [10], and inertness to reactive ion etching
chemistries. The reliance on Ar-ion based physical etch-
ing techniques, with extensive sidewall redeposition and
waveguide sidewall angles =60 ° [13] makes it difficult to
leverage photonic bandgap structures [14] to shape and
control waveguide dispersion [15], [16]. If we further desire
that the material platform build on and leverage existing
infrastructure investments in microelectronics [10] with a
view towards scalability, integration with active electronics
and long-term unit economic costs, then the choice cannot
be made based purely on device metrics. This is best illus-
trated by the fact that modern data centres rely heavily on
silicon photonics based transceivers [17], even though their
individual device performance lags far behind state-of-the-
art lithium niobate (LN) devices.

These factors make it interesting to continuously push
the performance of EOMs fabricated in semiconductor plat-
forms, in complement to efforts on ferroelectric insulators.
Indium phosphide (InP) has been the traditional material of
choice mainly due to the prospect of being able to mono-
lithically integrate lasers on the same die [18], and there
have been some exciting recent developments on increasing
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component performance and integration density by moving
towards InP-membrane on silicon technology [19]-[21]. We
focusinstead on GaAs with a view towards leveraging exten-
sive existing GaAs microelectronics foundry investments
[22] in a silicon-like electronics to photonics transition, but
note that the ideas developed here are equally applicable
to InP. GaAs EOMs have a long and distinguished history
[23], [24] and have found a niche in space-based (satellite)
applications [25] where GaAs’ radiation hardness and space
qualification (from the electronics side) give it a significant
advantage.

In addition to potential (electronic) foundry compatibil-
ity, another major driver for the pursuit of efficient GaAs
EOMs is that the Ga(AlL In)As material system is the most
extensively studied and well-developed for hosting quan-
tum confined structures, in particular quantum dots and
wells. InAs based quantum dots [26] hosted in a GaAs lat-
tice currently provide the brightest solid-state single photon
sources [27], and are currently the leading candidate for
generating cluster states [28], [29] necessary for photonic
implementations of measurement based quantum comput-
ing (MBQC). Implementing feedforward operations [28], [29]
in MBQC architectures places a premium on integrated high-
performance EOMs.

Despite their long development history, GaAs based
EOMs have shared some common themes. They have gen-
erally relied on vertical epitaxially grown p-i-n diodes [24]
which are reverse biased for the EO effect. To reduce free
carrier absorption and also to account for the weak index
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contrast between GaAs core and AlGaAs cladding layers
(An = 0.2), the mode sizes are typically ~3 pm and the
bend radii >100 pm which limits the component density.
Given that the refractive index of GaAs is comparable to
Si at telecommunication wavelengths [30], one should ide-
ally be able to get silicon-like component density with the
added benefit of high-performance EOMs by increasing the
index contrast, either via suspension [31] or by working
with a gallium arsenide on an insulator platform using
either wafer bonding [32] or membrane transfer [33]. The
question of whether to use suspensions or wafer bond-
ing to build high-performance GaAs devices is an open
one and in many ways mirrors the debate in the LN EOM
community [34]. We take the view that if bonding (and
substrate removal) can be avoided without compromising
device performance [35] and reliability, then one should
do so. Moreover, suspended platforms (and incorporating
MEMS-based approaches) have natural advantages when-
ever opto-mechanical interactions [36] are involved, such as
in building microwave to optical quantum transducers [5]
using acoustics [31] as an intermediary.

We illustrate the benefits of strong (sub-pm) confine-
ment and the resultant reduction in device footprint by
demonstrating true cm-scale push-pull modulators in GaAs.
To clarify, by true, here we are referring to modulators anal-
ogous to X-cut LN [2], wherein the same voltage is applied
to the two arms of the phase modulator, configured as a
MZI, but one gets equal and opposite phase shifts. Unlike
the X-cut LN case, which relies on lateral (in-plane) fields by
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Figure 1: Exploiting orientation induced Pockels’ asymmetry for engineering push-pull EOMs. (a) Schematic view of the suspended GaAs PIC platform
showing the perpendicularly meandering Mach-Zehnder modulator (PeM-MZM, bottom) and racetrack resonator based EOM (top) on a (100) oriented
GaAs wafer, showing the relative position between the electrodes and the underlying waveguides. The inset shows the planar projection of the GaAs
index ellipsoid. Without an applied electric field along the [100] axis, GaAs is optically isotropic in-plane (black circle). When an external electric field is
applied along the [100] axis, the ellipsoid deforms (yellow ellipse) with major and minor axes along the [011] or [011] directions. Key for the PeM-MZM
push-pull operation is that the refractive index change is equal and opposite in the two directions. (b) 2D cross section of suspended GaAs rib
waveguide showing the interaction between the propagating optical field (transverse electric mode field calculated using FEM is overlaid to scale)
and the out of plane DC/RF field (purple streamlines). Device parameters used in the simulations: waveguide width t = 540 nm, rib etch depth

t = 240 nm, top oxide thickness t;ox = 2.2 pm, Al ,Ga, 4As/air gap thickness t,, = 2 pm, electrode thickness t,.. = 460 nm and top electrode width
Weec = 5 pm. The different components in the device are shown in the legend. The linear EO effect induces a refractive index change of An ¢ =1.279
% 107% V=" in the GaAs waveguide due to the applied electric field.
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exploiting the Pockels r,; coefficient and allows the signal
electrode to be located at the centre of two outer ground
planes, in GaAs, the Pockels r,; coefficient requires a ver-
tically oriented field (as illustrated in Figure 1(a) and (b))
which results in equal phase shifts in the two parallel MZI
arms. To build an EOM, therefore, one needs to apply RF
signals anti-phase to the two MZI arms in a centre-tapped
configuration (series push-pull) which requires additional
bias and DC-decoupling circuitry [37]. To work around the
issue in GaAs [38], [39], we use the fact that the application
of a vertical electric field (along the [100], z-axis) breaks
the in-plane refractive index symmetry. Light that is prop-
agating along the [011] crystal axis picks up an equal and
opposite phase shift to that propagating along the [011] axis
(assuming transverse electric polarization, TE mode).

This is illustrated by the (in-plane) index ellipsoid
shown in the inset of Figure 1(a) for one polarity of the ver-
tical electric field. The ellipsoid will flip from being oblate to
prolate as the field switches polarity. By folding the waveg-
uide in the two arms of the MZI to lie (predominantly, ignor-
ing the bends) along the [011] and [011] axes respectively,
one achieves equal and opposite phase shifts in the two
arms. This design is enabled primarily by the strong index
contrast (An =~ 2) enabled by waveguide suspension, which
allows tight folding, while maintaining a compact on-chip
footprint. Building high-performance EOMs while working
with the low r,, coefficient of GaAs requires cm-scale arm
lengths, which we demonstrate below, showing how far
MEMS based ideas can be used to push integrated photonics
platforms.

2 Device design and fabrication

Figure 1(a) shows a schematic of our proposed devices. The
PeM-MZM with the two waveguide arms oriented along the
[011] and [011], respectively, is indicated. Application of a
vertical electric field (an FEM simulation of the electric field
lines are shown in Figure 1(b)) breaks the in-plane refrac-
tive index symmetry and the (in-plane) index ellipsoid is
oriented as shown in the figure inset. Given that GaAs is a
zinc-blende crystal with symmetry group (43m), the change
inrefractive index (An) due to the linear electro-optic effect
using the Pockels r,; coefficient, under the action of a verti-
cally applied electric field can be written as:

1
Angyyy = +§"(3,'” wE 1 00 M

1
Angyg = —énir w1 00 @

where n, is the GaAs refractive index (3.37 at 1,550 nm),
ry = —15pm V! is the relevant Pockels coefficient for
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the electro-optic interaction with a transverse electric (TE)
polarized optical mode in the waveguide and a vertically
oriented (E, 1qq)) electric field (either DC or RF). The equal
and opposite signs of the refractive index change along the
two crystal axes lies at the heart of the push-pull effect
exploited in the PeM-MZM device. There is an additional
quadratic EO effect, which is both significantly smaller, but
more importantly gives equal phase shifts in the two arms,
hence cancels out in this differential scheme. In theory,
for the same applied electric field strength at the waveg-
uide location, the refractive index change for GaAs based
devices is ~5X smaller than equivalent LN devices. To cal-
ibrate the push-pull effect and quantify the field strengths
in the suspended waveguide platform, we also fabricate
racetrack microring resonator based EOMs in the same plat-
form where the sides of the racetrack are oriented along
the crystal axes as shown in Figure 1(a), although here the
quadratic EO contribution does not cancel out.

The devices are fabricated on an undoped 340 nm GaAs
membrane which is released by undercutting an underlying
Al ;Gag 4As buffer layer using hydrofluoric acid (HF). While
we chose to demonstrate the orientation dependent push-
pull effect with bare GaAs in this work, these ideas can
be extended to optimally doped p-i-n structures [38] with
quantum wells, which would significantly enhance the mod-
ulation efficiency. The fabrication of the GaAs PIC follows a
process similar to our previous work [30], [31], [35]. The sus-
pended waveguide platform is encapsulated in silicon oxide
deposited by plasma enhanced chemical vapor deposition.
The oxide locks the structure mechanically providing rigid-
ity [30], and also serves to offset the signal electrode from the
waveguide layer (cf. Figure 1(b)). To build EOMs, we open up
windows in the oxide layer to define the signal and ground
electrodes and define the contacts using lift-off with an addi-
tional aligned lithography step. The r,; coefficient requires
a vertically oriented electric field for operation. Therefore,
the signal contact is deposited on top of the waveguide (off-
set by the oxide thickness ~2 pm). To get the bottom contact
underneath the waveguide to maximize the verticality of
the dropped RF field (see Figure 1(b) for an FEM simulation
showing the electric field lines around the waveguide), we
use an n-doped GaAs substrate (1 X 10" cm~=3) and use an
annealed AuGe/Ni/Au metal stack to get an ohmic contact,
see Supplementary Information (SI) Section 1 for further
details.

Figure 2(a) and (b) show false-colored SEM images of
the PeM-MZM and racetrack EOM devices respectively. The
different components of the device are shown by zoomed-in
images added to the figure inset. Light is coupled onto and
off the chip using focusing grating couplers (Figure 2(i)) and
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Figure 2: False-colored SEM view of suspended GaAs (a) PeM-MZM and (b) racetrack EOM devices. The electrodes (yellow) covers the GaAs waveguide
(green) with MZ arms meandering along [011] (red highlight) and [017] (blue highlight) directions. The uncolored regions represent GaAs substrate
covered by deposited SiO, layer. Etch windows on SiO, layer are opened adjacent to the devices exposing bottom doped substrate (orange), allowing
ground electrodes to form ohmic contact with substrate. Insets (i-vi) show zoomed views of key individual device components making up the EOM:

(i) 15 pm-wide surface-normal grating coupler, (i) top view of the rib waveguide suspended by 19 pm spaced tethers, (iii) rib waveguide cross section
showing a 20 pm-wide air gap opened beneath the waveguide, (iv) Euler U-shape bend with bend width of 40 pm to mitigate bending loss, (v) 1-to-2
Y-splitter, (vi) bus waveguide-resonator coupler for the racetrack EOM with a coupling gap of 385 nm. SEM insets (i), (i) and (vi) are taken before
capping the oxide, to give a clearer view of optical components and their suspension.

routed using suspended rib waveguides (Figure 2(ii), (iii)).
For the PeM-MZM designs, we split the light into the two
MZ arms at the input using a Y-coupler (Figure 2(v)) and we
use an identical Y-coupler at the output to recombine the
light from the two arms. The push-pull effect originates from
the orientation of the waveguide arms along two orthogonal
axes as shown in the figure. The high refractive index con-
trast and strong mode confinement allows us to tightly fold
the MZM. We use Euler bends [40] with effective bend radii
of 20 pm (Figure 2(iv)) to ensure minimal mode mismatch
between the straight and bent waveguide regions.

The PeM-MZM shown in Figure 2(a) are designed with
arm lengths of 25cm and 2.36 cm for the beam paths
oriented along the [011] and the [011] axes respectively.
We work with an asymmetric MZI design in these first-
generation devices as it helps ease constraints on the lay-
out and the spectral dependence on transmission helps us
bound the losses of internal components like grating cou-
plers, bends and Y-splitters. By optimizing the layout, the
meandering arm lengths can in principle be made symmet-
ric. The overall design takes up an on-chip footprint of 1 mm
X 3.1 mm. We were conservative in our designs with respect
to lateral undercut provision and the radii of the Euler
bends to ensure working devices in these first generation
experiments.

The scale of the device in Figure 2(a) clearly shows
the potential of incorporating MEMS based techniques into
integrated photonics platforms [41], beyond silicon wherein

thin film on-insulator substrates are not readily available
or are limited in substrate size. We maintain sub-pm mode
confinement over 2.5 cm scale on-chip path lengths, and the
platform is stable to enable sensitive on-chip interferom-
etry. To ease the fabrication constraints in these proof-of-
principle devices, we chose to work with lumped electrodes
for the EOMs, shown schematically in Figure 1(a), and indi-
cated by the gold pads in Figure 2(a) and (b) for the PeM-
MZM and the racetrack EOM respectively. For the PeM-MZM
device in Figure 2(a), the electrode overlaps 2.08 cm of the
folded waveguide in both arms to maintain the symmetry
of the push-pull operation.

3 Device characterization

We characterize linear electro-optic modulation in our
devices using the setup shown in Figure 3(a). Light from
a tunable laser (Santec, TSL-550) is coupled into and out
of the device under test (DUT) from a fiber array using
grating couplers. As the laser wavelength is scanned, a mod-
ulation (AC) signal of frequency 1 MHz, and peak ampli-
tude 1V for PeM-MZM (0.25 V-2 V for the racetrack EOM) is
applied to the ground-signal-ground electrode configuration
using a microwave probe. The transmitted optical signal
is measured using both an optical power meter (Thorlabs,
PM100USB) to record the transmission spectrum, and with a
high-speed photodiode (Optilab, APR-10-MC), whose output
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Figure 3: Characterization results. (a) Experimental setup used for electro-optic modulation characterization. (b) A representative mode from

the normalized optical transmission spectrum (blue) of the racetrack EOM, showing a loaded quality factor @ ~ 1.47 X 10° and extinction depth

ER = 4.83 dB (Supplementary Information, Section 3). The measured spectrum is fit using a Lorentzian lineshape (blue, solid). The measured
modulation amplitude (lock-in signal) is shown (red, scatter) and the predicted fit is shown in shades of red for different applied modulation voltages
ranging from 0.25 V to 2 V. We can see that the measured AM signal is clearly linear within this range. (c) A representative section of the optical
transmission spectrum and modulation amplitude spectrum of the PeM-MZM device from Figure 2(a). The optical spectrum (blue scatter, normalized)
is fitted with a sinusoidal curve (blue line), while the AM spectrum (red scatter) is fitted with a half-wave rectified sinusoidal model (red line).

See Supplementary Information Section 4 for details on the fitting procedure. (d) AM spectrum of the PeM-MZM device measured with 0 V DC bias
and 1V RF voltage amplitude (pink scatter). Overlaid purple crosses show the AM response as the DC bias is swept from —60 V to 60 V (top x-axis)
with the laser wavelength parked at the dashed line, and the RF signal amplitude fixed at 1V. We believe the non-alignment of the data near

A =1,540 nm is due to temperature induced spectral shifts during data acquisition.

is fed into a lock-in amplifier (Stanford Research Systems,
SR865A) for modulation amplitude measurement. The sig-
nal generator (Tektronix, AFG2021) provides the reference
signal for the lock-in, as indicated in Figure 3(a). The phase
modulation induced by the EO effect is translated to ampli-
tude modulation (AM) by the spectral dependence of the
DUT transmission, and this translated AM is recorded as
the modulation amplitude by the lock-in amplifier from the
photodiode output.

Figure 3(b) and (c) shows the measured modulation
amplitude spectra overlaid on the optical transmission spec-
tra for the racetrack EOM and the PeM-MZM devices, respec-
tively. The measured modulation amplitude as a function
of laser wavelength agrees well with the gradient of the
optical transmission spectra, in line with the PM to AM
translation argument discussed above. Fitting the modula-
tion amplitude (see Supplementary Information Section 4
for details) allow us to extract the modulation efficiency,
expressed as a spectral tunability (s, [pm V~1]) or an equiv-
alent half-wave voltage (V) need to shift the transmis-
sion from a maxima to a minima (or vice-versa). For race-
track EOMs with a loaded quality factor Q ~ 1.47 X 10°
and extinction ratio ER = 4.83 dB, we extract an # = (0.351
+ 0.008) pm V! and a V, = (31.9 + 0.8) V. For the PeM-
MZM devices, the values are # = (0.139 + 0.003) pm V!
and a V, = (54.3 + 1.3) V. The V_ for PeM-MZM can also
be directly quantified through a DC sweep measurement,

as shown in Figure 3(d). Here, we repeat the modulation
experiment as in Figure 3(a), but add a DC bias voltage on
top of the AC voltage (amplitude = 1V). By sweeping the
DC bhias voltage, one can in principle traverse the optical
transmission spectrum, as shown in Figure 3(d), and read
out the V_ directly. The racetrack EOM measurement serves
as a reference for the more complex PeM-MZM devices.
From the modulation measurements, we can extract an
equivalent refractive index change per unit applied voltage
for both devices. This gives us Any; = 1.084 X 1075 V=1 for
racetrack EOM and An s = 6.97 X 1077 V- for PeM-MZM.
The extracted An for the racetrack EOM agrees well with
the predicted Angz = 1.279 X 107° V-1 using FEM simula-
tion (cf. Supplementary Information Section 2).

We can also demonstrate the opposite phase shifts
along the [011] and [011] axes by designing unbalanced
MZMs with only a single arm (SeM-MZM) meandering along
the respective crystal axes, as shown in Figure 4(i), (ii). The
meandering arm lengths are kept identical in both devices
and their nominal optical transmission spectra are similar
(as shown Figure 4(a)). By parking the laser at the mid-
point of the amplitude modulation spectrum (shown by the
dashed lines in Figure 4(a)) and applying a DC voltage sweep
of fixed polarity (0 V-32V), we see that the differential
change in modulation amplitude is opposite with DC bias.
This is because the underlying MZI transmission spectrum
is either red or blue detuned in the two cases, depending
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Figure 4: Control experiments to demonstrate the push-pull nature

of the effect: DC bias induced phase shift on two SeM-MZM devices, with
a single arm meandering along [011] (i) or [017] (ii) direction. The mean-
dering arm lengths are designed to be nominally equal in the two

cases. (a) AM spectra for SeM-MZMs driven by a 1 MHz modulation signal
of amplitude 1V, (blue for (i), red solid for (ii)). Overlaid scattered plot
(red circles and blue triangles) shows the shift in the AM spectrum when
the DC bias voltage is swept from 0 V (black dashed line) to 32 V. The
laser wavelength is indicated by the dashed line (b) replotting the data
from (a) to show the differential AM change as a function of applied DC
bias voltage. The differential shift (AAM = AM(V,,c) — AM(0)) is plotted
with reference to the zero DC bias point. The opposite slopes of the
differential AM voltage with respect to the bias voltage V. clearly shows
the push-pull effect in action.

on waveguide orientation. Figure 4(b) plots the measured
(differential) modulation amplitude, from the mid-point, as
the applied DC bias is increased from 0 to 32 V. The push-pull
effect can clearly be seen. While the opposite nature of the
effect in the two arms is easy to verify using Figure 4, the
effect being exactly equal in magnitude is more challeng-
ing to quantify, given the variability between devices. We
can in turn bound the difference between the two arms by
quantifying the V. of the two SeM-MZM devices, which were
designed to have the same meandering arm path lengths.
We extract the two V. to be, respectively, 86 V for device (i)
and 93V for device (ii).

We measure the modulation bandwidth (BW) of the
racetrack EOM and the PeM-MZM devices using a modi-
fied version of the setup shown in Figure 3(a). Here, we
use a vector network analyzer (VNA, R&S ZVL) to drive
(via Port 1) the device under test with a microwave sig-
nal (0 dBm, 225 mV RMS) and sweep the modulation fre-
quency from 100 MHz to 9 GHz. The modulated signal is
measured using a high-speed amplified photodiode (Opti-
lab, APR-10-MC) whose output is fed back into the VNA (port
2) to perform a standard EO S,; measurement. Figure 5(a)
plots the normalized electro-optic frequency response of
the racetrack (brown) and PeM-MZM (green) devices. The
device response is normalized to 100 MHz, cf. Supplemen-
tary Information Section 5 for details on the normalization
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Figure 5: Bandwidth measurements. (a) Measured (normalized) EO
frequency response (S,) for 2 cm long PeM-MZM (green) and racetrack
EOM ring modulator (brown). The frequency response is normalized to
100 MHz and the normalization procedure is outlined in

Supplementary Information Section 5. (b) Measured electrode reflection
spectra (S,,) for the devices. The wiggles apparent in the bandwidth
spectra (S,) occur due to a combination of electrode reflection and
photodiode gain normalization.

procedure. The extracted 3 dB modulation bandwidths of
the racetrack EOM and PeM-MZM devices are ~2 GHz and
~0.8 GHz, respectively. In these proof-of-principle devices,
the electrodes (see Figure 1(a)) were not optimized for
high-speed operation, but more to ease fabrication con-
straints in order to demonstrate the push-pull effect in
cm-scale devices. Therefore, our BW is primarily limited
by the RC time constant of these lumped element elec-
trodes. Figure 5(b) plots the measured electrode reflec-
tion S;; spectra for the racetrack resonator and the PeM-
MZM device. The wiggles apparent in the measured band-
width (S,) spectrum originate from a combination of the
bare electrode response and the normalization procedure
detailed in Supplementary Information Section 5. Supple-
mentary Information Section 5 shows the extracted ampli-
fied photodiode gain spectrum which is non-monotonic and
has an impact on the measured bandwidth spectrum.

4 Discussion

While the results outlined in this paper clearly demon-
strate the orientation dependent push-pull effect in the
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PeM-MZM devices, and the scale (2cm suspended arm
lengths in the MZI) shows the promise of bringing MEMS
based nanofabrication approaches to integrated photonics
platforms, the actual device performance leaves some scope
for improvement. Many of the limitations in the EOM per-
formance metrics outlined above can be traced to conserva-
tive design choices made on the nanofabrication side to get
working devices. As noted above, the scale of these devices
far exceeds what has been previously demonstrated in a
suspended GaAs PIC platform [30], [31], coupled with the
additional metallization constraints to generate the vertical
field required at the waveguides.

Below, we outline how the various components of the
PeM-MZM can be improved to achieve state-of-the-art mod-
ulator performance [23], [24], keeping in mind the trade-offs
between increased device complexity and reduced fabri-
cation yield. The three main components to improve are
the underlying passive optical performance (insertion and
propagation loss), improving the modulation efficiency and
increasing the modulation bandwidth. We consider each in
turn.

While we are clearly able to demonstrate the
orientation-dependent push-pull effect using the PeM-MZM
devices and achieve working EOMs, the underlying passive
device optical performance needs improvement. In the
device shown in Figure 2(a), we measure an end-to-end
insertion loss of 29.8 dB, which we can sub-divide into
7.0dB per grating coupler (2X), 1.0dB per Y-splitter
(2xX) and 13.8dB of propagation loss. Supplementary
Information Section 3 provides further details on the
loss extraction of the individual components. The optical
propagation loss of 5.5 dB cm™, extracted from the loaded
quality factor of the racetrack resonators fabricated on the
same chip, is 2.3x greater than the 2.4 dB cm™! [35] that we
have demonstrated in purely passive devices before.

The excess loss in the grating coupler is mainly due to
an incomplete undercut of the underlying AlGaAs buffer
layer. As noted in the fabrication procedure (Supplemen-
tary Information Section 1), we rely on a timed HF acid
etch to remove the AlGaAs layer and suspend the waveg-
uides. Given the lack of tensile stress in the GaAs device
layer, overetching the buffer layer causes the membranes
to sag [30] and given the scale of the devices (2.5 cm in
each arm and 2cm suspended sections), we were keen
to prevent waveguide collapse with a view towards get-
ting functional devices. Therefore, we restricted the (over)-
etch time, and that resulted in an incomplete undercut of
the AlGaAs sacrificial layer with the worst affected loca-
tion being the grating coupler on account of its size, more
specifically, the distance from the centre of the component
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to the nearest etch window. With process optimization,
we should be able to achieve the loss metrics we have
previously demonstrated [35] on these cm-scale devices.
Moving to wider waveguide widths (=750 nm) is a potential
solution as it reduces surface loss while maintaining single-
mode operation, although it comes at the cost of device foot-
print as the minimum bend radius increases from ~10 pm
to 20 pm as the waveguide width is increased from 550 nm
to 750 nm.

The second area of improvement, is the optimization of
top and bottom cladding thickness, and electrode design to
maximize the refractive index change (An) per unit applied
voltage and therefore maximize the modulation efficiency.
In a vertical geometry like the GaAs EOM, the device can
be approximated, to first order, as a series of three capac-
itors with dielectric constants roughly corresponding to the
top cladding, waveguide and bottom cladding respectively.
The voltage drop for such a series capacitor configuration
scales inversely with the dielectric constant, which means a
significant fraction of the field drops across the bottom air
cladding. Both the top and bottom cladding thickness can be
reduced by half to 1 pm from the current devices without
affecting optical performance significantly, and ensuring
higher electric field strengths for a given applied voltage. By
moving to a top and bottom oxide cladding using conformal
PECVD [42], we can improve the electric field strength by
~3.3x and the overall An by ~3.3X, cf. Figure 6. By building
the same 2 cm PeM-MZM devices, we expecta V, ~ 9.0 V.
We would like to emphasize here that this optimization is

(a)

PECVD oxide
EPO =4.10%x10*V/m
An,, =1.18x10°/V

(b)
Conformal oxide
Epp = 1.33x10°V/m
An,) =3.85x10° )V

Figure 6: Electric field distribution comparison of the suspended GaAs
waveguide devices shown in this work (a) with the proposed optimized
geometry (b). Both the top and bottom cladding spacing to the
electrodes can be reduced from =2 pm in the current devices to 1 um
without affecting optical performance. More importantly, by using
conformal PECVD oxide deposition, the field strength at the waveguide
(and the associated index change) can be significantly improved, as
discussed in the main text. The FEM simulation of the local electric field
strength is overlaid with optical mode and depicted using arrowheads
that are scaled proportionally. Point P, locates the center of waveguide.
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performed keeping the GaAs device layer thickness fixed at
340 nm in keeping with standard silicon photonics foundry
offerings. Increasing the thickness to 500 nm brings the V.
down to ~5.5V for similar length devices. We would like to
note that moving to a conformal PECVD reduces the index
contrast and therefore mode confinement slightly, but this
effect is very small in comparison to the increased field
strength and associated increased modulation efficiency.

The final area of improvement to the devices
reported in this work is incorporating travelling wave
electrodes around the waveguides and velocity matching
the microwave and optical fields with a view towards
increasing the operational bandwidth. While the design of
travelling wave electrodes is well-understood for GaAs [24],
[43], adapting these designs to our tightly folded geometries
while maintaining a low microwave insertion loss will
require a re-optimization of the optical and microwave
performance to maximize the device figure of merit. A
second fabrication challenge that needs to be addressed
is the thickness of the metal electrodes. To reduce the
resistive loss at high frequencies, the metal thickness needs
to be >500 nm, and the compatibility of such a dense metal
stack with a suspended waveguide platform needs to be
demonstrated in practice.

5 Conclusions

We have demonstrated true push-pull electro-optic modu-
lators in a suspended GaAs PIC platform by exploiting the
orientation induced asymmetry of the Pockels r,; coeffi-
cient and folding the two arms of an MZI along orthogonal
crystal axes ([011] and [011], respectively). We also show
that sub-pm mode confinement can be maintained across
cm-scale devices in a suspended platform with relatively
high-performance. This work provides a proof-of-principle
demonstration of the idea of using geometry to exploit ten-
sorial coefficients in crystalline media, mainly compound
semiconductors, and serves as a building block for engineer-
ing quasi-phase matched interactions in curvilinear geome-
tries in materials with 4 crystal symmetry [44]. By push-
ing on the surface loss frontier through improved surface
passivation [35], these devices can potentially approach the
regime of mesoscopic nonlinear optics [45]. As outlined in
the introduction, semiconductor based EOMs have certain
unique advantages over traditional ferroelectric insulators,
but realizing these benefits, especially from a systems per-
spective, requires a coordinated effort on the photonics,
microwave, materials and manufacturing fronts.
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